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Abstract Abl kinase plays a decisive role in the mecha-
nism of the most fatal human pathogen chronic mylogenous
leukemia (CML). Here, we have carried out a comprehen-
sive study about the conformational flexibility, role of salt
bridge and the protein- ligand interaction for this kinase
with its well-known inhibitor, Imatinib. We have performed
molecular dynamics simulations for conformational behav-
ior, investigated the salt bridges and calculated the binding
free energy of Imatinib with MM-PB/SA method for Abl
kinase complex. We also explored the role of salt-bridge in
the kinase complex and its effect on binding activity of
inhibitors. Furthermore, to investigate the importance of
those residues which form salt bridges, we mutated them by
Alanine with the help of Alanine scanning program. We
noticed significant variations in total free energy of Imatinib
in all possible mutations. The binding free energy of ligand
for kinase receptor was analyzed by molecular mechanics
Poission Boltzmann surface area (MM-PB/SA) method.
These results suggest that conserved glutamic acid and
lysine are necessary for stability of complex.
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Introduction

The calculation of binding affinity of a drug ligand with a
protein receptor is a major preoccupation of early stage
drug discovery. Even though this is not an easy task, yet,
there are some theories, particularly Linear Interaction
Energy (LIE) and molecular mechanics Poisson-
Boltzmann surface area (MM-PBSA) which are commonly
used to examine this binding affinity. These are free energy
pathway methods based on the recognition that the free
energy of binding is the change in free energy when one
protein and one ligand react to form a complex. Here we
report the energetics and conformation of an enzymatic
system c-Abl protein kinase through molecular dynamics
and the MM-PBSA calculation. Many groups are engaged
in cramming the molecular structure of this kinase during
the last few decades [1–4]. Beside the crystallographic
study there are many workers who have explained the
mechanism of these tyrosine kinases [5–10]. Akin to other
protein kinases, Abl-kinase is activated by toggling on and
off states of their complex structures. Leukemia occurs due
to over activity of this kinase, so a drug that obstructs the
activity of this enzyme can be treated as a potential drug
target for cancer. Fortunately, crystal structures of some
protein kinases have been determined and numerous small
molecule inhibitors of such kinases have been also
developed [1, 11–13]. Among such drugs, Imatinib is ATP
competitor inhibitors which binds between the cleft of N
and C terminals of the kinase and blocks the ATP binding.
It interacts with a number of hydrophobic residues,
including several aromatic amino acids, which are often
important in interaction with polar surface of inhibitors. It
has been approved for the use in the patient affected by the
CML. The crystallographic structure [14] of Imatinib with
c-Abl protein kinase suggests that due to binding of
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Imatinib, activation loop is folded inward which prevents
aspartate from ligating with magnesium.

The molecular biology reveals that E286, T315, M318,
I360, D381, F382, G383 are conserved in many tyrosine
kinases and are associated in binding with the ligand or
forming the channels for its binding. Furthermore, a good
number of highly conserved charged residues, Lys, Arg,
Glu, and Asp, capable of forming salt-bridge, are also
observed. A similar salt-bridge has been observed in the
structural analysis of a kinase [15]. There are certain amino
acids for example Glu/Asp:Lys/Arg that are being con-
served in diverse sequences of all known kinases whose
structural as well as functional roles in salt bridge has yet to
be explicated. The present study describes the characteriza-
tion of number of salt bridges for the first time using
computational and molecular modeling technique. These
finding sheds light on molecular basis of the conservation
of Glu/Asp:Lys/Arg salt bridges in kinases. In addition to
this, since protein hydration is very important for three
dimensional structures and activity [16–19]; all experiments
are being carried out in water in order to understand its
behavior on the stability of the kinase-ligand complex.

Methods and materials

We have used Amber 10 for molecular dynamics and MM-
PBSA calculations to study the behavior of the human c-Abl
protein kinase complexed with Imatinib. We have performed
molecular dynamics simulation of kinase with and without
Imatinib to investigate the interaction of ligand with target
receptor.

Molecular dynamics

The starting structure of the inactivated human kinase
bounded with Imatinib was taken from protein data bank
with PDB id 2HYY [14]. The missing heavy atoms and
residue Glu 275 in the crystallographic structure were
corrected with the Leap module of the amber package [20].
Partial atomic charges of drug Imatinib was calculated
using restrained electrostatic potential (RESP) procedure
[21, 22]. Ab initio calculations for ligand were carried out
using Gaussian 03 program at the HF/6-31 G* level of
theory. The kinase structure was initially a tetramer from
which a monomer was taken for studies. We adopted a
different numbering of the residue with respect to the
crystallographic structure [14], we took the residue 235 to
498 of human kinase. Hence in our present study the
residue one corresponds to TRP235 and residue 264 for
GLN498 of the crystallographic structure. The initial
parameters for the Imatinib were prepared by antechamber
module of Amber 10 package and then by the leap module

during the parameter preparation for the complete system.
Prior to the MD simulation the structure was subjected to
minimization in order to remove the steric clashes. The
complete system was neutralized with Na+ion and im-
mersed into the truncated octahedral shell of TIP3P [23]
water of dimension extending up to 75 Å. The system was
then gently annealed from 10 to 300 K over a period of
200 ps and then maintained in the isothermal–isobaric
ensemble (NPT) and thereafter at a target temperature of
300 K and target pressure of 1 bar using Langevin
thermostat [24] and Barendsen barostat [25] with collision
frequency 2 ps and pressure relaxation time as 1 ps. The
hydrogen bonds were constrained using SHAKE [26]. After
this the dynamics was continued up to 1.5 ns to
equilibration. For the analysis of the system, molecular
mechanical production phase was initiated and again
continued for another 14 ns maintaining the same param-
eters. The structures in the trajectories were collected at
every 10 ps intervals. All analysis of trajectories was done
with the Ptraj module of Amber10. VMD 1.6.7 [27],
Chimera-1.3 [28] and Maestro [29] graphical programs
were used for the visualization purpose.

Free energy simulation

The free energy analysis of the production trajectories
employ a single trajectory MM-PBSA[30, 31] method
combined with a determination of the change in the
configurational entropy using the harmonic approximation
of normal mode analysis. The principles of these methods
are well established and have been discussed by many
workers [32–35]. At this juncture we describe the specific
parameters employed in our approach. The free energy
difference of binding is composed of the following terms:

ΔGbind ¼ ΔGele þΔGvdw þΔGpol þΔGnonpol � TΔS:

ð1Þ

Here, the first two components in the right hand side
represent the van der Waals and electrostatic components of
the gas phase molecular mechanics free energy difference,
the third term is the electrostatic polar components of the
solvation free energy, and the fourth term is the nonpolar
component of the solvation free energy. All terms are
calculated using the standard MM-PBSA method imple-
mented in Amber 10. The last term is the contribution from
the change in the configurational entropy (TΔS). A detailed
explanation of these components can be seen in our recent
publication [34]. The change in configurational entropy
upon ligand association are estimated by all atom normal
mode analysis performed with the Amber NMODE module.
Prior to the MMPBSA analysis all water molecules and the
sodium ions were stripped from the trajectory. The
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dielectric constant used for the solute and surrounding
solvent was 1 and 80 respectively. During the MMPBSA
calculation snapshot were generated between the trajecto-
ries of the 4 ns-12 ns with time interval of 100 ps. The
calculations for solute entropy were performed with
NMODE module of the Amber 10. The structures were
minimized in the gas phase using conjugate gradient
method for 5000 steps, using a distance dependent
dielectric. The frequencies of vibration mode were com-
puted by the normal mode for the minimized structures at
300 K.

Alanine-scanning mutagenesis

The alanine-scanning mutagenesis of protein-protein inter-
facial residues has generated a large amount of information
that allowed the discovery of energetically important
determinants of specificity at intermolecular protein inter-
faces [36–38]. We have used alanine-scanning program
implemented in MM-PB/SA method of Amber 10 for the
mutating Alanine. We made 14 alanine mutations in
residues Asp7Ala, Lys11Ala, Lys13Ala, Glu21Ala,
Glu24ala, Lus37Ala, Glu52Ala, Glu82Ala, Glu118Ala,
Lys122Ala, Lys144Ala, Asp157Ala and Lys170Ala for the
equilibrated Abl complex. We performed standard MM-PB/
SA method to calculate the binding free energy of all
mutated system separately.

Sietraj calculation

In this method a binding energy function that consists of
force field term is supplemented by solvation term. This
function is further used to calibrate the solvation model
along with the solvation interaction terms in a self-
consistent manner. The incentive for this approach was that
the solute dielectric constant dependence of calculated
hydration gas to water transfer free energy is markedly
different from that of the binding free energies and thus
model solvation is directly calibrated in the context of the
binding free energy calculations. In this calculation high
internal dielectric constant and strong van der Waals scaling
was used for analysis and presents the parameterization of
continuum solvation model, based directly on the experi-
mental data. In this method binding free energy was
calculated by -

ΔGbind ¼ a Evdw þ Ecoul þ ERF þ Ecavð Þ þ constant Cð Þ:
ð2Þ

Here, Evdw and Ecoul are the intermolecular van der
Waals and columbic interaction energy which is calculated
using the Amber molecular mechanics force field. ERF is
the change in the reaction field energy between the bound

and the unbound state that is calculated using the Sietraj
(BRIUMM) program [39, 40]. Here Ecav is the cavity
energy taken to the change in the molecular surface area
ΔSA and it is calculated by the formula Ecav= + ′ΔSA.
Where + ′ is the surface area coefficient for optimized
parameters and it has the value of 0.012894 kcal mol-12.α
and C are fitting parameters whose values are 0.104758
and - 2.89 kcal mol-1, respectively.

Results and discussion

Conformational analysis

The initial structure prior to simulation of inactive complex
formed by kinase with Imatinib, shown in Fig. 1, illustrate
that Imatinib binds in the cleft between the N- and C-
terminal lobes and the DFG motif (D147-F148-G149) flips
out to make a channel beyond the gatekeeper residue Thr81
for benzamide and N-methyl piperazine groups of Imatinib.
The interaction of Imatinib with receptor is shown in Fig. 2.
The N methyl piperazine group of Imatinib was found to
have a strong interaction with the protein via hydrogen
bonds with the main-chain carbonyl group of Ile126 and
His127. Other hydrogen-bond interactions were found
between pyridine N of ligand and the backbone NH of
Met84 in the hinge region, the anilino NH of ligand and the
side chain of the gatekeeper residue Thr81, the amide NH
and the side chain of Glu52 from C-helix, and the amide
carbonyl and the backbone NH of Ala146 (which just
precedes the highly conserved DFG motif). The four
snapshots of the kinase complex from the production
trajectory, at 1 ns, 5 ns and finally at the 13 ns are shown
in Fig. 1S of supplementary material for the structural
illustration. The overall flexibility of the protein can be
explained by B-factor calculation from the MD trajectories.
The Debye -Waller factor or isotropic temperature factor
(B-Factor), plotted as a function of residue number with
respect to center of mass as Imatinib, and was obtained
from the following equation

Bi ¼ 8=3 p2Δr2
� � ð3Þ

Here, Δr2 is the mean square fluctuation for the Cα atom
of the residue. In a typical B- factor pattern low B factor
values show the well structured regions and a high values
show the loosely structured loop regions or domains
termini. The graph representing the B-factor with respect
to residue of the protein is shown in Fig. 3. Here, we notice
that residues 15–21, 49–55, 78–84, 147–149 have a smaller
B-factor. It is noteworthy that in these regions the
regulatory elements (activation loop, DFG motif and alpha
helix) are located. The lesser B-factor suggests that these
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residues are stabilized due to interaction with some other
groups. Apart from the very flexible termini, the most
significant fluctuation corresponds to the loop regions. It
can be seen that C-terminal chain, which consists of alpha
helices, is the most flexible region (for both unbounded
protein and bounded protein). Among the N terminal
chains, the two alpha helices and the associated loops near
the hinge region, show higher B-factor. Due to high
flexibility of this region (followed by the activation loop
and preceded by DFG motif), it has the capability to move

up to 10 Å to interact with ATP binding site. A comparison
of the structure of c-abl at various steps during the
simulation and with final structure suggests that the RMS
fluctuation for the activation loop is up to 14 Å. It slowly
moves at each step from initial structure to final structure.
This conformational flexibility of activation loop suggests
that it has the capability to release and facilitate the
nucleotide binding at this site when needed. After monitor-
ing the atomic positions and their positional fluctuations in
Fig. 3, it is noteworthy that the atoms and residues involved

Fig. 1 (a) Initial structure of c-Abl protein kinase bounded with Imatinib. (b) Two dimensional structure of Imatinib

Fig. 2 The interaction of
Imatinib with backbone atom
of Abl kinase. Hydrogen bonds
are represented by green lines
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in hydrogen bonding have lower B- factor. The loops are
more flexible than other regions in the complex (Fig. 3) and
thus, are more difficult to characterize reliably by crystal-
lography. That is why, there are a number of conformational
differences between simulated and crystallographic struc-
tures for the exposed side chains from these flexible loops,
for example residue Glu275, Asp276 and Thr277 are
missing in some of the chains, while some of the side
chains of Arg239, His246, Lys274, Met278, Lys285,
Lys294, Arg307, Glu308, Lys356, Lys357, Arg386,
Leu387, Asp391, Glu466, Lys467, Glu470, Gln491, and
Glu494 residues are missing from the crystallographic
structure of the complex, which are parts of the loops
discussed above. The RMSD (root mean square deviation)
of the backbone (in bounded and unbounded form) for the
14 ns simulation period is shown in Fig. 4. The RMSD of
1.5 Å was observed for the receptor in the bound state
while it was almost 2.25 Å for the unbounded form. The
ligand RMSD is 0.7 Å, which is relatively smaller than
receptor in unbound and bound form. We see that there is
relatively high deviation in the receptor in the absence of
Imatinib, which shows the effect of ligand binding with the
receptor. It is apparent that more fluctuation was observed
for the receptor as well as for the ligand due to local
conformational changes during the simulation time 9.1 ns
to 10 ns. The change in the receptor conformation suggest
the change in the ligand conformation also which is
obvious from the graph. To explain above conformational
change, hydrogen bonding between the ligand and the
regulatory elements have been calculated and shown in
Fig. 5. It should be noted that the carbonyl oxygen of
Asp147 forms a strong hydrogen bond with average
distance of 2.8 Å while the side chain of Glu52 forms
slightly weak hydrogen bond with Imatinib. It may occur

due to involvement of the Oε in the salt bridge formation,
discussed below. The proton acceptors of these two residues
are oriented at an angle of approximately 75o with respect
to each other toward the N5 atom of Imatinib. By
monitoring the trajectory motion, a variation of 60–90
degree has been observed during the simulation period.
This variation in the orientation is governed by the salt
bridge formed between the Glu52 and Lys37. Since the
Asp147 and Glu52 is interacting with Imatinib through the
same amide group which causes a change in the dihedral
angles between the aromatic rings. The exchange of
hydrogen-bonded structures causes a change in the orien-
tation of the aromatic ring of inhibitor and as a result there
is a local conformational variation and fluctuation in the
RMSD values. The graph shows the flexibility of these
regulatory elements which is in agreement with the earlier
results by other techniques [7, 10, 36]. During the
simulation, side chain of Thr81 makes a strong hydrogen

Fig. 3 Atomic fluctuations (B-Factor) during the whole production
simulation with respect to average structure

Fig. 4 RMSD of tyrosine kinase complex, backbone and ligand with
reference to the average structure during whole production dynamics
(Top). Comparison of RMS variation of backbone of c-Abl in bounded
and in unbounded form (Down). The RMS variation in later one is
plotted with reference to unbounded structure
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bonding with amide nitrogen of Imatinib (Fig. 5c). Simi-
larly the amide group of Met84 is also forming strong
hydrogen bonds with the N1 atom of the Imatinib (Fig. 5e).
The side chain of Tyr19 of P-loop is orienting itself to form
the close interactions with kinase inhibitor, including an
edge-to-face aromatic interaction between Tyr19 and the
pyridine and pyrimidine rings of Imatinib. The other
contacts are mainly van der Waals interaction, between the
inhibitor and the protein, which contain the hydrophobic
cleft created by various amino acids. The interacting amino
acids are stabilized and show small fluctuations. From
Fig. 3, it is clear that interacting residues show relatively
low b-factor due to the interactions with the ligand or other
residues.

Binding free energy

We used the single complex trajectory protocol, the MM-
PBSA method, to predict the binding affinity and calcula-
tion of entropic contributions. The results obtained by the
MM-PBSA are shown in the Table 1. It is clear from the
table that main contribution in the total energy comes from
the electrostatic energy for all system (receptor, complex,
and ligand), while the difference of the van der Waals
energy is more negative with respect to the electrostatic
energy that indicates about the good pose of ligand to
acquire the cavity of receptor. Strong van der Waals
interaction implies a reasonable geometry for binding with
kinase receptor. High contributions of polar group indicate

Fig. 5 Hydrogen bond distance of some regulatory elements with
Imatinib during whole production dynamics (2–14 ns). Here, time is
represented in nano-second (a) distance between Asp147@O with
STI265@H31 (b) Distance between Tyr 19@H with STI265@H (c)

distance between Thr 81@OG1 with STI265@H30 (d) distance
between Glu 52@OE2 with STI265@H31 (e) distance between
Met84@N with STI265@N1
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that inhibition of kinase is mostly supported by the
hydrophilic interactions. The absolute free energy comes
out to be −06.04 kcal mol-1, which is the indication of the
strong binding affinity. Furthermore, the negative binding
energy also supports the tight binding of ligand with the
receptor. Here, cavity energy is 61.64 kcal mol-1 which
indicates that the work has to be done in the reorganization
of solvent molecules. Since the cavity energy is directly
proportional to the accessible surface area, hence its high
value indicates larger solvent accessible surface area. The
experimental binding energy of Imatinib with the Bcr-Abl
kinase [41] is about −10.37 kcal mol-1. The SIE method
was calibrated on binding affinity between protein and
small molecule ligands in order to test its ability to predict
the binding affinity for this particular system, for which the
MM-PBSA computation data is available. The results of the
Sietraj calculation are shown in Table 2. It is obvious
from the table that binding affinity of Imatinib comes
about −11.08 kcal mol-1 which is close to the experimental
value. During the Sietraj calculation we have used same MD
trajectories as that was used for MM-PBSA calculations.

Role of salt bridge in kinase activity

Since salt bridges play an important role for the folding of
proteins, hence we took account of the salt bridges formed
in the simulated structures. The occupancy of the salt-
bridge formation has been plotted and shown in Fig. 6. We
perceive several salt bridges between positive and negative

charged amino acids. Some of these, e.g., Lys-Glu [Lys271-
Glu286 or Lys37-Glu52 (present nomenclature as in this
text)] salt-bridges have been observed and reported in
crystal structures [14]. This salt-bridge is important for
maintaining an active kinase conformation and orienting the
lysine side chain for interaction with ATP phosphates in the
Abl bounded Dasatinib structure (PDB id 2GQQ). A salt-
bridge arranged in similar way has also been observed with
LCK kinase (PDB id 3LCK) [15]. As shown in Fig. 6, the
occupancy of salt-bridge between 52E -37 K and 82E-
144 K is more than 80%, while salt- bridge between the
residue 21E- 13 K, 118E-122 K and 157D-170 K have
occupancy more than 40%. For other salt-bridges the
occupancy is smaller. From the atomistic view, these salt-
bridges are formed by Nε and Nn2 of the Arg or Nε of Lys
and Oε1 or Oε2 of Glu or Oδ1 or Oδ2 of Asp. The smaller
histograms shown in above figure represent the bridges
observed during simulations with lower occupancy. The
side chains of these residues are also involved in hydrogen

Table 1 Binding free energy components of the c-Abl kinase complex for snapshots extracted from production dynamicsa . Here, Std stands for
standard deviation

Contributionsc Complex Receptor Ligand Deltab

Mean Std Mean Std Mean Std Mean Std

Eele −6168.34 77.52 −5573.08 77.69 −571.88 3.10 −23.38 3.67

Evdw −1085.76 25.68 −1046.25 25.42 30.98 3.20 −70.49 3.48

Eint 6031.67 42.54 −5912.37 43.69 119.30 7.27 00.00 0.00

Egas −1222.43 93.84 −706.97 94.97 −421.60 5.83 −93.86 4.32

Gnp 102.63 1.29 105.33 1.33 6.15 0.04 −8.85 0.16

Gpol −3603.70 67.16 −3632.21 67.38 −29.13 0.85 57.64 4.10

Gsol −3501.07 66.86 −3526.87 67.11 −22.98 0.85 48.79 4.07

Gbind −4723.50 52.69 −4233.84 52.46 −444.59 5.75 −45.07 4.80

Gcav 61.64

TΔS −39.03 1.83

ΔGfree −06.04
ΔGexp −10.37

a All values are given in kcal mol-1

b Contributions(complex) –contributions(receptor+ligand)
c Eele: Columbic energy; Evdw: van der Waals energy; Egas=Eele+Evdw+Eint; Gnp: non polar salvation free energy; Gpol: polar salvation free
energy; Gsol=Gnp+Gpol ; Gbind=Egas+Gsol; Gcav: cavity energy; TdS : total entropic contributions as determined by normal mode analysis; Gfree=
Gbind –TdS.

Contribution Mean Std

Eele −70.61 3.53

Evdw −10.52 1.62

ERF −15.77 1.90

Ecav −12.83 0.35

ΔG −11.08 0.44

ΔGexp −10.37

Table 2 Binding energy compo-
nents calculated from Sietraj
methoda

Eele: Coulombic energy; Evdw:
van der Waals energy; ERF:
reaction field energy; ΔG:
binding free energy( formula
given in material & methods)
a All values are given in
kcal mol-1
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bonding with other residues in the protein molecule.
Figure 6 infers one another strong salt bridge between
Glu82 and Lys144. Here, we speculate that salt-bridge
Glu82:Lys144 brings gatekeeper residue and activation
loop together at the time of folding, which may be
responsible for the activity of the kinases. The salt-bridges
between Asp157:Lys170, which is observed during the
dynamics, are part of the activation loop. Here, Asp157 is
very close to the Tyr159 which may be a hot spot for the
ATP binding (it is phosphorylated in the presence of
divalent ions) and Lys170 is at the end of the activation
loop and is a small part of alpha helix known as the peptide
binding site. Again we speculate that this salt bridge will be
helpful in bringing the active Tyr159 at the active binding
site during phosphorylation process. It may be responsible
to hold the molecule close to reactant for the specific period
of reaction needed for this activity. The other salt-bridge
having more than 40 % occupancy is Glu21:Lys13. It is to
be noted that these two residues are part of the P-loop. As
discussed above among Glu52 and Asp147 only one binds
tightly with the inhibitor Imatinib. During the simulation it
is observed that when Glu52 is bonded with Imatinib,
simultaneously it binds with Lys37 to form a salt-bridge.
On the other hand, when Asp147 binds with Imatinib then
Glu52 does not show any bonding during this period.
Therefore, probably, salt-bridge between Glu21:Lys13 is
needed to fix the position of P-loop such that Glu52 is in
proximity of inhibitor. The absence of this salt-bridge may
force the loop to orient in other side, farther to the inhibitor,

which may hinder the Glu52 to approach the active site or
bonding site with the inhibitor. The P-loop mutation causes
the loss of two hydrogen bonds that stabilize the inactive
conformation and would therefore tend to shift the
equilibrium distribution of the kinase conformational states
toward the active conformation, to which Imatinib does not
bind. This effect has been already observed in experiments
(IC50=6.7 μM for Glu21Lys) [15].

Alanine-mutagenesis

The mutation studies of these amino acids at specific sites
may be helpful to understand the activity played by these
residues. We used alanine-mutagenesis to investigate the
effect of mutation on salt-bridges. The results of the
alanine-mutagenesis are shown in Table 3. From the table
it is clear that mutations do not change the binding energy
of Imatinib significantly, because the variations in intermo-
lecular energy ΔEgas and solvation energy ΔEsolv cancel
the net change in binding energy except for Mut2.
However, the total free energy ΔGfree has significantly
different value. This variation in free energy arises due to
difference in entropic contributions. Consequently, one can
speculate that the salt-bridge does not play a vital role in the
activity of inhibitors. However, mutation causes a large
change in entropic contribution of the complex. Here, we
recall that the entropic contribution implies the vibrational
and rotational motion of the system, hence a major change
in entropy results to a large motion in the complex which

Fig. 6 Percentage occupancy of
the hydrogen bonds formed by
salt bridges. The bonded amino
acids are mentioned below the
corresponding histogram
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might been occurred due to breaking of salt-bridges in
receptor due to above mutations. Hence, we conclude that
the salt-bridges do not affect the inhibitor activity but it
should be conserved for the stability of kinase complex.
This assumption is supported by data available in the literature

[41] which suggests that kinase is less stable at pH <4.5, and
effects the folding pattern of the protein. It may happen
because of the unavailability of salt-bridge forming residue.
At lower pH a proton is attached at the side chain of Glu and
Asp and these residues does not possess the negative charge,

Table 3 The computational alanine-mutagenesis results for Abl kinase complex

Cont Mut1 Mut2 Mut3 Mut4 Mut5 Mut6 Mut7

ΔEele −20.6 −19.7 −30.3 −19.7 −28.3 −30.7 −29.6
ΔEvdw −73.3 −71.5 −71.6 −73.8 −70.2 −70.8 −71.2
ΔEgas −94 −91.2 −98.7 −93.6 −96.2 −98.3 −98.3
ΔGnp −7.6 −7.6 −7.5 −7.6 −7.5 −7.5 −7.5
ΔGpol 56.1 59 58.6 55.3 58.6 59.8 61.4

ΔGsolv 48.5 51.4 51 47.7 51 52.2 53.8

ΔGbind −45.5 −39.8 −47.7 −45.8 −45.2 −46 −44.5
TΔS −27.4 −31.1 −29.5 −40 −24 −27.7 −11.6
ΔGfree −18 −8.6 −18.1 −5.8 −21.1 −18.3 −32.8

Here

Mut1=Mutation of residue Lys37 and Glu52 with Ala

Mut 2=Mutation of residue Glu82 and Lys144 with Ala

Mut 3=Mutation of residue Asp157 and Lys170 with Ala

Mut 4=Mutation of residue Asp7 and Lys29 with Ala

Mut 5=Mutation of residue Lys13 and Glu21 with Ala

Mut 6=Mutation of residue Lys11 and Glu24 with Ala

Mut 7=Mutation of residue Glu118 and Lys122 with Ala

Fig. 7 Life time binding of
water molecules with Imatinib
and receptor during whole
production dynamics with
3939 (upper) and 6807(lower)
water molecule. The distances
between heavy atoms are plotted
with respect to time
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and proton attracting capability is lost. Unfortunately, the
folding pattern at low pH and its three dimensional structure
is not known for c-Abl kinase. Furthermore, the mutation of
Glu82Ala and Lys144Ala has a considerable effect on the
activity of Imatinib. By the structural insight of kinase
complex, we see that the salt-bridge between Glu 82 and Lys
144 forms a cavity for Imatinib. Due to alanine mutation,
this salt-bridge breaks and increases the distance of inhibitor
from activation loop which causes a weak bonding and
hence there is a decrement in binding free energy.

Effect of hydration

All the experiments are carried out in water in order to
understand its role on the stability of the kinase ligand
complex. The water molecule can bridge between the
carbonyl oxygen atoms and amide protons of different
amino acids to catalyze the formation of a particular
structure and its reversal for kinase-inhibitor and protein-
protein interface. A long lived water molecule (WAT 6807)
has been observed during the simulations. As shown in
Fig. 7, this particular molecule lives in the same range
during the whole simulation period which may be termed as
the life partner and forms linkage between the ligand STI
and amino acid Val65. Another water molecule WAT 3939
has longer time with the kinase along with Imatinib. It is
bound close to Asp 187, Ser 183 and Ser186 and remains
there in the same region during the whole simulation
period. A spine of water network has been observed in first
hydration shell which is shown in supplementary materiel
Fig. 2S. The hydrogen bonds holding these water molecules
to the kinase are stronger with longer life time than bulk
water, and this water is available for colligative effects. The
specific positions occupied by water molecules observed in
the first hydration shell are same as observed in the crystal
structure of various kinases of crystal structures of kinases
Src, Abl and others [41].

Conclusions

The results obtained from MD simulation and MM-PB/SA
method to evaluate binding free energy led us to conclude
that Imatinib binds to the cleft of this inactivated kinase to
form a stable complex. The absolute free energy of
−06.04 kcal mol-1 supports the tight binding of Imatinib
with c-Abl tyrosine kinase. A cavity is created by replacing
the solvent molecule from the large solvent accessible
surface area which is confirmed by the cavity energy of
61.64 kcal mol-1. The binding energy of −11.87 kcal mol-1

obtained from SIE method is in accordance of the
experimental binding energy of 10.37 kcal mol-1 [41]. It is

concluded that the hydration play an important role for the
stability of the kinase-Imatinib complex.

We propose that Glu21:Lys13, Glu52:Lys37, Glu82:
Lys144, Glu157:Lys170 salt-bridges are conserved for the
in-vivo stability of kinases and are necessary for optimum
activity of kinase. The loop regions are preferred sites for
ATP because of conformational adaptability required for
active-site binding. Therefore, structural stabilization in the
loop region is important for kinase functions. The muta-
tional experiments for some of the salt-bridges shows that
deformation in most salt bridges do not effect the activity of
kinase considerably, but it increases the entropy, i.e.,
disorderness of the complex. It is also obvious that,
mutations of amino acid near the binding site are hot spot
and they result in reduction in the activity because of the
loss of conformational rigidity and effectively converted the
property of the inhibitor. Our finding highlights the
importance of considering kinase conformation in the
rational design of inhibitors for cancer targets.
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Abstract Hypoxia inducible factor-1 (HIF-1) is a bHLH-
family transcription factor that controls genes involved in
glycolysis, angiogenesis, migration, as well as invasion factors
that are important for tumor progression and metastasis. HIF-1,
a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia
responsive element (HRE) present in the promoter regions of
hypoxia responsive genes, such as vascular endothelial growth
factor (VEGF). Neither the structure of free HIF-1 nor that of
its complex with HRE is available. Computational modeling of
the transcription factor–DNA complex has always been
challenging due to their inherent flexibility and large confor-
mational space. The present study aims to model the
interaction between the DNA-binding domain of HIF-1 and
HRE. Experiments showed that rigid macromolecular docking
programs (HEX and GRAMM-X) failed to predict the optimal
dimerization of individually modeled HIF-1 subunits. Hence,
the HIF-1 heterodimer was modeled based on the phosphate
system positive regulatory protein (PHO4) homodimer. The
duplex VEGF-DNA segment containing HRE with flanking
nucleotides was modeled in the B form and equilibrated via
molecular dynamics (MD) simulation. A rigid docking
approach was used to predict the crude binding mode of
HIF-1 dimer with HRE, in which the putative contacts were
found to be present. An MD simulation (5 ns) of the HIF-1–
HRE complex in explicit water was performed to account for
its flexibility and to optimize its interactions. All of the
conserved amino acid residues were found to play roles in the

recognition of HRE. The present work, which sheds light on
the recognition of HRE by HIF-1, could be beneficial in the
design of peptide or small molecule therapeutics that can
mimic HIF-1 and bind with the HRE sequence.

Keywords Hypoxia-inducible factor-1 . Hypoxia
responsive element . DNA recognition . Homology
modeling .Molecular dynamics

Introduction

Hypoxia plays an important role in tumor progression through
angiogenesis and resistance to programmed cell death [1–3].
A hypoxic tumor occurs due to the increased metabolic rate
and oxygen consumption of rapidly proliferating tumor cells
[4]. A hypoxic tumor can also arise as the distance from the
local capillary increases (due to the expanding cell mass) and
during photodynamic cancer therapy [4, 5]. The hypoxia-
responsive pathway allows tumor cells to overcome harsh
conditions. The most important mediator identified in this
pathway is hypoxia inducible factor-1 (HIF-1), a transcrip-
tion factor for various angiogenic factors such as vascular
endothelial growth factor (VEGF), and for genes encoding
proteins involved in energy metabolism, cell survival, red
blood cell production, and vasomotor regulation [6, 7].

HIF-1 is a heterodimer consisting of HIF-1α and HIF-1β
subunits. HIF-β is a nuclear protein, whereas HIF-1α
shuttles between the cytoplasm and nucleus [8]. The α and
β subunits both belong to the basic helix-loop-helix
(bHLH) PER-ARNT-SIM (PAS) domain family of tran-
scription factors [8]. In HIF-1α, the N-terminal (bHLH-
PAS) domain is required for dimerization and DNA
binding, whereas the C-terminal domains are required for
hypoxia-induced nuclear localization, protein stabilization
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and transactivation [9–11]. HIF-1α is stable only under
hypoxia, and the accumulation of HIF-1α is followed by its
entry into the nucleus, where HIF-1α binds with HIF-1β.
The two subunits then bind with a specific five-nucleotide
DNA sequence (5′-RCGTG-3′), known as the hypoxia
responsive element (HRE), located in the promoter regions
of hypoxia-responsive genes [10].

VEGF is a key mediator for angiogenesis in several
forms of cancer, and it is induced most importantly by
hypoxia [12, 13]. In addition, VEGF is an appealing target
for anticancer therapeutics [14]. The HIF-1 dimer binds to
the HRE sequence (5′-TACGTG-3′) in the VEGF promoter
and induces the expression of VEGF. Echinomycin, a
quinoxaline class of cyclic peptide antibiotic, is known to
bind to the VEGF-HRE sequence and inhibit VEGF
expression [15]. Interestingly, echinomycin has also been
reported to induce apoptosis in several types of cancer cell
[16, 17]. Therefore, targeting the HRE sequence with small
molecules could be a potential therapeutic option to treat
cancer. A short peptide model (with nanomolar affinity) of
yeast GCN4 transcription factor has been developed, based
on the binding mode of GCN4 with its cognate DNA, by
Talanian et al. [18]. Hence, the mechanism of HRE
sequence recognition by HIF-1 dimer would greatly aid in
the design of peptides or small molecules that can
specifically bind to HRE. Unfortunately, neither the
structure of free HIF-1 nor that of its complex with HRE
is available. However, the DNA-binding (bHLH) domains
of HIF-1α and HIF-1β can be modeled from the crystal
structures of several HLH transcription factors. In general,
the computational modeling of macromolecular complexes
(protein–protein and protein–DNA complexes) is challeng-
ing due to the large conformational space, the inherent
structural flexibility of such complexes, and the conforma-
tional changes induced upon complex formation [19, 20].
Hence, modeling the HIF-1–DNA complex from the
subunits HIF-1α and HIF-1β is a rather challenging task.

Despite the presence of crystal structures of several
transcription factors bound to DNA, the molecular model-
ing approach has not been widely adopted for unknown
structures of this kind. In the present study, the computa-
tional modeling of the bHLH domains of the HIF-1 dimer
and the interaction of the HIF-1 dimer with HRE are
discussed.

Methodology

Sequence alignment

To find suitable templates to model the DNA-binding
domain of HIF-1, bHLH domain (both HIF-1α and HIF-
1β) sequences were aligned with structures in the Protein

Data Bank [21] (PDB: http://www.pdb.org/) using the
NCBI-BLASTp tool [22], which is available on the NCBI
website (http://www.ncbi.nlm.nih.gov/) using a default
threshold E value of 10 and an inclusion threshold value
of 0.005. Multiple sequence alignments were created using
the ClustalX tool [23].

HIF-1 dimer modeling

The crystal structure of the PHO4 homodimer bound to
DNA (1A0A) [24] was selected as a template to model the
HIF-1 dimer. The sequences of the DNA-binding regions of
ten bHLH-transcription factors, including PHO4, were
aligned with HIF-1α and HIF-1β using ClustalX with a
Gonnet weight matrix [25] (gap opening penalty 10 and gap
extension penalty 0.2). The alignment between PHO4 and
HIF-1α/HIF-1β was used for model building in Modeller
9v7 [26]. To model the HIF-1 dimer, the HIF-1 subunits
were modeled from the two subunits of the PHO4
homodimer. The resulting HIF-1 dimer was refined by the
“slow_large” optimization protocol of Modeller [26].

DNA modeling

The HRE sequence (–TACGTG–), along with fourteen
flanking nucleotides, was selected from the promoter region
of human VEGF-1. The canonical B-form structure of this
twenty-nucleotide sequence was modeled using the model.
it server [27] available at http://hydra.icgeb.trieste.it/dna/.

Molecular dynamics of DNA

Simulation system

The Visual Molecular Dynamics (VMD) tool was used to
prepare the simulation system [28]. The CHARMM27 force
field [29] was used for parameterization and the program
NAMD [30] was used for all energy minimization and
molecular dynamics (MD) simulation work, unless other-
wise specified. All of the MD simulations were carried out
in explicit water, employing periodic boundary conditions.
The TIP3P water model [31] was used to solvate the DNA
molecule in a rectangular water box, with a distance of at
least 12Å imposed between the solute atoms and the edge
of the box. No counterions were added to neutralize the
charge. The system was first energy minimized for 1000
steps with the atoms of DNA fixed, and then unrestrained
energy minimization was performed for 1000 steps.

Simulation settings

The system was equilibrated at 250 K for 10 ps with the
DNA atoms fixed, followed by 10 ps MD without
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restraints. The system was subsequently simulated for
100 ps at 300 K with the following settings. The classical
equations of motion were integrated by a leapfrog integra-
tor using a time step of 1 fs. The impulse-based Verlet-I/r-
RESPA method was used to perform multiple time
stepping: 4 fs for long-range electrostatics, 2 fs for short-
range nonbonded forces, and 1 fs for bonded forces [32].
The Swift function was used to cut off the Lennard–Jones
potential, with the first cutoff at 10Å and the second cutoff
at 12Å. Particle mesh Ewald (PME) was employed to
calculate long-range electrostatic interactions with a grid
size of ~1 unit in all directions [33]. Short-range inter-
actions were calculated at intervals of 2 fs and long-range
interactions were calculated at intervals of 4 fs. All bonds
involving hydrogen atoms were constrained to their
equilibrium bond parameters using the SHAKE algorithm
[34]. Langevin dynamics were employed to maintain the
temperature at 300 K using a damping coefficient of 1/ps.
The Langevin piston was employed to maintain the
pressure at 1 atm, with a Langevin piston period of 100 fs
and an oscillation decay time of 50 fs. The Langevin piston
was coupled to the heat bath. Trajectories were recorded
every 200 fs.

DNA–HIF-1 docking

MD simulation was performed with the modeled DNA
structure for 100 ps at 300 K, and the equilibrated structure
was used for docking studies. The interaction between HIF-
1 (bHLH dimer) and DNA was studied using the program
HEX 6.1 [35]. HEX is a rigid macromolecular docking
program employing spherical polar Fourier (SPF) correla-
tions in terms of shape and electrostatics. In many respects,
this approach is similar to conventional fast Fourier
transform (FFT) docking methods which use Cartesian grid

representations of the molecular shape and electrostatic
properties and translational FFTs to perform docking
correlations. The default docking control parameters of
the HEX program were used to arrive at 100 docked
conformations.

MD simulation of the HIF-1–DNA complex

The HIF-1–DNA complex was placed in a TIP3P water
box, with a distance of at least 12Å imposed between the
solute atoms and the edge of the box. The positions of the
solute atoms were fixed during the first energy minimiza-
tion for 1000 steps, and no atoms were fixed during the
second energy minimization for 1000 steps. MD simulation
of the complex was carried out with the aforementioned
protocol. The system was equilibrated at 250 K for 10 ps
with the solute atoms fixed, and this was followed by 40 ps
of unrestrained MD. The equilibrated system was subjected
to 5 ns MD at 300 K.

Analysis of model quality, MD simulation and docking

The quality of the modeled HIF-1 structure was assessed
based on the Ramachandran plot occupancy of residues
using the PROCHECK server [36]. VMD was used to
analyze the molecular dynamics trajectory. The protein and
DNA atoms in all of the frames were superimposed on the
first frame of the trajectory to remove global rotational and
translational movements. The root mean square deviation
(RMSD) was calculated with reference to the starting
structure. The secondary structure of the protein residues
during the simulation was analyzed with the STRIDE
program [37], as implemented in the VMD-TIMELINE
plug-in. The PyMol molecular viewer (http://www.pymol.
org/) was employed to analyze the docked structures.

Fig. 1 Partial sequence alignment of the DNA binding domains of
several bHLH transcription factors with the HIF-1 subunits. Amino
acids are numbered locally. Color gradations of white to black indicate
the extent of amino acid conservation. Highly conserved residues are

indicated by dark shading, and light shading indicates variable
residues. The alignment shows three regions: the basic residue-rich
N-terminal helix (helix1), the highly variable loop region, and the
hydrophobic residue-rich C-terminal helix (helix2)
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Results and discussion

Template selection

The main aim of the work described in this paper was to
investigate the DNA-bindingmechanism of HIF-1. Hence, the
bHLH domain sequence was used for all of the studies
reported here. Although the PAS domain is involved in the
stabilization of the HIF-1 complex, it does not play a major
role in the specific recognition of DNA base pairs [9].
Sequence similarity searches for both HIF-1α and HIF-1β
against PDB, using the NCBI-BLASTP program, revealed
that the bHLH domains of both HIF-1α and HIF1β did not
present high sequence similarities with any known protein
structures. The only hit from the bHLH transcription factor
family was found to be the crystal structure of PHO4
(1A0A), which showed poor sequence similarity to HIF-1α
(sequence identities: 27%, E value: 9, positives: 53%, gaps:
5%, and query coverage: 80%). In contrast to HIF-1α, HIF-
1β showed fair sequence similarity to several bHLH

Fig. 2 a Cartoon representation of the HIF-1 complex modeled using
the crystal structure of the PHO4 homodimer. The model is a four-
helix bundle formed by HIF-1α and HIF-1β. HIF-1α is colored white
and HIF-1β is shown in dark gray. N-terminal helices (helix1), loops
and C-terminal helices (helix2) are labeled. b Orthogonal view of a
that provides a better view of the packing of the four-helix bundle

Fig. 3 a–e The binding mode of the HIF-1 dimer with HRE, as
predicted by the rigid macromolecular docking program, HEX 6.1. a
DNA numbering scheme according to Ferré-D'Amaré et al. [39]. The
core HRE sequence is shown in bold letters. b Overview of the
binding of HIF-11 to the HRE (TACGTG) motif. The half-site
recognition of each HIF-1 subunit is labeled in the figure. HIF-1α
(blue helices) is bound to the TAC half-site (yellow coloration in the
DNA structure). HIF-1β (yellow helices) is bound to the GTG half-site
(blue lines in the DNA). c Visualization of b alongside the helical axis

of the DNA. d Vital interactions of amino acid residue (stick
representation, colored by atom type) E11 of HIF-1β with amino
groups of A(2R) and C(3R), and the A11 residue of HIF-1 with T(3L).
DNA bases are represented as spheres and the DNA backbone is
shown as an orange ribbon. e Several conserved basic residues (stick
representation) make contact with backbone phosphate groups
(spheres) of DNA. Color code for atom types: gray carbon, blue
nitrogen, red oxygen, orange phosphorus, white hydrogen
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transcription factors, including PHO4. The best hit was
found to be the structure of the USF transcription factor–
DNA complex (1AN4, sequence identities: 38%, E value: 1
× 10−4, positives: 60%, gaps: 3%, and query coverage: 87%).
The next best hit was found to be PHO4 (sequence identities:
28%, E value: 0.013, positives: 53%, gaps: 4%, and query
coverage: 95%). Hence, PHO4 and USF were selected as
templates for modeling HIF-1α and HIF-1β, respectively.

Homology modeling of HIF-1

We initially opted to model HIF-1α and HIF-1β individu-
ally using these two templates. However, rigid protein–
protein docking programs such as the GRAMM-X server
[38] and HEX 6.1 were unable to predict the optimal HIF-1
dimer from individual subunits for DNA binding (data not
shown). This may be due to either the absence of the PAS
domain in our models or the absence of flexibility treatment
in the docking methods. Hence, it was decided to model the
dimer from the PHO4 dimer template due to the significant
sequence similarity of PHO4 with both subunits of HIF-1.

The accuracy of homology modeling depends largely on
the quality of the alignment between the target and template
sequences. The low sequence similarity between the HIF-1
subunits and PHO4 could introduce errors into the alignment.
To improve the alignment quality, a multiple sequence
alignment was generated with various bHLH transcription
factors, including the HIF-1 subunits and PHO4 (Fig. 1). The
sequence number was assigned locally for ease of discussion.
The alignment can be divided into three regions: basic helix1
(1–30), loop (31–43) and helix2 (44–65). The alignment
showed that certain residues were highly conserved in their
bHLH transcription factors. Almost all of the residues at
positions 3, 4, 7, 8, 12, 14 and 15 are positively charged, and
R14 is absolutely conserved. It is interesting to note that
glutamate is always present at position 11 in these
transcription factors, except in the case of HIF-1α. Hydro-
phobic residues are conserved in the helix1 region, with the
invariable presence of L25 and P30. These hydrophobic
residues are required for the packing of helices, and P30 is
required to terminate helix1. The loop region displays much
variation, and the helix2 region shows conserved hydropho-
bic residues that are required for dimerization.

The alignment between the HIF-1 subunits and PHO4
present in the multiple sequence alignment was used for model
building via the Modeller program. Both HIF-1α and HIF-1β
were modeled together using different chains of the PHO4
homodimer. The modeled HIF-1 dimer is shown in Fig. 2.

Structure of HIF-1

Each subunit has a relatively long alpha helix, rich in basic
residues for DNA binding, and a shorter helix. These two

helices are connected by a long loop containing a short turn
of a helix that makes the loop compact. The loop
determines the directionality of the two helices. The dimer
is a four-helix bundle with a packed hydrophobic interior.
Unlike leucine zipper proteins, the second helix is very
short, which might affect the tight HIF-1 complex forma-
tion. However, the PAS domains from the respective
subunits of HIF-1 dimerize to give additional support to
the complex. The structure quality of this bHLH dimer of
HIF-1 was assessed using PROCHECK server. The
structure was found to have 94.8% of its residues in the

Fig. 4 a–c Root mean square deviation (RMSD) of non-hydrogen
atoms in coordinates as a function of simulation time calculated for a
the HIF-1 and DNA complex, b DNA alone, and c HIF-1 alone during
the simulation of the HIF-1–DNA complex
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most favored regions and the remaining 5.2% of its residues
in additionally allowed regions of the Ramachandran plot,
thus suggesting that the model is of good quality. This
model was used for docking studies with DNA.

DNA structure modeling

The HRE sequence (5′-TACGTG-3′) from the VEGF-1
promoter region, along with 14 flanking bases, was selected
to model the three-dimensional structure. The B form of the
DNA conformation was selected to mimic the in vivo
conformation. It has been observed that the bHLH family of
transcription factors generally does not introduce distortions
(such as bending) in the DNA structure [24, 39–41]. The
unbent DNA structure was therefore used in this study. MD
simulation (100 ps at 300 K) of the DNA model was carried
out to gently relax the structure. The equilibrated structure
from the simulation was selected for further studies. The
numbering scheme for DNA follows that of Ferré-D'Amaré
et al. (Fig. 3a) [40].

HIF-1–DNA docking

The interaction of HIF-1 dimer with HRE was studied
using the HEX tool, which offers rigid macromolecular
docking based on shape and electrostatic correlations.
Although the interaction between the protein and DNA is

inherently flexible, the incorporation of flexibility to
calculate docking interactions can be cumbersome. Hence,
rigid docking was used to arrive at an approximate model
for the interaction, and subsequent refinement of this model
was preferred to account for the flexibility. The HEX tool
generated 100 different docked conformations of the
protein and DNA. In the case of macromolecular docking,
the scoring functions are generally inefficient at selecting an
optimal binding conformation. Hence, in the present study,
conformations in which the binding orientation of HIF-1
with HRE was similar to that of reported bHLH protein–
DNA complex structures [24, 39–41] were chosen. From
this subset, the docking pose with the highest number of
interactions (van der Waals and electrostatic) between the
basic region of HIF-1 and HRE was selected for further
studies. The residues were considered to be interacting if
they were within 3Å of each other. The various interactions
present in this conformation were analyzed.

The initial crude docking pose of HIF-1 with HRE is given
in Fig. 3. The two basic helices are postioned compactly in
the major groove of DNA, and head in opposite directions
(Fig. 3b and c). HIF-1α makes contact with first half-site of
the HRE (TAC) duplex, and HIF-1β with the second half-
site of the HRE (GTG) duplex (Fig. 3b). The hypoxia
specificity of HIF-1α correlates with the recognition of the
HRE-specific half-site TAC. On the other hand, HIF-1β is
capable of forming heterodimers with other bHLH proteins,

Fig. 5 a–d Root mean square
fluctuations (RMSFs) of C-
alpha atoms in coordinates for
each residue averaged over the
simulation time. The RMSFs of
HIF-1α (a) and HIF-β (b) are
shown in the picture. c and d
depict the evolution of the sec-
ondary structure during the sim-
ulation time for HIF-1α and
HIF-1β, respectively. Each color
represents a secondary structure
element: pink α-helix, green
turns, blue 310 helix,
white loops
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and also exhibits a preference for the GTG half-site [42]. The
highly conserved E11 residue in HIF-1β interacts with two
amino groups, one from C(3R) and the other from A(2R)
(Fig. 3d). It is interesting to note that the crystal structures of
PHO4 and several other transcription factors display similar
interactions through the conserved glutamate residue. In
addition, it has been reported that the conserved glutamate in
PHO4 is essential for DNA binding activity [43]. In contrast,
HIF-1α has an alanine residue instead of glutamate at
position 11. However, the hydrophobic residue was found to
favorably interact with the methyl group of T(3L) (Fig. 3d).
In addition to these interactions, most of the conserved basic
residues interact with negatively charged phosphate groups
(Fig. 3e). Nevertheless, these interactions may be suboptimal
due to the absence of a flexibility treatment.

MD simulation of the HIF-1–DNA complex

MD simulation of this HIF-1–DNA complex was carried out
to assess its stability and to optimize the interactions between
the protein and DNA. The RMSD of non-hydrogen atoms

(non-H RMSD) compared to the initial structure was
calculated to investigate the stability of the modeled complex.
The RMSD plot showed a general trend for a stable MD
trajectory (Fig. 4a). An initial rise in RMSD (up to ~3.5Å)
was observed for the first 1 ns, indicating equilibration of the
system. After this equilibration period, the RMSD of the
protein–DNA complex hovers around 4.0Å for the rest of
the simulation period, indicating fluctuations in the structure
of the protein and/or DNA. We also calculated the non-H
RMSD of the DNA structure alone during the MD
simulation of the protein–DNA complex (Fig. 4b). The plot
shows that the RMSD of DNA increases gradually (up to 4
Å) for an initial 4 ns and drops to 2–3Å afterwards. This
indicates greater fluctuation in the DNA structure during the
simulation. However, the fluctuations were observed mostly
in the terminal nucleotides, and the protein-binding site was
found to be stable. It has generally been observed that an
unspecific protein–DNA interaction greatly distorts the DNA
structure. The absence of DNA structural distortion during
the MD simulation suggests that the protein–DNA interac-
tion is close to optimal in our model. The non-H RMSD

Fig. 6 a–d The vital interactions
present in the complex of HIF-1
and HRE. a The T(3L)–A(3L′)
base pair is perfectly comple-
mented by A11 and S7 of HIF-
1α. The distance between A11
and S7 is very similar to that of
their interaction partners. The
distances shown in the picture
(as yellow dotted lines) are in Å.
The recognition of the A(2L)–T
(2L′) pair (b) and the recognition
of the C(1L)–G(1L′) pair (c) are
given. The phosphate group
recognition is also shown in the
figure. d Simultaneous recogni-
tion of A(2R) and C(3R) by
the conserved E11 residue of
HIF-1β through a hydrogen-
bonding bridge is depicted
in the figure
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profile of the HIF-1 complex is shown in Fig. 4c. After an
initial rise in RMSD (up to 4Å) for the first 1 ns, the HIF-1
complex relaxes at 4Å for the remaining simulation time,
suggesting that the HIF-1 structure is fairly stable.

Analyzing the root mean square fluctuations (RMSFs) of
Cα atoms of HIF-1 can provide information on the flexibility
of specific areas of the protein. RMSF plots of both HIF-1α
(Fig. 5a) and HIF-1β (Fig. 5b) showed very similar patterns
of flexibility. HIF-1α exhibited larger fluctuations (up to
~3.5Å) in the loop region (residues 30–40) compared to
HIF-1β (~2.5Å). Aside from that, the models showed
fluctuations at both N- and C-termini. C-terminal helices
are involved in the dimerization of the HIF-1β complex, and
fluctuations in these regions could be due to the absence of
PAS domains. Higher fluctuations were observed in the N-
terminal region of HIF-1β, but not in HIF-1α.

To find out whether these fluctuations can cause changes in
the secondary structure, we analyzed the evolution of
secondary structure elements during the simulation period
(Fig. 5c and d). Both HIF-1 subunits showed two stable
helices (pink bands) and one highly fluctuating loop
(residues 30–40). The N-terminal helix of HIF-1α was
found to be more stable. The conformation of residues 1–7
of HIF-1β was found to fluctuate greatly between turns and
loops, which correlates with the observed higher RMSF in
the corresponding region. In both HIF-1 subunits, the loop
region was found to fluctuate more. A structure was selected
at the end of simulation trajectory in order to study the
interaction between HIF-1 and DNA.

HIF-1–DNA interaction

The optimized structure was found to be similar to the
initial structure. T(3L) interacts with the A11 residue of
HIF-1α through its methyl group, as seen in the initial
structure. The interaction of A11 with T(3L) could be key
to the recognition of HRE, since the T(3L) is specific for
HRE and HIF-1α has an alanine residue at position 11
instead of a conserved glutamate. The interaction between
the methyl group of T(3L) and A11 did not vary during the
MD simulation, suggesting that this interaction is stable.
The T(3L) methyl group was found to be juxtaposed with
hydrophobic side chains of A10 and A11 from HIF-1α. The
complementary base of T(3L), A(3L′), forms a hydrogen
bond through its –NH2 group with the oxygen of S7 (HIF-
1α). Since four residues separate S7 and A11, S7 is
positioned exactly underneath the A11 in the helix. The
N-terminal helical axis of HIF-1α lies almost parallel to the
plane of the T(3L)–A(3L′) base pair. In this conformation, T
(3L) is located above the A(3L′) and perfectly complements
A11 and S7 of HIF-1α. Interestingly, the distance between
T(3L)–CH3 and A(3L′)–NH2 (5.63Å) was found to be
comparable to the distance between A11–CH3 and S7–OH
(5.47Å) (Fig. 6a). The negatively charged phosphate group
of T(3L) was found to interact with the positive charged
side chain of R14 (HIF-1α). The phosphate group of A(2L)
interacts with R15 of HIF-1β. The complementary base of
A(2L), T(2L′), forms a hydrophobic interaction through its
methyl group with the alkyl chain of S7 and R8 of HIF-1α
(Fig. 6b). The nonpolar part of the C(1L) base is located in
a hydrophobic cavity formed by the alkyl groups of S8 and
E11 from HIF-1β. C(1L) phosphate interacts with R8 of
HIF-1β (Fig. 6c). The hydroxyl group of S8 (HIF-1β)
forms a strong hydrogen bond with the G(1R′) phosphate
group. The phosphate group of C(1R) forms two hydrogen
bonds with R15 guanidine (HIF-1α). The T(2R′)–CH3

group forms a σ–π stacking interaction with H7 of the
(HIF-1β) aromatic ring. G(3R′) forms two hydrogen bonds,
through the nitrogen of its five-membered ring and the CO
group of the six-membered ring, with the guanidine group
of R4 (HIF-1β). The highly conserved E11 (HIF-1β)
recognizes A(2R) and C(3R) by interacting with both A
(2R)–NH2 and C(3R)–NH2 through its carboxylate group
(Fig. 6d). Interestingly, several crystal structures of bHLH
transcription factors demonstrate very similar interactions
through the conserved glutamate residue [24, 39–41].
Figure 7 summarizes the interactions involved in the
recognition of HRE by HIF-1. Thus, most of the conserved
residues make contact with either the base or the phospho-
diester group.

Previously, Michel et al. generated four mutants (S7A,
A10S, A11E and R15A) of HIF-1α through site-directed
mutagenesis and investigated the effect of mutations using a

Fig. 7 Schematic diagram summarizing the contacts involved in the
recognition of HRE by HIF-1. DNA bases are represented as cylinders
and phosphate groups are shown as circles. The arrows represent the
contact between amino acids and bases/phosphate. Thick arrows
indicate hydrogen-bonding interactions and thin arrows indicate
hydrophobic interactions. The amino acids of HIF-1α and HIF-1β
are indicated by (a) and (b), respectively
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reporter gene assay and a DNA-binding assay [44]. The
S7A mutant was found to induce the reporter gene level by
~4-fold, while the other mutants failed to induce the
reporter gene. In our model, the methyl groups of A10
and A11 are involved in hydrophobic interactions with the
methyl group of T(3L). A10S and A11E mutants with polar
side chains would destabilize the binding. R15 was found
to interact with the phosphate groups of C(1R) and A(2R),
and hence the mutation of R15 is not expected to influence
DNA binding significantly. However, Blackwell et al.
reported that the residues that do not interact directly with
the bases could influence the specific DNA recognition
[45]. Hence, R15 might play an indirect role in the
recognition of HRE. The side chain of S7 is located ~3Å
away from the methyl group of T(2L′), which becomes
nonpolar upon mutation (S7A), and this in turn could
facilitate stronger binding.

Conclusions

HIF-1 is a bHLH transcription factor that plays a crucial role
in hypoxia-triggered angiogenesis and tumor growth. Neither
the structure of HIF-1 nor its complex with HRE is available.
In the present work, the DNA-binding domain of HIF-1 and
its interaction with HRE were modeled for the first time using
homology modeling, macromolecular docking and molecular
dynamics. The various interactions demonstrated by our
model of HIF-1–DNA binding comply with the previously
reported crystal structures of the bHLH transcription factor–
DNA complex and site-directedmutagenesis data. Elucidating
the fundamental interactions that govern the recognition of
HRE by HIF-1, as achieved in the present study, could be
beneficial for the design and development of small-molecule
therapeutics that can bind to HRE.
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Abstract Pteridine reductase is a promising target for
development of novel therapeutic agents against Trypanoso-
matid parasites. A 3D-QSAR pharmacophore hypothesis has
been generated for a series of L. major pteridine reductase
inhibitors using Catalyst/HypoGen algorithm for identifica-
tion of the chemical features that are responsible for the
inhibitory activity. Four pharmacophore features, namely:
two H-bond donors (D), one Hydrophobic aromatic (H) and
one Ring aromatic (R) have been identified as key features
involved in inhibitor-PTR1 interaction. These features are able
to predict the activity of external test set of pteridine reductase
inhibitors with a correlation coefficient (r) of 0.80. Based on
the analysis of the best hypotheses, some potent Pteridine
reductase inhibitors were screened out and predicted with anti-
PTR1 activity. It turned out that the newly identified inhibitory
molecules are at least 300 fold more potent than the current
crop of existing inhibitors. Overall the current SAR study is an
effort for elucidating quantitative structure-activity relation-
ship for the PTR1 inhibitors. The results from the combined
3D-QSAR modeling and molecular docking approach have
led to the prediction of new potent inhibitory scaffolds.

Keywords Docking .Methotrexate . Neglected diseases .

Pteridine reductase . Virtual screening

Introduction

The protozoan parasites of Trypanosoma and Leishmania
species are causal organism for serious tropical diseases like
African sleeping sickness, Chagas’ disease and Leishmaniasis
[1–4]. These diseases are grouped under neglected tropical
diseases as the most affected population are the poorest
living in remote, rural areas and urban slums or in the
conflict zones. According to WHO latest estimates over 1
billion people or about one sixth of the world’s population is
suffering from at least one or more neglected tropical
diseases. The drugs presently available for the treatment of
these fatal diseases are expensive and often toxic. Moreover,
there exists a lack of effective and adequate treatment due to
the development of resistant strains [5–8]. This further
necessitates the development of safe, efficient and cost-
effective drugs against these neglected diseases.

Pteridine reductase (PTR1) has emerged as a promising
target for the development of novel therapeutics against the
protozoan parasites Trypanosoma and Leishmania [1, 9, 10].
PTR1 is an essential broad spectrum enzyme responsible for
pteridine salvage in these organisms. These pterins and
folates are essential for the growth of the parasites, however,
unlike their mammalian hosts, they do not possess the genes
to encode for their de novo synthesis. Thus, these parasites
depend on exogenous sources for their uptake which is
facilitated by the enzymes bifunctional dihydrofolate reduc-
tase (DHFR) – thymidylate synthase (TS) together with
pteridine reductase [3]. The DHFR-TS enzyme catalyzes the
reduction of folate but shows no activity toward pterins [9].
PTR1 has the ability to reduce conjugated (folates) and
unconjugated (biopterins) pterins into their dihydro or
oxidized states [9]. This ability of PTR1 to reduce folates
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in addition to pteirns provides the means to bypass the
DHFR-TS pathway. Consequently, it contributes to anti-
folate drug resistance and is responsible for the failure of
conventional therapies against the trypanosomatids. This

suggests that it can be targeted for inhibitor design.
Therefore, extensive efforts are in progress for the
development of newer, specific and safe therapeutic agents
targeting it.

Table 1 Training and test set molecules. The test set molecules are highlighted in bold fonts and underlined. R/R1 and R2 are the side chains of
the scaffolds. The molecules selected as test set with their respective Ki values are shown in bold [11–16]
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Recently, various rational structural techniques like
structure-based drug design have been used to identify
inhibitors against this enzyme [11–18]. This further
necessitates exploration of the binding preferences of the
known inhibitors in the context of structure activity
relationship and the identification of potential novel lead
molecules against PTR1. Pharmacophore modeling is one
of the best 3D-QSAR methods which have been success-
fully applied to drug discovery process [19, 20]. In the
present study, based on the knowledge of the L. major
inhibitors of PTR1 in the literature and the co-crystal
structures of the complexes of the same; pharmacophore
modeling, docking, and 3D QSAR studies have been
performed.

Pharmacophore models of PTR1 inhibitors have been
established by using the HypoGen algorithm imple-
mented in the DS (2.0) package (M/S Accelrys Inc.,
San Diego, USA). The best quantitative pharmacophore
model (Hypo1) as well as all the top pharmacophore
models consist of pharmacophore features: two hydro-
gen bond donors, one hydrophobic feature, and one
Ring aromatic feature. Thus, Hypo1 was used as a 3D
query to perform virtual screening by molecular finger-
print matching using ligand databases including ZINC
[21] drug diversity test. The screened compounds were
further cross-checked by docking with LigandFit [22]. The
most potent inhibitor identified is predicted to be 300 fold
better than the reported ones and could serve as the
possible lead scaffold for the design of novel and potent
PTR1 inhibitors.

Experimental section

Dataset collection

The diverse inhibitor molecules of PTR1 from L. major
reported in literature with experimentally determined Ki

values were selected for 3D-QSAR studies [11–16]. The
inhibitor molecules were divided into training and test set
so as to cover varied range of the binding affinities and
structural diversity. The L. major training set consists of 28
molecules with their Ki values ranging from 0.037 to
390 μM over four orders of magnitude. The L. major test
set consists of six molecules with Ki values ranging from
0.037 to 31 μM. All the inhibitory scaffolds are shown in
the Table 1 with the molecules selected as test set being
bold and underlined. The program Discovery Studio v2.0
and its various protocols were used for all the molecular
modeling and docking studies.

Pharmacophore model generation

Pharmacophore modeling was carried out using 3D QSAR
pharmacophore generation protocol. Using the training
sets, a set of predictive Pharmacophore QSAR models have
been derived for L. major inhibitors (mostly diaminopter-
idines and quinazolines). All the compounds in the training
as well as test set were built using the DS 2D/3D visualizer.
For each compound, the geometries were corrected, atoms
typed and based on the modified CHARMm force field
energy minimization was performed [23]. Diverse confor-

Table 1 (continued)
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mational models for each compound were generated using
an energy constraint of 20 kcal mol-1 and 250 as the
maximum number of conformers.

The 3D QSAR pharmacophore generation protocol uses
the catalyst HypoGen algorithm [24] to derive SAR
hypothesis models (pharmacophores) from a set of ligands
with known activity values on a given biological target. The
input ligands should contain two molecular properties
namely, known activity (activ) and uncertainty (uncert).
The uncertainty factor for each compound represents the
range of uncertainty in the activity value based on the
expected statistical distribution of biological data collec-
tion. Here, this factor was defined as the default value of
three. Four pharmacophoric features HB_donor, HB_
acceptor, Hydrophobic_aromatic and Ring_aromatic were
selected to generate a maximum of ten pharmacophores.
Remaining parameters were kept as default. The activity of
each training set compound is estimated using regression
parameters. The parameters were computed by regression
analysis using the relationship of geometric fit value and
negative logarithm of activity. The greater the geometric fit,
the greater the activity prediction of the compound.

Pharmacophore model cross-validation

The main purpose of validating a quantitative model is to
cross-check whether the generated hypotheses are correct or
not. When generating hypotheses, the cross validation is
carried out by calculating cost analysis, RMSD and best fit
values simultaneously. The cross validation algorithm
attempts to minimize a cost function consisting of three
terms: weight cost, error cost, and configuration cost. The
overall cost (total cost) of a hypothesis is calculated by
summing over three cost factors. Weight cost is a value that
increases as the feature weight in a model deviates from an
ideal value of two. The deviation between the estimated
activities of the training set and their experimentally
determined values, adds to the error cost and is reflected
in the correlation coefficient r. The third term, i.e., the
configuration cost, penalizes the complexity of the hypoth-
esis. This is a fixed cost, which is equal to the entropy of
the hypothesis space. The more the number of features (a
maximum of five) in a generated hypothesis, the higher is
the entropy with a subsequent increase in this cost. Further,
cross validation was performed by using the Fischer’s
randomization test where the biological activity data are
randomized within a fixed chemical data set and the
HypoGen process is initiated to explore possibilities of
other hypotheses of good predictive values. For a statisti-
cally relevant pharmacophoric model, the hypothesis
generated prior to scrambling should be better than rest.
In addition to cost analysis of the generated hypothesis, the

predictive ability of the pharmacophore models obtained
was evaluated using a test set of compounds with ligand
pharmacophore mapping protocol. This protocol uses
catalyst to identify ligands that map to a pharmacophore,

Fig. 1 Hypo1 consists of a hydrophobic aromatic (H, light blue), ring
aromatic (R, orange) and H-bond donors (D, magenta) features. (A)
Hypo1 is shown aligned to L. major inhibitors form the training set.
(B) Hypo1 with best fit inhibitory scaffold 1E7W. (C) The distances
(in Å) between pharmacophore features of Hypo1 are marked in black
lines
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and aligns the ligands to the query. Only the best mapping
for each ligand was allowed.

Virtual screening for database searching

The pharmacophore model which scored least RMSD
value, high ‘best fit value’, cost difference and lastly able
to predict the test set with a high correlation was used as
query for the three-dimensional similarity searches. The
ZINC chemical database with drug-like compounds con-
sisting of over 13 million structurally diverse small
molecules was screened with this query using the screen
library protocol. A molecule which fits well with the
pharmacophoric features of the pharmacophore model was
retrieved as a hit. DS (2.0) was also used to further filter out
drug-like compounds by applying various filters.

Docking and validation

The crystal structure of receptor PTR1 (PDB ID: 1E7W for L.
major) were used as the docking template for this study. The
receptor molecules were prepared by removing crystallo-
graphic water molecules along with other heteroatoms. The
chemical structure of NADP was corrected for valency, bond
order and alternate conformations. Methotrexate (MTX) was
extracted from their PDB complex. The receptor was typed
by applying CHARMm Forcefield (version c28) and
hydrogen atom positions were optimized using conjugate
gradient algorithm. Since NADP was observed in all the
DHFR/PTR1 complexes with inhibitors, therefore it was
taken as part of receptor for molecular docking studies.

Defining MTX as the ligand, the force field typed and
energy minimized receptors were first used to find active
sites using the Find sites as volume of selected ligand tool.
The molecular docking of pteridine reductase inhibitors so
obtained was carried out with docking engine LigandFit
interfaced with DS (2.0) to further strengthen our predic-

tions. The LigandFit software makes use of a cavity
detection algorithm for detecting potential active site
regions. A shape comparison filter is combined with a
Monte Carlo conformational search for generating ligand
poses consistent with the active site shape. Candidate poses
are minimized in the context of the active site using a grid-
based method for evaluating protein-ligand interaction
energies. The docked conformations of the ligands so
generated were scored using eleven different scoring
functions available with Cscore in Ligandfit, namely,
LigScore1, LigScore2, PLP1, PLP2, Jain, PMF, PMF04,
DockScore, Ludi I, Ludi II and Ludi III. Since LUDI III
scoring function provided the best correlation, this was
chosen as the scoring function. LUDI III, an empirical
scoring function, is a fast and accurate scoring function
originally developed to reproduce the binding affinities of
protein-ligand complexes. Additionally, LUDI III has also
been found to be the most consistent scoring function that
we have used to validate and predict the binding constant
for different targets. The relation between the experimental
and the predicted binding affinity determined by the Ludi
III scores can be expressed by Eq. 1.

Predicted Binding Affinity ¼ � log of Empirical score=100ð Þ ð1Þ

Validation of docking algorithm

The validation of the docking algorithm is carried out in
order to ensure that the docking and the scoring are able to
reproduce experimentally determined conformation of the
ligand accurately within allowed limits of deviation (2Å).
The docking algorithm is verified by comparing the docked
conformation with that of experimental one, in a procedure
commonly called as control docking. This is done by
superimposing both the conformations and calculating the
rmsd. The lower the rmsd values the better is the pose
prediction by the docking algorithm.

Training set

Hypo no. Features Best fit value Total cost Δcost RMSD(Å) Correlation (r)

1 DDHR 7.6 111.9 45.9 1.0 0.87

2 DDHR 4.81 110.3 47.5 1.0 0.86

3 DDHR 5.87 110.1 49.8 1.0 0.86

4 DDHR 5.77 108.0 52.4 1.0 0.86

5 DDHR 5.06 105.4 52.5 1.0 0.86

6 DDHR 7.09 105.3 58.9 1.05 0.85

7 ADR 5.86 98.9 59.6 1.1 0.82

8 DDHR 5.81 98.2 59 1.1 0.84

9 DDHR 6.95 98.8 61.8 1.1 0.83

10 DDHR 6.95 96.0 61.8 1.1 0.84

Table 2 Statistical values of
the top ten pharmacophore
hypotheses generated by the
3D QSAR pharmacophore
generation protocol for L. major
inhibitors

Δcost=null cost-total cost;
null cost=157.8; fixed
cost=115.3; configuration
cost=15.6; D-Hydrogen bond
donor, H-Hydrophobic aromatic,
R-Aromatic
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Results

3D QSAR pharmacophore modeling and validation

Ten 3D-QSAR pharmacophore hypotheses were predicted
using the training set comprising diverse scaffolds. Phar-
macophore models were generated using the HypoGen
algorithm implemented in the 3D QSAR Pharmacophore
Generation protocol. All the ligand molecules were divided
into the training as well as the test set (Table 1). These
models were validated by applying cost analysis, ‘RMSD
analysis’ (root mean square deviation) and ‘best fit’ values.
First of all the HypoGen module aligns all the molecules to
a reference scaffold (here MTX) and selects the best
hypotheses from many possibilities by applying a cost
analysis. The molecular alignment is standardized and
optimized using combination of different pharmacophore
features. Finally four distinct chemical features were

picked which are able to describe the pharmacophore
required for PTR1 inhibition in L. major. These features
include one or two H-bond donors (D), one or two
hydrophobic aromatic (H) and one ring aromatic (R)
(Fig. 1a).

A total of ten 3D QSAR pharmacophore hypotheses
were predicted by 28L. major inhibitors called as training
set (Table 1). Out of ten pharmacophore models, nine
possessed the following four chemical features: two
hydrogen bond donors (D), one ring aromatic (R) and
one Hydrophobic aromatic (H). The best hypothesis
with all the molecules aligned on the training set is
shown in Fig. 1a. The ligand recognition and the
substrate catalysis in the PTR1 is dependent upon the
stacking interaction formed by the substrate with the
nicotinamide moiety of NADP with Tyr194 and Phe113
residues as well as the hydrogen bonds with Ser111 and
Tyr194 present in the active site. The stacking interaction
is reflected by the ring aromatic feature of the Hypo1
(Hypothesis I) while the hydrogen bonds with Ser-111 and
Tyr-194 are represented by the two H-bond donor features.

Fig. 4 Correlation plot of between experimental and predicted
activities of Hypo1 for L. major test set

Fig. 5 Structurally superimposed co-crystal (blue) and docked MTX
(yellow) displayed in ball & stick representation. The overall rmsd is
0.6Å between both the structures

Fig. 3 Correlation plot of between experimental and predicted
activities of Hypo1 for training set of L. major

Fig. 2 Fischer’s validation performed at 95% confidence level. The
difference in costs between Hypogen runs and the scrambled runs is
depicted for L. major inhibitors
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This means that the four chemical features could effec-
tively map the chemical features of the training set
compounds. All ten predictive 3D QSAR pharmacophore
hypotheses derived for L. major inhibitors and the relevant
statistics are shown in Table 2.

Cost analysis

The significance of the selected hypothesis was estimated
by comparing the cost values which should lie between the
null and the fixed costs. The hypothesis closest to the fixed

Table 3 Docking scores for the best pose of docked MTX calculated by LigandFit

LS1 LS2 PLP1 PLP2 Jain PMF PMF04 DockSc-ore Ludi1 Ludi2 Ludi3 RMSD Consensus

L. major with MTX

3.73 5.54 105.78 88.01 1.43 155.8 101.25 34.913 425 381 718 0.69 11

Table 4 Virtual screening results of PTR1 inhibitors identified from zincdatabase (zinc-ID)

Zinc-ID Structure Estimate
d activity  
(by Eq. 1) 

S. No. 

L. major Inhibitors 

1. MTX 0.06µM 

2. ZINC07127727 0.12nM 

3. ZINC19688794 4.7nM 

4. ZINC32101443 2.3nM 

5. ZINC17015141 0.06nM 

6. ZINC24262782 0.15nM 
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cost and farthest from the null cost is considered to be
statistically more significant. The fixed cost is a representation
of the cost of the ideal theoretical hypothesis which may
predict the activity of compounds used in the training set
whereas the null costs consider the cost of each hypothesis
with no features such that each activity is taken to be the
average activity. In this study the null cost of top ten
hypotheses is 157.8 and fixed cost is 115.3 with a difference
of 45.9 (Table 2) and this may lead to a meaningful
pharmacophore model. The configuration cost value for
hypothesis I is 15.6. This value is well within the range
observed for a standard HypoGen model where it should not
be greater than 17.0. In simple terms, there should be a large
difference between fixed cost and null cost with a value of
40–60 bits, which would imply a 75-90% probability of
correlating the experimental and estimated activity data. In
this study, all ten hypotheses have total cost close to the fixed
cost and thus the hypothesis is significant.

RMSD and best fit values

The root mean square deviation (RMSD) is an indication of
the quality of ‘prediction’ and depicts deviation in the
alignment of the inhibitory scaffolds. The lower rmsd value
is indication of better alignment of molecules. The RMS
deviation of all ten hypotheses ranged from 1.0Å-1.1Å,
which is an acceptable range (Table 2). ‘Best fit’ value
indicates the overall fitness of all the training set com-
pounds on a particular pharmacophore model during
pharmacophore generation. These values shown in Table 2
for each pharmacophore hypothesis lie within the accept-
able range. The best fit molecule (1E7W) superposed on the
pharmacophore features of Hypothesis 1 of Table 2 is
shown in Fig. 1b with the inter feature distances shown in
Fig. 1c.

Fischer’s randomization test

Additionally, cross validation was carried out by applying
Fischer’s randomization test at 95% confidence level. Out
of a total of 19 random hypothesis generated, one scramble
run did not produce any valid hypotheses. Thus these were
automatically excluded from the data tables. Out of
remaining 18 runs only single runs had cost close to our
hypotheses, and were thus left out as outliers. The total
costs of random pharmacophore models obtained from the
Fischer’s randomization test as well as original cost are
shown in Fig. 2. The original pharmacophore hypothesis is
superior to those produced randomly as observed in the
figure where the original hypothesis (lowermost) statistics
is unique among all the random hypothesis (R1-R18).
These results further provide confidence on pharmacophore
Hypothesis I (Hypo 1) as the best hypothesis.

Besides the statistical relevance, the predictive ability of
the Hypo1 was checked by its ability to predict the activity
of the training set compounds as well as an external set of
compounds called as test set. The test set compounds
exhibit wide range of activity and structural diversity (see
Material and Methods Section). In conclusion, Hypo1 is
able to correctly predict activity of most of the training set
compounds with a correlation value of 0.78 and test set
compounds with a correlation value of 0.80. The correlation
between the experimental and the predicted activities by
hypothesis I for the training and the test sets are shown in
Fig. 3 and Fig. 4 respectively.

Four out of ten hypotheses were able to produce a maximum
of four features; out of them hypotheses 1 (Hypo1) had the best
fit value of 7.6, least RMSD of 1.0Å and highest correlation of
0.87. Hypo1 mapped on all four features: two H-bond
donors (D), one hydrophobic aromatic (H) and one ring
aromatic (R) and predicted test set compounds with a
high correlation and best fit value. It was able to map all
the compounds in the test set. The Hypo1 pharmaco-
phore hypothesis satisfies all the validation criteria and can
be considered as statistically significant. The Hypo1 mapped
onto all the L. major inhibitory scaffolds present in the
training set as shown in Fig. 1a. Hence, Hypo1 was chosen
as the best hypotheses and later used as the template for
database searching in all the virtual screening experiments.

ZINC database screening with hypo1, filtering and docking

Hypo1 from L. major predictive 3D-QSAR pharmaco-
phores were used to screen ZINC database drug-like

Fig. 6 Molecular interactions of the inhibitor with in the PTR1
binding pocket of L. major bound with ligand ZINC07127727 labeled
as A. Hydrogen bonds are marked by dashed lines. The inhibitor is
sandwiched between NADP from one end and Phe113 and Tyr194
from other end in L. major PTR1
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compounds consisting of over 1 million compounds with
the screen library protocol. In this study only 80,000 of the
zinc compounds were used for the screening purpose.

L. major Hypo1 screened out a total of about 400
compounds in which all four pharmacophoric features of
Hypo1 were present. These screened molecules were then
subjected to prepare ligand protocol to generate their 3D
structure and to filter out non-drug like compounds. This
resulted in generation of total 1330 of these ligand poses. In
order to reduce the chance of false positives, the ligand poses
so obtained were further prioritized and filtered by docking
with LigandFit docking engine. For the comparative pur-
pose, the control docking experiments were performed with
MTX as inhibitors from L. major PTR1-MTX co-complex
(PDB code: 1E7W). The docking site was defined by
selecting the volume of MTX as ligand. Since a large part
of pteridine binding site is occupied by nicotinamide which
is essential for ligand recognition and catalysis, the docking
was carried out by retaining NADP in the binding site. The
Ludi-III was used to predict binding affinities of the hits
identified by virtual screening with Zinc databases as well
for control docking experiments. The second pose with the
least RMSD value of 0.6Å was selected as the best pose.
The superimposition of this pose onto the crystal structure of
the same is indicated in Fig. 5. The second pose has the
highest consensus for the docking scores and is shown in
Table 3. The predicted binding affinity calculated from Eq. 1,
for MTX is 0.06 μM which is in good agreement with the
experimental binding affinity of 0.039 μM (Table 1).

In the next step, the high throughput molecular docking
of screened inhibitors were performed with L. major PTR1
using the same parameters as that of control docking run.
Based on Ludi-III scores, 20 inhibitor molecules were finally
screened out as potential PTR1 inhibitors. Out of these, only
five compounds having estimated activity in nano-molar
range are reported here and shown in Table 4. The binding
affinities are calculated from Ludi III scores by Eq. 1. All
these compounds have the benzimidazole and indole like
moieties. These basic parent scaffold constituents are similar
to the substrate (pterins and folates) like pyrrolo[2,3-d]
pyrimidine framework of the PTR1 enzyme. On the basis of
the molecular interactions and the presence of all the
pharmacophore features, the inhibitor ZINC07127727 can
be proposed as the best inhibitor of L .major PTR1. The
docking pose of the best inhibitors in the L. major PTR1
binding site is shown in Fig. 6.

Conclusions

3D QSAR pharmacophore modeling approach used in
combination with pharmacophore-based virtual screening
has led to the identification of four different scaffolds as novel

Pteridine reductase inhibitors from L. major. The pharmaco-
phore model were generated from the recently reported
series of PTR1 inhibitors. The 3D QSAR hypothesis
suggests that the hydrogen bond donor, aromatic and
hydrophobic_aromatic are the essential features required
for the inhibitory activity against PTR1. The presence of
two hydrogen bond donors in the predictive pharmaco-
phore model (Hypo1) indicates the importance of these
interactions in the PTR1 ligand recognition and catalysis.

In addition to the identification of pharmacophores, the
best pharmacophore hypothesis was used to identify similar
drug-like compounds from ZINC database for L. major.
The hits so obtained after similarity searches were further
prioritized by molecular docking approach using LigandFit
docking tool. The docking protocol and scoring functions
were cross validated by control docking experiments.
Amongst all the inhibitors identified, the compound
ZINC07127727 from Zinc database showed the highest
predicted Kd value of 0.06nM for L .major PTR1. The
predicted Kd value is more than 300 fold higher than that of
the presently known inhibitor methotrexate. Thus, these
identified inhibitors could be promising lead compounds
that can be further taken up for the development of novel
therapeutic entities against the trypanosomatid parasite
Leishmania. Overall, the current study is an attempt for
elucidating structure-activity relationship for PTR1 inhib-
itors. This study has led to the understanding of the
protein–ligand interactions involved between the enzyme
and its inhibitors and could probably aid in the develop-
ment of highly selective and potent inhibitors against PTR1
as anti-parasitic agents.
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Abstract Interleukin-10 (IL-10) is a pleiotropic immune-
regulatory cytokine that is expressed in various species of
fish and higher vertebrates, and is activated during
infection. In spite of its important role, IL-10 has not been
well characterized either functionally or structurally in fish.
To analyze its properties and function, we constructed a 3D
model of IL-10 in the Indian major carp, the catla (Catla
catla), which is a highly preferred fish species and the most
commercially important one in the Indian subcontinent. The
catla IL-10 model was constructed by comparative model-
ing using human IL-10 (2ILK) as the template, and a 5 ns
molecular dynamics (MD) simulation was carried out to
characterize its structural and dynamical features, which
was validated by the SAVES, WHAT IF and MolProbity
servers. Analysis using the VAST server revealed a
comparatively low level of homology between catla and
human IL-10 amino acids at the N-terminal (22.7%)
compared to the C-terminal (38.29%). Six conserved
domains (A–F) were predicted in catla that threaded well
with human IL-10, but their putative interaction sites varied
significantly. The amino acid residues in helices A and F
differed in length between catla and human IL-10, which
may lead to the differences in the IL-10/IL-10R complexes
of these two species. The existence of two highly conserved
amino acid residues (Cys5 and Cys10) in fish IL-10 but not

in higher vertebrate (including human) IL-10 was analyzed in
this 3D model. CastP, cons-PPISP and InterProSurf server
identified several binding pockets with various probe radii, but
Cys5 and Cys10 did not form any significant bonds relating to
structural stabilization or protein–protein interactions.

Keywords Indian major carp .Catla catla . IL-10 .

Comparative modeling .Molecular dynamics

Introduction

Cytokines are low molecular weight proteins or glycopro-
teins that play a vital role in immunity by initiating and
regulating the inflammatory processes. Interleukin-10
(IL-10) is a pleiotropic cytokine that influences the
activities of many cell types in the immune system and
has important immune regulatory functions [1]. It is
produced by activated T cells, B cells, monocytes/macro-
phages, mast cells, and keratinocytes [2]. IL-10 was
initially described as a cytokine synthesis inhibitory factor
(CSIF) that shifts the body’s immune reaction away from
the inflammatory response induced by a pathogen or by the
immune system [3]. It aids in the regulation, differentiation
and proliferation of several immune cells, such as T cells, B
cells and natural killer cells [4], and also mediates immune-
stimulatory properties in order to eliminate infectious and
noninfectious particles with limited inflammation [5].

India ranks third among the world’s freshwater fish
producers, and among the freshwater-cultured fish species,
the catla (Catla catla) is the most commercially important
and highly favored fish, so Indian aquaculture is greatly
dependent on catla. Recently we cloned and sequenced the
catla IL-10 gene, analyzed its expressional upregulation
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during diseases, and identified the presence of an IL-
10-dependent signaling pathway that partially downregu-
lates the expression of pro-inflammatory cytokines and is
closely related to higher vertebrates.

IL-10 binds to its high-affinity receptor IL-10R1 [6], and
exerts its biological activity as a homodimer consisting of
two noncovalently linked monomers [7]. Each subunit is
stabilized by two intra-chain disulfide bonds. Catla IL-10
contains six cysteine residues. Among these, four are
common to fish, birds and mammals, and the other two
cysteine residues are highly conserved across the fish
species and are not present in higher vertebrates.

Considering these facts together, we investigated the
sequence-based prediction of the 3D structure of mature
catla IL-10 in order to analyze the properties and functions
of the protein, as well as to determine the significance of
two highly conserved cysteine residues in fish that may
play a significant role in forming disulfide bridges during
protein folding or may possess high solvent accessibility
potential for the interaction with the IL-10 receptor.

Materials and methods

Computational resources

Computational studies were carried on a Pentium 4,
2.40 GHz PC equipped with the CentOS environment.
Sequence alignment was carried out using Clustal W [8],
and was displayed with ESPript 2.2 [9]. Comparative
modeling was performed with the MODELLER 9v8
program (academic version) [10]. Loop refinement was
carried out using the same MODELLER 9v8 program
manually, without any constraint refinement in the align-
ment. Molecular dynamics (MD) simulations, energy
minimization, and trajectory analysis were carried out using
GROMACS 4.0.3 (http://www.gromacs.org) and the GRO-
MOS9643a1 force field. The modeled protein was validated
by PROCHECK [11], Verify3D [12], ERRAT [13] and
PROVE [14] by SAVES (the Structure Analysis and
Verification Server) (http://nihserver.mbi.ucla.edu). The
feasibility of the structure was also investigated using the
WHAT IF [15] and MolProbity [16] servers. Protein
visualization and superimposition was carried out using
Discovery Studio Visualizer 2.0 (http://accelrys.com/) and
PyMOL (educational license version) (http://www.pymol.
org/). All graphs were created using Xmgr 4.1.2
(http://plasma-gate.weizmann.ac.il/Xmgr/).

Comparative modeling of catla IL-10

The full length IL-10 gene of catla was cloned by RACE
(5′ and 3′) from the EST sequence (GenBank acc. no.:

GU256643); after aligning the 5′ and 3′ sequences, an
1137-bp cDNA sequence was obtained (GenBank acc. no.
HQ221996). The open reading frame (ORF) consisted of
540 bp nucleotides that encoded 179 amino acids. The
signal peptide (22 aa) was predicted using the SignalP 3.0
server [17], and was excluded from model building. Mature
catla IL-10 consisted of 157 amino acid residues with a
predicted molecular mass of 18.50 kDa, and was used for
template searching. The template search, based on the
functional domains concept, was carried out in GeneSilico
Metaserver [18], 3D-Jury [19] and Pcons.net [20]. All of
these searches suggested that the human IL-10 crystal
structure from the Protein Data Bank (PDB code: 2ILK) at
1.6Å resolution was the best template for catla IL-10,
with ~29% identity and 57% positives. We also searched for
a template using the MODELLER 9v8 program, and it also
indicated that 2ILK was the best template, with 28.86%
identity, an expected value of 0, and a query coverage
of ~99%. Although viral interleukin-10 (PDB code: 1VLK)
showed a slightly higher level of identity (30.50%) than
2ILK in MODELLER 9v8 program, its query coverage
(92%) and alignment score were lower.

The protein threading approach used by I-TASSER [21]
was also employed to determine the best template in terms
of fold recognition. It predicted a catla IL-10 model that
utilized 2ILK as the best template (rank 1). To ensure the
sensitivity and accuracy of our selected template, the
FUGUE (Find Homologs of Uncharacterized Gene
Products Using Environment-specific substitution tables)
program [22] was used to perform a sequence–structure
comparison between the target and template. FUGUE
utilizes a curated database of structure-based alignments
for homologous protein families, HOMSTRAD (Homologous
Structure Alignment Database) [23]. From the FUGUE
search, the HOMSTRAD family with the top Z-score against
the cut-off score (Z-score>6.0) was considered to be the best
template for modeling. The result was presented using JOY
annotation [24]. Using this program, the highest Z-score of
24.30 was obtained with the same 2ILK template, followed
by 1M4R (interleukin 22, Homo sapiens), with a Z-score of
17.85.

After validating that 2ILK is the most appropriate
template, 10 models were generated by MODELLER, and
loop refinement was carried out locally. The model with the
lowest value of the normalized discrete optimized protein
energy (DOPE) was chosen as the best model, and
subjected to molecular dynamics (MD) simulation.

Swiss-Pdb Viewer [25] was implemented for energy
minimization, using a harmonic constraint of 100 kJ mol−1

Å−2 and the steepest descent and conjugate gradient
techniques along with the GROMOS 43B1 force field
[26]. The refined model was validated with PROCHECK,
Verify3D, ERRAT and PROVE in order to confirm that all
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bond lengths, dihedral angles and torsion angles attain a
stable configuration. The structure was also checked using
the WHAT IF and MolProbity servers.

Molecular dynamics (MD) simulations

MD simulations were conducted for the modeled systems in
explicit solvent using the GROMACS (Groningen Machine
for Chemical Simulations) 4.0.3 package [27]. The model
was solvated by 15,735 water molecules in an octahedral
box with edges that were 0.9 nm from the molecular
boundary. To obtain a neutral system, three CL− ions were
added (charge −3.00) to the catla IL-10 model (which has a
net positive charge of 3.00). The solvated system was then
subjected to further energy minimization (maximum num-
ber of steps: 2000) to remove steric conflicts between the
protein and water molecules, using the steepest descent
integrator. Convergence was achieved in the energy
minimization when the maximum force was smaller than
1000 kJ mol−1 nm−1. The energy-minimized model was
subjected to position-restrained MD under NPT conditions,
keeping the number of particles (N), the system pressure (P)
and the temperature (T) constant. This was carried out for
50,000 steps for a total of 100 ps. The reference
temperature for coupling (via Berendsen temperature
coupling) was 300 K, and a pressure of 1 atm was
maintained by the Parrinello–Rahman algorithm. Snapshots
of the trajectory were taken every 0.5 ps. The final MD of
2,500,000 steps was carried out for 5,000 ps (5 ns) using
the particle mesh Ewald (PME) electrostatics method under
NPT conditions. The final model was set for validation by
the SAVES server.

The human IL-10 dimer was built by performing a
symmetry transformation on the atoms of the monomer
using the tool Build Crystallographic Symmetry imple-
mented in the Swiss-Pdb Viewer software. The Protein–
Protein Interaction Server [28] and NACCESS v.2.1.1
(Atomic Solvent Accessible Area Calculations) program
[29] were used to identify the amino acids at the protein–
protein interface of the complex.

Pocket information for catla IL-10 was predicted by
CASTp [30] (using the default settings), cons-PPISP [31]
and the InterProSurf server [32], in order to locate the
binding-site amino acids.

Results and discussion

Model building

To create the model of catla IL-10, we followed a
comparative modeling protocol and evaluated several
templates using sequence comparison and functionally

conserved domain search methods. We found that 2ILK
(human IL-10) was the best template, in agreement with the
previous observations of Pinto et al. [33]. The fold
recognition approach employed in I-TASSER also identi-
fied that 2ILK was the best template using the TM-align
program [34]; it had a TM score of 0.9397 (the TM score
lies within (0,1) and is >0.5, meaning that the structures
share the same fold), an RMSD of 0.92, a sequence identity
of 28%, and a query coverage of 97%. The error associated
with creating models using only sequence comparison was
minimized with this approach. The percentage (%) identity
and the alignment scores of 2ILK (the template) obtained
by different programs are presented in Table 1. The
alignments of the catla IL-10 protein with the IL-10
proteins of another eleven species are shown in Fig. 1,
and additionally conserved cysteine residues (Cys5 and
Cys10) in fish are indicated on this figure. The sequence–
structure alignment of catla IL-10 and 2ILK was also
generated in FUGUE and presented by the JOY annotation
program (Fig. 2), which indicated the possible regions of
helices, turns and β-sheets of catla IL-10 with reference to
the template, and was validated by a secondary structure
comparison.

The secondary structure of the catla IL-10 amino acid
sequence was predicted by PSIPRED [35] (Fig. 3a), and the
secondary structure of the catla IL-10 model was assigned
by the STRIDE program [36], which used hydrogen-bond
energies and main chain dihedral angles to identify helices,
coils and strands; this secondary structure is shown in
Fig. 3b. The helical positions of catla IL-10 were aligned
with human IL-10, and this accurately highlighted the
conserved domains, with approximately the same percentage
of helical residues obtained for both the sequence-based and
the 3D model based secondary structure approaches. This
signified that the fits to both of the secondary structures were
good.

Catla IL-10 protein model validation

To validate the catla IL-10 model, a Ramachandran plot was
drawn and the structure was analyzed by PROCHECK. It

Table 1 Sequence identity of the 2ILK template, as obtained by
different servers

Tools % Identity Score

pdbblast 29 (2nd) 1.06892×10−46

csblast 29 (top) 7.00×10−41

prc 29 (2nd) 1.4×10−38

blastp 29 (top) 3.87513×10−15

mGenthreader 28 (top) 1.00×10−7

sp3 28 (top) −351.694
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was observed that the phi–psi angles of 86.8% of the
residues were in the most favored regions, 11.8% were in
the additional allowed regions, 1.4% were in the generously
allowed regions, and no residues fell in the disallowed
regions (Fig .4). The overall G-factor scores for the catla
IL-10 model after MD simulation was −0.17. This indicated
that the model was accepted, as it was greater than the
recommended value (−0.50). The Verify 3D results for the
catla IL-10 model showed that 45.57% of the amino acids
had an average 3D-1D score of >0.2, and 89.18% of the
residues showed positive scores (cut-off score was >0),
indicating the reliability of the proposed model. The catla
IL-10 model was analyzed by the PROVE program to

measure the average magnitude of the volume irregularities
in terms of the Z-score root mean square deviation (Z-score
RMS). The Z-score RMS values for the catla and human
IL-10 models were 1.398 and 1.139, respectively (a Z-score
RMS value of ~1.0 indicates good resolution of structures).
The overall quality of the catla IL-10 model determined by
the ERRAT program was 97.917 (a value of ~95% shows
high resolution). All of these programs together indicated
that the catla IL-10 protein model was valid. The average
coarse packing quality, anomalous bond length, planarity,
packing quality and the collision with symmetry axis
obtained by the WHAT IF server showed good acceptance
of the model. The MolProbity server predicted that 0% of

Cys5 Cys10

Catla
Common carp
Silver carp
Zebrafish
Rainbow trout
Pufferfish
Spotted PF
European sea bass
Atlantic cod
Pig
Human
Chicken

Catla
Common carp
Silver carp
Zebrafish
Rainbow trout
Pufferfish
Spotted PF
European sea bass
Atlantic cod
Pig
Human
Chicken

Catla
Common carp
Silver carp
Zebrafish
Rainbow trout
Pufferfish
Spotted PF
European sea bass
Atlantic cod
Pig
Human
Chicken

Fig. 1 Multiple sequence alignment of catla IL-10 with the IL-10
proteins of other species. Amino acid sequences were retrieved from
the GenBank data base, aligned with Clustal W, and the block was
prepared using the ESPript 2.2 program. Conserved amino acids are
shown in red boxes and >50% consensus residues are shown in yellow
boxes. Two additional cysteine residues (Cys5 and Cys10) that are
conserved in fish are indicated by circles and labeled. GenBank
accession numbers: Catla catla (catla) HQ221996, Cyprinus carpio

(common carp) BAC76885, Hypophthalmichthys molitrix (silver carp)
AAY99196, Danio rerio (zebrafish) AAW78362, Oncorhynchus
mykiss (rainbow trout) BAD20648, Takifugu rubripes (Fugu rubripes)
CAD62446, Tetraodon nigroviridis (spotted green pufferfish)
CAD67786, Dicentrarchus labrax (European sea bass) ABH09454,
Gadus morhua (Atlantic cod) ABV64720, Sus scrofa (pig)
ABP68816, Homo sapiens (human) CAG46825, and Gallus gallus
(chicken) Q6A2H4
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the residues had bad bonds (goal 0%), 0% of the residues
had bad angles (goal<0.1%), and that 0% of the Cβ
deviations were >0.25Å (goal 0%). This further strengthened
the reliability of the catla IL-10 model. The 3Dmodels of catla
and human IL-10 (2ILK) were depicted graphically by the
PyMOL visualization tool along with the sequences and
disulfide bridges (Fig. 5).

To further validate the accuracy of the structure of the
homolog and the methods used to generate the 3D model of
the target sequence, a cross-check validation approach was
used. In this strategy, the catla IL-10 model was chosen as
the template and the 2ILK sequence was considered the
target. The MODELLER program was used and 3D
coordinates were generated for 2ILK. The validation report
for the proposed model was compared to the PDB structure,
and this comparison is presented in Table 2. The RMSD
values between the PDB coordinates of 2ILK and the
model of 2ILK generated by MODELLER was calculated
to be 1.389Å for backbone atoms and 2.4Å for all atoms by
the PyMOL superimposition program. These data validated
the reliability of our proposed model of catla IL-10.

To functionally characterize catla IL-10, we queried the
model structure in the VAST [37] and Dali [38] servers. The
VAST server predicted the domains 1–110 (N-terminal) and
111–157 (C-terminal) in catla IL-10. Human IL-10
contained similar domains at the N-terminus (1–113) and
C-terminus (114–160). The Clustal W result revealed
38.29% identity at the C-terminal end and 22.7% identity
at the N-terminal end of catla IL-10 with the human IL-10
(Fig. 6). Hence, a comparatively low level of homology
between catla and human IL-10 was predicted at the

Fig. 4 Ramachandran plot of the catla IL-10 model. The plot was
calculated with the PROCHECK program

Fig. 3a–b Secondary structure of catla IL-10. a Predicted secondary
structure of the catla IL-10 amino acid sequence obtained by
PSIPRED. H denotes a helical region and C denotes a coil region. b
Secondary structure assignment of the catla IL-10 model by STRIDE.
Red indicates a helical domain and yellow indicates a loop region

Fig. 2 Sequence–structure alignment of the target and template. The
alignment of the catla IL-10 sequence (target) with the structure of
2ILK (template) was performed by FUGUE, and the results were
presented with the JOY annotation program. Alpha-helices are shown
in red, underlined residues represent H bonds to the main chain, ç
indicates a disulfide bridge, and italicized letters represent positive phi
torsion angles
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N-terminus. Pair-wise structural alignment was performed
in the Dali server to locate each functional domain, and the
highest Z-score value (12.4) suggested significant target–
template domain alignments (Fig. 7).

Molecular dynamics simulation

To gain insight into the stability and MD properties of the
structure of the homolog, explicit solvent MD simulation
was performed. The steepest descent method of energy
minimization for the solvated protein model showed that
the maximum force dropped below the defined value after
574 steps. Position-restrained molecular dynamics lasting
for 100 ps fixed all bond lengths in the system, and an
improved validation score was observed. The RMSD value
of the catla IL-10 model was compared after performing

simulation with the template (2ILK) for 5 ns (Fig. 8). The
results showed that the RMSD became stable at the end.
This suggested that an accepted structure was obtained by
the end of the simulation.

To locate the flexible regions, the root mean square
fluctuations (RMSFs) for the Cα atoms of each of the residues
were examined by GROMACS in order to measure the
average displacement, and these data are presented graphical-
ly in Fig. 9. In addition, the time profile of the secondary
structure changes during the trajectory was constructed in
VMD [39], and this is shown in Fig. S1 of the Electronic
supplementary material (ESM). The mean RMSFs of catla
IL-10 and human IL-10 were 0.323 nm and 0.327 nm, and
their standard deviations were 0.193 nm and 0.122 nm,
respectively. All these data indicate minute fluctuations,
highlighting the reliability of the model structure.

     chain A     chain A

chain Achain A

    IL-10
(human) 

    IL-10
   (catla) 

Fig. 5 3D structures of catla
and human IL- 10. The 3D
structures of catla and human
IL-10 are shown in green and
blue, respectively. The cysteine
residues that form disulfide
bridges are shown in red.
Additional cysteine residues
(Cys5 and Cys10) in catla IL-10
are encircled by yellow rings and
represented by pink sticks in the
3D structure

Table 2 Cross-validation of 2ILK, where catla IL-10 is used as the template by MODELLER

Ramachandran plot analysis 2ILK plot statistics 2ILK model plot statistics

Residues Percentage Residues Percentage

Residues in most favored regions 130 90.9 127 88.8

Residues in additional allowed regions 9 6.3 14 9.8

Residues in generously allowed regions 3 2.1 1 0.7

Residues in disallowed regions 1 0.7 1 0.7

Number of non-glycine and non-proline residues 143 100 143 100

Number of end residues (excluding glycine and proline) 2 2

Number of glycine residues 5 5

Number of proline residues 5 5

G-factor −0.14 0.06
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The monomer of 2ILK (MW 18.2 kDa) showed good
threading with the monomer of catla IL-10 (MW 18.5 kDa).
The Cα-based superimposition RMSD value for each
domain between catla IL-10 and 2ILK was calculated by
PyMOL program, and these values are shown in Table 3
and Fig. 10. The backbone and all-atom superimposition
RMSDs were calculated to be 1.148Å and 1.731Å,
respectively. The structural alignment of the backbone for
the functional domains revealed very low deviations,
indicating the acceptance of the catla IL-10 model.

We then investigated the possible interaction of catla
IL-10 with its receptor on the basis of the complex formed
between the human IL-10 dimer and its receptor molecule
(IL-10R1; PDB code: 1J7V) [6]. The crystal structure of the

cytokine–receptor complex consisted of one IL-10 homo-
dimer with two IL-10R1 molecules. Each receptor binds the
identical twofold-related surfaces of IL-10. Residues at the
interface derive from two backbone segments. The first
segment includes the AB loop and is centered on the bend
of helix F2, and the second segment is located near the
N-terminus of helix A and the C-terminus of helix F2. The
amino acid residues present in helices A and F in human
and catla IL-10 differed in length, which may signify a
difference in the IL-10/IL-10R complexes of these two
species. The relative accessibility percentage (solvent
exposure) was calculated by the NACCESS program for
each residue involved in the interaction for both human and
catla IL-10 (Table 4). As is evident from Table 4, there are

catla

2ILK

catla

2ILK

catla

2ILK

                C-terminus

<------------><------------>

<------------><------------>

                N-terminusFig. 6 Sequence alignment of
catla and human IL-10. The
IL-10 amino acid sequence
alignment was generated by
Clustal W, and identical (*) or
similar (. or :) amino acids are
marked. Amino acids at the
N-terminus and C-terminus are
shown by arrows

helix A                                       helix B

helix C-1          helix C-2                                helix D

helix E        helix F-1          helix F-2

Fig. 7 Pair-wise structural
alignment of catla and human
IL-10 by the Dali server. The six
helices found in the IL-10
structures are indicated by
arrows. H/h represent helices,
L/l represent loops. Structurally
equivalent residues are shown in
uppercase letters, structurally
nonequivalent residues (loops)
are in lowercase letters. Amino
acid identities are indicated by
vertical bars
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marked differences (shown in bold and italics) in the
solvent exposure properties of catla and human IL-10
amino acids. This strengthens the possibility that the
complex in catla is stabilized in a different way to the
complex in human.

In the catla IL-10 model, 17 pockets were predicted by
the CASTp server, and this highlighted some interesting
results. Amino acids that were conserved only in fish
species (Cys5 and Cys10) did not show any interactions for
any pocket. Different probe radii were used by the CASTp
server to check the significances of these conserved
cysteine residues in the protein–receptor interaction, but no

significant pocket information was obtained for these resi-
dues. Further analysis in cons-PPISP and the InterProSurf
server showed that these cysteine residues did not occur in any
clusters that may take part in the protein interaction. These
data strongly support the interacting residues of the catla IL-10
model having different positional distributions with higher
confidence clusters as compared to the human IL-10.

Conclusions

Cytokines play a pivotal role in modulating fish immunity.
Among the cytokines, the role of IL-10 seems to be a

Loop AB

Helix F2

Helix A

Helix B

Helix C1

Helix C2

Helix D

Helix F1

Helix E

Fig. 10 Superimposition of the catla IL-10 model onto the template
(human IL-10, PDB ID: 2ILK). In catla IL-10, helices are shown in
red and loops are shown in green. In the template, helices are shown in
cyan and loops are in magenta

Flipping loop regions

Fig. 9 Comparison of the root mean square fluctuations (RMSFs) of
catla and human IL-10. The RMSFs of the Cα backbone atoms in
catla and human IL-10 are shown in black and red, respectively

Fig. 8 Comparison of the root mean square deviations (RMSDs) of
catla and human IL-10 versus simulation time. The RMSDs of the Cα
backbone atoms in catla and human IL-10 are shown in black and red,
respectively

Table 3 Cα-based RMSD values for catla IL-10 obtained by the
PyMOL program

Catla IL-10 vs 2ILK Cα RMSD (Å)

Helix A 0.461

Helix B 0.315

Helix C1 0.293

Helix C2 0.182

Helix D 0.332

Helix E 0.714

Helix F1 0.384

Helix F2 0.440
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crucial one, due to its inductive expression during diseases
and its pleotropic role in immunity. To understand the
functional biology of IL-10 in fish, a 3D modeled structure
of IL-10 may aid in locating the putative sites of IL-10,
and in understanding the interaction with its receptor. In
this study, the 3D model of catla IL-10 showed
considerable structural differences from human IL-10,
which may lead to functional differences. Small peptides
spanning the putative regions identified by 3D modeling
could be synthesized for in vivo experimental investiga-
tions of IL-10-mediated cell signaling and functional
characterization. The 3D modeling data showed that two

additional cysteine residues (Cys5 and Cys10) in fish did
not form any significant bonds involved in structural
stabilization or the protein–receptor interaction, so it is
speculated that, during the course of evolution, they have
mutated in higher vertebrates. Further investigations are
required to validate these predictions.
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Abstract As a follow-up on a study of a family of boron-
oxygen-nitrogen compounds composed of two datively
bonded B–O–N backbones, we investigate a similar series
of compounds that have similar fragments but are cova-
lently bonded. B3LYP/6-31G(d,p) quantum mechanical
calculations have been performed to determine the
minimum-energy geometries, vibrational frequencies, and
thermochemical properties of the parent compound and a
series of nitro-substituted derivatives. Our results indicate
that some of the derivatives have at least appropriate
thermodynamics for possible high-energy materials, in
some cases being favorable over similar dimeric com-
pounds with coordinate covalent B–N bonds.

Keywords NOB-NOB compounds . B3LYP calculations .

High-energy materials

Introduction

In 1963, Kuhn and Inatome [1] published a report on an air-
stable boron–oxygen–nitrogen molecule that they determined
was composed of two B–O–N molecules in the form of a
six-membered ring. They later presented evidence, in the
form of measured dipole moments, that the ring existed as a
chair conformer [2]. Because experimental evidence sug-
gested that the nitrogen atom in the B–O–N monomer made
a coordinate covalent bond with the boron atom of the other
monomer, Kuhn et al. referred to these molecules as “BON-
BON” species. Their derivatives had several n-butyl groups
bonded to either the boron atom or the nitrogen atom (or

both) in the ring. Recently, we (Lawong AK, Ball DW, 2011,
manuscript in preparation) performed computational chemi-
cal analyses of the parent BON-BON molecule (the moniker
of which we are choosing to give in all capitals, unlike Kuhn
et al. [1, 2], to emphasize the atomic constitution of the six-
membered ring) and a variety of nitro-substituted BON-BON
molecules in order to study their potential as new high-
energy (HE) materials. The parent BON-BON molecule,
cyclo-BH2ONH2BH2ONH2, is shown in Fig. 1 (Lawong
AK, Ball DW, 2011, manuscript in preparation). Because
both the B and N atoms are tetracoordinated, the molecule
adopts a cyclohexane-like central ring structure.

In the course of our study, we realized that there is
another way to link two B–O–N moieties: using actual
covalent bonds between the B and N atoms between the
two monomers, rather than coordinate covalent bonds. That
is, a nitrogen atom on one B–O–N fragment would
covalently bond with the boron atom on a second B–O–N
fragment, with a similar covalent bond occurring between
the other ends of the fragments. To differentiate this
bonding arrangement from that found in BON-BON
molecules, we propose the name “NOB-NOB” in reference
to the covalently bonded six-membered ring. In this work,
as a follow-up to our BON-BON study, we present a
computational chemical study of the structures and proper-
ties (including the thermochemical properties) of the parent
NOB-NOB molecule and nitro derivatives of NOB-NOB.

Computational details

All calculations were performed using the Gaussian 09
computational chemistry program [3] on an IBM cluster
1350 supercomputer at the Ohio Supercomputer Center in
Columbus, Ohio. We used the density functional theoretical
method, as defined by combining Becke’s three-parameter
exchange functional with the correlation functional of Lee,
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Yang, and Parr (abbreviated to B3LYP in the Gaussian
program) [4, 5], along with the standard Gaussian basis set
labeled 6-31G(d,p) [6]. Minimum-energy geometries of the
NOB-NOB molecules were determined using default
settings, and vibrational frequency calculations were per-
formed to verify that a minimum-energy geometry was
found. Once the proper structure of the NOB-NOB
molecule was established, the enthalpy of formation was
determined by calculating the enthalpy change for the
molecule formed from its gaseous elements, and then
corrected for the enthalpy of formation of gas-phase boron.
For example, the reaction for the parent molecule was

2H2 gð Þ þ O2 gð Þ þ N2 gð Þ þ 2B gð Þ
! cyclo� NHOBHNHOBH gð Þ:

The energy change associated with this reaction was
determined from the calculations and then corrected for
the formation of two moles of B(g):

2½B sð Þ ! B gð Þ� ΔH ¼ 2 565:0 kJ mol�1
� �

:

The enthalpy of formation for B(g) was taken from the
NIST Chemistry Webbook website [7]. Once corrected for
the formation of B(g), the energy represents the enthalpy of
formation of the NOB-NOB molecule. After this, enthalpies
of decomposition and/or combustion can be determined
using standard balanced reactions, assuming that the
products are B2O3(s), H2O(ℓ ), and N2(g). When necessary,
O2(g) is added as a reactant for the complete oxidation of B
and H in the molecules.

Results and discussion

The non-nitrated NOB-NOB compound has the formula
(cyclo-)NHOBHNHOBH. There are nine nitro-NOB-NOB
compounds: two nitro-NOB-NOB isomers, four dinitro-

NOB-NOB isomers, two trinitro-NOB-NOB isomers, and
one tetranitro-NOB-NOB molecule. Thus, here we are
reporting on a total of ten NOB-NOB compounds. For
much of the presentation that follows, we will focus on the
non-nitrated NOB-NOB molecule (referred to as the
“parent NOB-NOB”) and the tetranitro-NOB-NOB mole-
cule, (cyclo)-N(NO2)OB(NO2)N(NO2)OB(NO2). The less
nitrated molecules have properties intermediate between the
two extremes, and (except for their thermodynamics) this
will be assumed unless there is something noteworthy about
a particular nitro-NOB-NOB. Readers interested in learning
more about the partially nitrated NOB-NOB compounds
can contact the corresponding author.

Figure 2 shows the optimized geometries of the parent
NOB-NOB compound and tetranitro-NOB-NOB, while
Table 1 lists some representative bonding parameters of
these two molecules. The structure of the parent NOB-NOB
molecule should be compared to that of the parent BON-
BON molecule, shown in Fig. 1 (Lawong AK, Ball DW,
2011, manuscript in preparation): the parent NOB-NOB
optimizes as a flat molecule, suggesting that the nitrogen
atoms have strong sp2 character, as opposed to the
cyclohexane-like ring adopted by the BON-BON deriva-
tives. As if to belie this, however, the bond angle that the
N–H bond makes with the oxygen atom in the ring is close
to the expected near-tetrahedral angle: 108.3° rather than
the ideal 120°. This is likely due to an intramolecular
interaction between the electropositive H atom and the
electronegative O atom. On the other hand, the B–H bond
is oriented almost exactly 120° (actually slightly less: 117°)
from the other ring atoms. The six-membered ring is not a
perfect hexagon. The O–N, N–B, and B–O bonds are
slightly different lengths (1.427, 1.398, and 1.378 Å,
respectively), while the bond angles vary, sometimes
significantly, from 120°. The relative orientations of the
NO2 groups in tetranitro-NOB-NOB show an interesting
pattern: the NO2 group bonded to the nitrogen atom in the
ring lies in the plane of the ring, while the NO2 group

Fig. 1 The general structure of BON-BON-type six-membered rings.
Because of the tetracoordinated B and N atoms, the ring adopts a
cyclohexane-type structure, in this case the chair conformer. (From
Lawong AK, Ball DW, 2011, manuscript in preparation)

Fig. 2 The parent NOB-NOB molecule (cf. Fig. 1) and the tetranitro-
NOB-NOB molecule
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bonded to the boron atom in the ring lies perpendicular to
the ring. This pattern is repeated in all NOB-NOB
derivatives that have NO2 groups on adjacent atoms (which
is seen for three derivatives in the group of ten molecules
studied here): the NO2 group bonded to the nitrogen atom is
always in the plane of the ring, while the NO2 group
bonded to the boron atom is always perpendicular to the
plane of the ring. This is unusual for an ortho-substituted
di- (or greater) nitro compound with a planar central ring.
For example, 1,2-dinitrobenzene has its adjacent nitro
groups rotated ~41º out of the plane of the planar C6 ring
[8], while the nitro groups in hexanitrobenzene are all 43–
45° out of the plane of the ring [9].

The general structure of the BON-BON molecules
studied previously (Lawong AK, Ball DW, 2011, manu-
script in preparation) included a central six-membered ring
that resembled the chair conformation of cyclohexane. The
first major difference in the structures of BON-BON and
NOB-NOB (in both cases referring to the parent molecule)
is a nonplanar chair conformation for BON-BON and a flat,
distorted hexagon for NOB-NOB. As for bond distances
within the six-membered rings, only the N–O bond distance
remains close to being the same for the two types of rings
(1.427 Å here versus 1.429 Å for the parent BON-BON
molecule). The B–O bond is slightly shorter in NOB-NOB
(1.378 Å here versus 1.476 Å in BON-BON). The B–N
bond is significantly shorter in NOB-NOB (1.427 Å vs.
1.624 Å), as might be expected for a B atom bonding to a
trivalent N atom. Bonding to and bonding within the NO2

groups were similar in the two types of molecules, except
for the N–N(nitro) bond; again, as befitting a bond to a
trivalent N atom, the N–N bond distance in tetranitro-NOB-
NOB was found to be 1.443 Å, down significantly from the

1.696–1.899 Å bond distance found in octanitro-BON-
BON (Lawong AK, Ball DW, 2011, manuscript in
preparation).

A look at some of the molecular orbitals explains why
the six-membered rings of NOB-NOB are close to being
planar. Figure 3 shows HOMO-7 and HOMO-21 for the
parent NOB-NOB and the tetranitro derivative, respectively.
These molecular orbitals show the delocalization of
electrons over the entire ring and even, in the case of the
tetranitro derivative, into the NO2 groups. This is very
reminiscent of the π orbitals of aromatic systems, and it
would not be surprising if this molecule were found to have
aromatic character.

Figure 4 shows the calculated vibrational spectra of the
parent NOB-NOB molecule and the tetranitro derivative,
which should help in identifying these substances should
synthesis be attempted. The vibrational spectrum of NOB-
NOB is unremarkable, with the N–H, B–H, and ring
vibrations appearing in predictable ranges. The vibrational
spectrum of tetranitro-NOB-NOB is more interesting. Some
features that stand out are what appear to be doublets of
absorptions throughout the spectrum, especially in the mid-
to high-energy range. Visualization of the normal vibra-
tional modes using the GaussView program [10] demon-
strates the reason for these near-doublets. Each pair
represents two similar motions that would otherwise be
degenerate if the symmetry of the molecule were higher.
For example, the strong absorption at 1765 cm−1 is the
asymmetric O–N–O stretch of the two NO2 groups bonded
to the nitrogen atoms in the ring. The strong absorption
near it, at 1629 cm−1, is the asymmetric O–N–O stretch of
the two NO2 groups bonded to the boron atoms in the ring.
Within 2 cm−1 of each of these strong absorptions is a zero-
intensity absorption identifiable as the corresponding
symmetric stretches of the same atoms. Similar correspond-
ences can be assigned to other absorptions of similar
intensities and close frequencies. Also, because of the
symmetry of the molecule, fully 25 of the 48 normal modes
of vibration have exactly zero intensity (compared to only
10 out of 24 for the parent NOB-NOB molecule).

Table 1 Representative bonding parameters of the parent NOB-NOB
molecule and the tetranitro-NOB-NOB derivative. Distances in Å,
angles in degrees

NOB-NOB Tetranitro-NOB-NOB

r(N–O) 1.427 1.399

r(O–B) 1.378 1.363

r(B–N) 1.398 1.419

r(N–H) 1.006 –

r(B–H) 1.189 –

r(N–N) – 1.443

r(B–NO2) – 1.516

α(B–O–N) 113.9 117.3

α(O–N–B) 124.1 121.7

α(N–B–O) 122 121.1

α(O–B–H) 117.8 –

α(O–N–H) 108.3 –

α(O–N–O) – 127.0, 130.6

Fig. 3 Molecular orbitals showing the delocalization of electrons in
the ring (left, parent NOB-NOB) and extending into the NO2 groups
planar to the ring (right, tetranitro-NOB-NOB)
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Because our main focus is the thermodynamics of the
NOB-NOB molecules, here we will include information
about all of the isomers. After determining the enthalpy of
formation of the molecules as described above, the
combustion or decomposition enthalpy was also deter-
mined. Whether the relevant reaction is considered a
combustion or decomposition depends on the oxygen
balance (OB%) of the compound. The oxygen balance is
given by the expression [11]

OB% ¼ � 3200 3
4 bþ 1

4 hþ 0n� 1
2 o

� �

MW
;

where b, h, n, and o are the numbers of boron, hydrogen,
nitrogen, and oxygen atoms in the molecular formulae,
respectively, and MW is the molar mass of the molecule. An
OB% that is less than zero indicates that a molecular
formula does not have sufficient oxidizer (here, oxygen)
present to oxidize all other atoms present, while an OB% of
greater than zero indicates that a molecular formula does
contain sufficient oxidizer to oxidize all other atoms fully.
Thus, substances with negative OB% values need addition-
al oxidizer (assumed here to be molecular oxygen), and the
enthalpy changes of reaction with said oxidizer are
appropriately labeled enthalpies of combustion (ΔHcomb).
Substances with positive OB% values have sufficient
oxidizer atoms to oxidize themselves, so the enthalpy
changes of reaction are more appropriately labeled enthal-
pies of decomposition (ΔHdec). Table 2 lists oxygen
balances, calculated enthalpies of formation, and resulting
enthalpies of decomposition or combustion for the ten
NOB-NOB derivatives. There are considerably fewer nitro-
NOB-NOB molecules than nitro-BON-BON molecules
because of the fewer hydrogen atoms that can be
substituted for NO2 groups, which in turn leads to fewer
substitutional isomers. In the labeling of the nitro-NOB-
NOB isomers, the point of substitution is given, with the
prime (′) implying that the additional NO2 substitution
(where appropriate) is in the other NOB monomer as well.
According to the OB% values, the parent NOB-NOB and
nitro-NOB-NOB require extra oxidizer, so the enthalpies of
reaction are enthalpies of combustion. For greater NO2

substitution, the positive OB% values indicate sufficient
oxygen to oxidize completely, so enthalpies are better
described as decomposition enthalpies.

Table 2 shows that all of the NOB-NOB-based com-
pounds have strongly negative enthalpies of formation,
likely due in part to the strong B–N bonds in the six-
membered rings. Upon nitration, the thermodynamics of the
isomers shows a similar trend to the respective BON-BON
compounds, but not as extreme. Once again, in the nitro-
substituted compound, the site of nitration significantly
affects the energy values, with the B-substituted nitro-NOB-

NOB predicted to be more stable than the N-substituted
nitro-NOB-NOB. However, the difference in ΔHf values is
only about 120 kJ mol−1, rather than the 220 kJ mol−1 seen
between the two nitro-BON-BON derivatives. The trend is
clear in the NOB-NOB derivatives, as it was in the BON-
BON molecules: all other things being the same, an NO2

group bonded to an N atom of the six-membered ring leads
to a less-stable isomer than a similar molecule with the NO2

group bonded to a B atom of the ring.
The calculated enthalpies of formation generally increase

(that is, get less negative) as the level of nitration increases;
however, the increase is not monotonic. The least stable
isomer, relative to the constituent elements, is N,N′-dinitro-
NOB-NOB. In this molecule, both of the relatively stable
N–H bonds from the parent compound are substituted for
NO2 groups, so they are replaced with less-stable N–NO2

bonds. As mentioned in the BON-BON paper (Lawong
AK, Ball DW, 2011, manuscript in preparation), these N–N
bonds are the most likely to initiate decomposition in this
case too.

With enthalpies of formation determined, enthalpies of
combustion or decomposition can be determined using
standard combustion or decomposition reactions. The
enthalpy of combustion of the parent NOB-NOB molecule
is −957 kJ mol−1. Per unit mass, this molar enthalpy of
combustion is recalculated to a value of −11.2 kJ g−1. This
is about twice as much energy per unit mass as current HE
materials like RDX and HMS, whose specific enthalpies of
decomposition are both about 5 kJ g−1 [12]. However, this
is significantly lower than the specific enthalpy of com-
bustion for the parent BON-BON compound, which
is −16.6 kJ g−1. With four less hydrogen atoms and stronger
B–N bonds, the parent NOB-NOB compound not only has
a more negative enthalpy of formation than the parent
BON-BON, but it gives off two less H2O molecules as
combustion products. The enthalpies of combustion of the
two nitro-NOB-NOB isomers are slightly less negative than
that of the parent molecule, and because of the rather
dramatic increase in mass brought on by a single NO2

group (89.6 u for the parent molecule, but 134.6 u for nitro-
NOB-NOB: a 50.4% increase), the energy given off per
gram decreases by about half, to −5.9 to −6.9 kJ g−1. Upon
increasing the nitro content, the calculated enthalpies of
decomposition vary between −570 and −855 kJ mol−1,
varying more because of the position of the NO2 group
rather than the number of NO2 groups. This is in part
because higher levels of nitration lead to the formation of
more N2 and O2 as products, which have enthalpies of
formation of zero and thus contribute nothing to the

Fig. 4 Calculated vibrational spectra of the parent NOB-NOB molecule
(bottom) and the tetranitro derivative (top). Note that the horizontal
scales are different for the two spectra

�
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generation of stable products. The fact that one-half of an
H2O molecule less is formed as a product with the addition
of each NO2 group apparently has only minimal impact on
the resulting enthalpy of decomposition.

However, although the enthalpies of decomposition are
fluctuating about a mean (which is about −680 kJ mol−1),
the mass of the molecule is increasing by a net 45.0 u per
nitro group, so the enthalpies of decomposition per unit
gram are decreasing noticeably. The specific enthalpies of
formation for all dinitro-NOB-NOB isomers are less than
those for nitro-NOB-NOB, and trinitro-NOB-NOB isomers
even lower. The tetranitro-NOB-NOB derivative has the
lowest specific enthalpy of decomposition, −2.23 kJ mol−1.
Even this value is not entirely out of range for potential HE
materials; Akhavan lists [12] the specific enthalpy of
reaction for nitroguanidine at −2.47 kJ g−1, just slightly
more energy per gram than that of tetranitro-NOB-NOB.

We point out that even this lowest value for tetranitro-
NOB-NOB is more energy than six types of nitrated BON-
BON molecules (Lawong AK, Ball DW, 2011, manuscript
in preparation), which can accommodate more NO2 groups
and hence achieve higher molar masses, reducing their
energy density despite their more negative enthalpies of
decomposition. Thus, nitrated NOB-NOB derivatives may
be potential HE candidates that are worthy of additional
exploration. Other factors need to be considered before
nitrated NOB-NOB molecules would be deemed “good”
HE materials, like velocity of detonation and impact

sensitivity. However, for at least some NOB-NOB com-
pounds, their thermodynamics of combustion and decom-
position are promising.
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NHOBH–NHOBH −56.1 −362.7 −957 −11.2
Nitro-NOB-NOB −6.1
B- −426.7 −772 −5.91
N- −300.9 −897.8 −6.87
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Abstract The reliability of ONIOM approach have been
examined in calculations of adsorption energies, transition
structures, change of HOMO-LUMO energy gaps and
equilibrium geometries of the interaction between NH3

and N-enriched (A) or B-enriched (B) open ended boron
nitride nanotubes. To these ends, four models of the A or B,
with different inner and outer layers have been studied. In
addition, various low-levels including, AM1, PM3, MNDO
and UFF have been examined, applying B3LYP/6-31 G* in
all high-levels. It was shown, that in the case of A,
(choosing two atom layers of the tube open-end as inner
layer) the results of ONIOM approach are in best agreement
with those of the pure density functional theory (DFT)
calculations, while their results significantly differ from
those of DFT in the case of B in same conditions. All above
and population analysis demonstrate that the ONIOM may
be a reliable scheme in the study of weak interactions while
it is a controversial approach and should be applied
cautiously in the case of strong interactions. We also probed
the effect of tube length and diameter on the consistency

between ONIOM and DFT results, showing that this
consistency is independent of the mentioned parameters.

Keywords Adsorption . B3LYP. Boron nitride nanotubes .

DFT. NH3
. ONIOM

Introduction

The applications of computational chemistry span predict-
ing the structure, spectra, transition states and reactivity of
complicated molecules. To serve as a predictive tool,
however, the methods should be applicable to a large
enough portion of the system, reflecting the features of the
real system. Among the all quantum mechanical methods, a
few of them can be easily applied to the study of
thermodynamics and reaction mechanisms in large systems
such as proteins, nanotubes, etc. In fact, the calculation time
in accurate ab initio methods grows much faster than the
number of atoms. This growth is roughly relative to the
third power of the number of atomic basis functions used to
solve the Schrödinger equation, at least within the density
functional theory (DFT) context.

Developed by Morokuma et al., ONIOM is a method to
study the large molecules by dividing them into two or
three layers, where a high-level calculation is performed on
the smallest layer (inner layer) and the rest layer (outer
layer) effects are included at a low-level of theory [1, 2].

In spite of several theoretical studies on single-walled
carbon nanotubes, applying ONIOM method, [3, 4] only
few works have been published on the case of boron nitride
nanotubes (BNNTs) [5]. BNNTs as inorganic nanomaterials,
have received considerable research interests [6, 7] because
of their remarkable electronic, mechanical, and thermal
properties.
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The ONIOM method is still a controversial method, it
has been recently reported that the often-used ONIOM
(B3LYP:AM1) approach is not appropriate for some
nanotube systems [8, 9]. In the present work, we are
interested in ONIOM study of the N-H bond cleavage of
NH3 at the open ends of BNNTs, evaluating its reliability
by comparing its results with our previous reported full
DFT ones [10]. To this aim, several combinations of
different levels of theory as well as different partitions of
the inner and outer layers were considered.

The N-H bond cleavage is a challenging problem not
only toward the transformation of NH3 into a useful amino
compound but also toward the starting of many catalytic
reactions [11–13]. Since only methodological aspects of the
ONIOM method have been studied in the present work, no
discussion was addressed with respect to either experimen-
tal data or absolute accuracy of the chosen levels of
calculations.

Computational details

All calculations were carried out with the Gaussian 98 suite
of programs [14]. A zigzag (4, 0) BNNT, B20N20H4 was
chosen with open ends, in which only one end was
saturated with four H atoms. Existing two different
terminals for zigzag BNNTs, two forms of open-ended
types were used in order to model the NH3 dissociation at
the tube ends, including N-enriched (A) and B-enriched (B)
types (Fig. 1).

Firstly, four models of the A tube were selected in which
the inner layers consist of N4B4 (A1), N8B4 (A2), N8B8
(A3) and N5B5 (A4), Fig. 2. In models of A1, A2 and A3,
two, three and four rows of atoms were placed respectively
in the inner layer, and in the A4 two hexagonal rings were
selected as inner layer. All of models with and without NH3

were optimized using ONIOM (B3LYP/6-31 G*:AM1) and
adsorption energy (Ead ) were computed (Table 1). The Ead

is defined here as follows:

Ead ¼ Etot NH3 þ open� ended BNNTð Þ
� Etot open� ended BNNTð Þ � Etot NH3ð Þ;

where Etot is the total energy of a given system.
In addition, the other low-levels were applied in the

ONIOM study of A3 model including the semiempirical
MNDO and PM3 methods and also the molecular mechan-
ics universal force field (UFF). All calculations performed
on A model were repeated for B model, as well. Finally, to
explore the effect of tube length and diameter on the
consistency of ONIOM and DFT, the A3 model of three
other BNNTs were studied, including: (5,0), (6,0) and (7,0)
zigzag types.

Results and discussion

At first, we probed reliability of the ONIOM(B3LYP/6-
31 G*:AM1) level of theory in calculation of geometrical
parameters and Ead of NH3 dissociation at open ends of A1,
A2, A3, and A4 models. B3LYP, has the most generality
and predictive capacity providing a sufficiently accurate
description of finite-size nanotubes [15–19]. As we have
recently showed, during the NH3 adsorption process, a
single NH3 molecule dissociates into an -H atom and an
-NH2 group at the open ends of BNNTs [10].

In the present work, we compare the results of ONIOM
method with those of full DFT in ref. [10]. The calculated
Ead amounts for A1, A2, A3 and A4 models are −80.8,
-70.5, -64.8 and −74.7 kcal mol-1, respectively (Table 1).
The results indicate that only the Ead of NH3 on A3 model
partly agrees with B3LYP/6-31 G* result (−63.1 kcal mol-1)
and the energy difference is about 1.7 kcal mol-1 (with 3%
error). As shown in Table 1, the other models show
significant errors. The calculated values for three represen-
tative bond lengths including, N1-NH2, N2-H and N1-N2
(Table 1, Fig. 3), indicate that geometrical parameters have
no dependency upon the type of tube models.

However, adopting the A3 as the appropriate model, we
subsequently compared the reliability of four different low-
levels (AM1, PM3, UFF and MNDO) in Ead, activation
energy (Eact), HOMO-LUMO energy gap (Eg), charge
transfer (QT), dipole moment (μ) and structure geometry

Fig. 1 (a) The model of A (N-enriched open-ended BNNTs), (b) The
model of B (B-enriched open ended BNNTs)
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calculations. The Eg, μ and QT were computed using full
B3LYP/6-31 G* level of theory (performing a single point
(SP) calculation on the optimized structures of ONIOM), due
to inability of the ONIOM method in their calculations.
Frequency calculations verified the obtained transition struc-
tures (with one imaginary frequency). Ugliengo et al. showed
that the results of frequency calculations using ONIOM
method are comparable with full DFT ones [20–22].

All calculated parameters are shown in Table 2, indicat-
ing that the results of Ead are near to that of ref. [10], except
those of UFF, showing an error of 7.4%. However, among
all low-levels, Ead of MNDO is the nearest to that of
B3LYP. We once more performed a SP energy calculations
on the A3 and H-A3-NH2 complexes, using B3LYP/6-
31 G*. It is observed that the difference of Ead between
ONIOM and full DFT is relatively reduced in the all cases
(Table 2). It seems that performing a high-level SP
calculation on the ONIOM-based optimized structures
improve the initial results of Ead.

The UFF has the most deviation in Eg calculations.
Either PM3 or MNDO overestimates Eg about 0.11 eV,

while AM1 underestimates it about 0.13 eV. Generally, all
methods give eligible results, except the UFF. In Eact

calculations, we observe a good consistency between
ONIOM and DFT as the result of PM3 is in the best
agreement with that of full DFT.

In the cases of structure geometry and QT calculations,
the results of the different ONIOM methods show no
significant difference in comparison to those of DFT,
indicating that these properties are not dependent upon
low-levels. Finally, the largest and lowest deviations belong
to the UFF and PM3, respectively, in the case of μ
calculation.

Fig. 2 Four optimized models
of the A tube at ONIOM
(B3LYP/6-31 G*:AM1)

Fig. 3 The structural geometry
of A3/NH3 complex with
different ONIOM methods

Table 1 Ead (kcal mol-1) and representative bond lengths (Å) of
different models of A tube, which are compared with the results of full
DFT of ref. [10]

Model Ead Error N1-NH2 N2-H aN1, N2

A1 −80.8 28% 1.449 1.023 2.562

A2 −70.5 12% 1.434 1.025 2.541

A3 −64.8 3% 1.454 1.023 2.497

A4 −74.7 18% 1.459 1.025 2.553

A −63.1 - 1.455 1.022 2.495

a N1, N2 is the distance between N1 and N2
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However, PM3 is the most reliable among all low-level
methods and the results of UFF are the most misleading,
especially in the calculations of Ead, Eact and μ. The results
of MNDO are somewhat similar to those of PM3 by
experience, the PM3 usage is difficult in comparison to that
of MNDO, due to many convergence failures in the
Gaussian program.

Subsequently, we assessed the reliability of the ONIOM
method in Ead calculation of NH3 dissociation at the open
end of B model, using the same three semiempirical low-
levels. The data of Table 3 show that the results of ONIOM
method for all B models are not in agreement with DFT.
The best agreement belongs to the B3 model with 25%
error. It is noteworthy to mention that the designation of B
models is similar to those of the A models. In the B3 case,
the calculated Ead values for AM1, PM3, and MNDO are
−156.5, -202.5 and −182.6 kcal mol-1 while that of full
DFT is −131.1 kcal mol-1 [10].

In contrast to the case of A, the results of ONIOM
method significantly differ with that of DFT in all models
of B. For example in B3 model, the calculated errors are
26%, 63% and 47% for AM1, PM3, and MNDO,
respectively. This induces very cautiously usage of ONIOM
method in computational studies.

Here, we interpret in detail why the ONIOM method is
appropriate for A3 model, while it is not for B3 (with the
same atoms in low-level). To this end, we performed
Mulliken population analysis on the A3 and B3 tubes and
their NH3 adsorbed complexes. It is noteworthy to say that
our main objective is a comparative study and, the exact
values of Mulliken charges (MCs) is not the purpose of the
present manuscript. However, during the NH3 adsorption
process, the MCs of atoms change within the tubes,
whereas the amounts of changes reduce going away from
their ends.

The percentage of MC changes were computed during
the adsorption process for five layers at the open end of
both A3 and B3. We have designated the name of “layer”
for a row of N atoms with a row of B atoms. The results are
depicted in Fig. 4 and collected in Table 4. In the case of
A3, the changes are 34.7% and 10.1% for layers 1 and 2
(region 1) while those are only 2.6%, 0.3% and 0.1% for
layers 3, 4 and 5 (region 2), respectively. It demonstrates
that the MCs of atoms of region 1 significantly change
during the adsorption process, while their changes in region
2 are not significant.

In other words, region 1 is a chemically active site and it
is necessary to locate in high-level of ONIOM scheme

Fig. 4 The percentage change of Mulliken charges in layers 3, 4 and
5 of both A3 and B3 models

Table 2 The Ead and Eact ( in kcal mol-1) and QT for NH3 adsorption at open ends of A3 model and the μ (debye), Eg and representative bond
lengths (Å) of A3 model, calculated at various low levels. These date are compared with those of full DFT of ref. [10]

Method Ead Ead(SP) Eact QT (e) Eg (eV) μ N1-NH2 N2-H bN1, N2

AM1 −64.8 −63.5 11.3 0.39 2.64 2.60 1.454 1.022 2.496

PM3 −62.2 −63.4 13.9 0.39 2.88 1.96 1.455 1.022 2.495

MNDO −63.0 −63.4 15.1 0.39 2.88 2.60 1.455 1.022 2.498

UFF −67.8 −65.9 a- 0.40 3.33 3.12 1.452 1.022 2.495

Ref. [10] −63.1 −63.1 13.7 0.39 2.77 1.74 1.455 1.022 2.494

a Using this low level of theory, the TS structure was not found. b N1, N2 is the distance between N1 and N2

Table 3 Ead values (kcal mol-1) and representative bond lengths (Å)
of different models of B tube, which compared with the results of full
DFT of ref. [10]

Model Ead Error(%) B1-NH2 B2-H aB1,B2

B1 −491.6 275 1.385 1.192 2.419

B2 −866.2 561 1.383 1.191 2.346

B3 −163.6 25 1.386 1.190 2.481

B4 −863.8 559 1.382 1.196 2.427

B −131.1 - 1.386 1.191 2.424

a B1, B2 is the distance between B1 and B2
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while region 2 is not a sufficiently active area and can be
placed in low-level. As discussed above, this strategy has
been applied in our ONIOM calculations for the case of A3,
justifying the reliable results. In the models of A1, A2 and
A4 some atoms of region 1 are located in low-level of
theory, justifying the large errors in the Ead results.

In the case B3, we observed different results so as the
changes of MCs in region 2 are not negligible. These
changes are 31.3%, 27.3% and 6.2% in layers 3, 4 and 5,
respectively. This suggests that region 2 may be a part of
chemically active site that should be studied in high-level of
theory. As shown before, this region has been placed in
low-level of theory and it may be the origin of the large
errors in Ead of B3 model. As a result, we conclude that the
ONIOM may be a reliable scheme in the study of weak
interactions, while in the case of strong interactions it is a
controversial approach and should be applied cautiously. In
other words, in the case of ONIOM-based strong interaction
studies, more atoms should be located in high-level in
comparison to that of weak interaction studies.

Subsequently, we probed the effect of tube length and
diameter on reliability of ONIOM results. Here we only
considered case A, because the ONIOM results of B models
are very different from those of DFT. To this end, we
calculated Ead values of NH3 dissociation at open ends of
A3 models of (5,0), (6,0) and (7,0) tubes with ONIOM
(B3LYP/6-31 G*:AM1) and full B3LYP/6-31 G*. The data
of Table 5 indicate that the results of ONIOM and full DFT
are in best agreement for different diameter tubes. In
addition, to investigate the effect of length, we considered
the (5,0)-A3 model with various length including: 9, 8, 7, 6
and 5 layers. The results (Table 6) show that Ead values for

all tubes with various lengths do not differ significantly for
both ONIOM and DFT and there is good consistency
between these approaches. Generally, we conclude that the
agreement between the results of ONIOM and DFT
approaches are independent of tube length and diameter.

We mention that the absolute values of Ead are increased
as the tube diameter is elongated. This phenomenon is
justified as the weakening of tube edge bonds resulting
from the bond length elongation because of diameter
enlargement.

Conclusions

We used the ONIOM method to calculate the adsorption
energies (Ead), transition structures, the change of HOMO-
LUMO energy gaps (Eg) and structure geometries of the
NH3 adsorption on the A (N-enriched) and B (B-enriched)
models of open ended BNNTs. Different low-levels
including, AM1, PM3, MNDO and UFF have been
investigated, applying B3LYP/6-31 G* in all high-levels
of ONIOM calculations. PM3 method is the most reliable
among all low-levels used here especially in calculation of
Ead, Eact and dipole moment and UFF is the most
misleading. Either PM3 or MNDO overestimates the
Eg, while AM1 underestimates it. We showed that in the
case of A, by selecting two atom layers of the open end of
the tube as inner layer, the results of ONIOM approach is
in best agreement with those of the pure DFT calculations
while in the case of B with the same condition, the results
of ONIOM significantly differ with those of DFT. Finally,
the results demonstrated that the ONIOM might be a
reliable method in the study of weak interactions while in
the case of strong interactions it is a controversial
approach and should be applied cautiously. In addition,
we showed that the agreement between the results of
ONIOM and DFT approaches are independent of tube
length and diameter.

Table 6 The calculated Ead for NH3 dissociation at open ends of
(5,0)-A3 models with different models. The unit of energy is kcal mol-
1. The first column shows the number of tube layers

(5,0)-A3 Ead(DFT) Ead(ONIOM)

5 −73.7 −73.3
6 −73.6 −73.3
7 −74.2 −73.3
8 −74.3 −73.3
9 −75.6 −73.2

Table 5 The Ead values of NH3 dissociation at the open ends of A3
model achieved from ONIOM and DFT. The energy unit is kcal mol-1

BNNT Ead(DFT) Ead(ONIOM)

(4,0) −63.1 −64.8
(5,0) −73.7 −73.4
(6,0) 80.1 −82.4
(7,0) −86.5 −87.2

Layer A3 B3

3 2.6% 31.3%

4 0.3% 27.3%

5 0.1% 6.2%

Table 4 The percentage
Mulliken charges changes in
layers 3, 4 and 5 of both A3 and
B3 models
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Abstract The virtual combinatorial chemistry approach
as a methodology for generating chemical libraries of
structurally-similar analogs in a virtual environment
was employed for building a general mixed virtual
combinatorial library with a total of 53.871 6-FQ
structural analogs, introducing the real synthetic path-
ways of three well known 6-FQ inhibitors. The
druggability properties of the generated combinatorial
6-FQs were assessed using an in-house developed drug-
likeness filter integrating the Lipinski/Veber rule-sets. The
compounds recognized as drug-like were used as an
external set for prediction of the biological activity values
using a neural-networks (NN) model based on an
experimentally-determined set of active 6-FQs. Further-
more, a subset of compounds was extracted from the pool
of drug-like 6-FQs, with predicted biological activity, and
subsequently used in virtual screening (VS) campaign
combining pharmacophore modeling and molecular dock-
ing studies. This complex scheme, a powerful combina-
tion of chemometric and molecular modeling approaches
provided novel QSAR guidelines that could aid in the
further lead development of 6-FQs agents.

Keywords Antibacterial agents . CombiChem . DNA
gyrase . Fluoroquinolones .Molecular docking .

Pharmacophore modeling . QSAR . Tuberculosis

Abbreviations
TB Tuberculosis
ATP Adenosine triphosphate
MIC Minimal Inhibitory Concentration
6-FQs 6-Fluoroquinolones
SAR Structure-Activity Relationships
QSAR Quantitative Structure-Activity

Relationships
CombiChem Combinatorial Chemistry
SSS Substructure Search
NN Neural-Networks
KANN Kohonen Artificial Neural Networks
CP ANN Counter-Propagation Artificial Neural

Networks
GHA Global Hypothetical Activity
LBP Ligand-Based Pharmacophore
SBP Structure-Based Pharmacophore
VS Virtual Screening

Introduction

Tuberculosis (TB), the ingeniously transferable bacterial
infection, is still one of the global health concerns [1].
Mycobaterium tuberculosis, the accountant agent of tuber-
culosis, is a resistful pathogen microorganism responsible
for infecting about one third (two billion people) of the
human population and in the process causing around two
million death cases each year worldwide (World Health
Organization, 2003) [2]. TB is mainly caused by the
pathogen M. tuberculosis, but in some cases the micro-
organisms such as M. fortuitum, M. smegmatis and M.
avium-intracellulare complex (MAC) can also be involved
in the disease development [3–5].
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The tuberculosis treatment is mainly chemotherapeuti-
cally based, with the whole therapy requiring between 6 to
9 months or even longer to be successful. The problem of
drug resistance and the continuous onset of multidrug
resistant lethal TB strains in most cases are attributed to the
potential toxicity of the chemotherapeutics, the durability of
the whole treatment, as well as frequent poor patient
compliance to the therapy regimen. The increased devel-
opment of resistant TB mutants is one of the additional
challenging factors to stimulate the design of novel
chemotherapeutic agents which will be effective against
resistant Mycobacteria [6].

One of the validated and well known molecular targets
of quinolone antibiotics in Mycobacteria species is the
DNA gyrase which belongs to the topoisomerase group of
enzymes [7]. This enzyme catalyzes the ATP dependent
process of introduction of negative supercoils into closed
circular DNA as well as the relaxation of the supercoiled
DNA molecule (ATP-independent catalysis) [8, 9]. DNA
gyrase forms a functional heterodimer A2B2 consisting of
two major subunits, GyrA and GyrB. The GyrA subunit is
responsible for the process of breakage and reunion of the
double-stranded DNA, i.e., activation of the process of
DNA replication and elongation and together with GyrB is
involved in the maintaining of the topological state of
DNA molecule [10, 11]. Another structurally-similar
enzyme which belongs to the topoisomerase group is the
DNA topoisomerase IV. Like the DNA gyrase, this
bacterial enzyme (a paralogue of DNA gyrase) also forms
a functional heterodimer consisting of two subunits ParC
and ParE (homologues of the GyrA and GyrB, respectively).
Recent structural studies revealed that the quinolone anti-
biotics establish an interaction with the DNA breakage-
reunion domain of the DNA gyrase and topoisomerase
IV, stabilizing the covalent topoisomerase/DNA cleavage
complex, leading to a blockade of DNA replication
[12].

In the last few decades, tuberculosis chemotherapy was
mainly based on the active agents belonging to two main
categories of antibiotics, the bacterial cell wall inhibitors
(isoniazide, ethambutol) and bacterial nucleic acid synthesis
inhibitors (quinolones, rifampicin) [13]. The second cate-
gory of antibiotics, especially the quinolone chemical class
of chemotherapeutics is increasingly gaining importance in

targeting Mycobacteria, because of their effective, strong
and invasive mechanism of action. Fluoroquinolones
belong to the quinolone’s class of DNA gyrase inhibitors
which have a fluorine atom attached to the main scaffold at
the 6 position (Fig. 1) [14]. The mechanism of bactericidal
action is based on the inhibition of the bacterial DNA
synthesis process through a scission of the natural myco-
bacterial DNA molecule leading to a topological stress of
DNA and bacterial cell death [15].

The structure-activity relationships (SAR) studies
showed that the main quinolone core (1,4-dihydro-4-oxo-
3-pyridinecarboxylic acid moiety) is of most significant
importance for the anti-mycobacterial activity. Furthermore,
unlike the cyclopropyl group at position 1 which is
apparently optimal for biological activity, each substitution
at positions 2, 3, and 4 will result in a significant loss of
biological activity. Substitutions at positions 5 and 8 of the
main quinolone core interfere with the required planarity of
the system. Hydrogen and amino groups have been a good
replacement for the fluorine atom at position 6 leading to an
improved in vitro activity, but such modifications are not
always followed by an improved in vivo activity. The
substitutions at position 7 of the main scaffold are of
significant importance for the biological activity as this
position directly interacts with the DNA gyrase (5- or 6-
membered N-hetero systems such as aminopyrrolidines and
piperazines are optimal for activity) [16]. Today, the use of
targeted synthetically-feasible chemical libraries significantly
enhanced the hit identification as well as lead optimization
phase leading to favorable novel drug candidates. Similarly,
quantitative-structure activity relationship (QSAR) models
proved to be useful in silico tools for the rationalization of the
experimental SAR properties in the form of quantitative
mathematical models which can be subsequently used for
an efficient prediction of biological activity values for
novel as well as unknown compounds. These tools can
significantly enhance and enrich the screening process of
the chemical libraries under investigation [17]. Further-
more, the three-dimensional assessment and screening of
the generated molecules for optimal interaction with the
binding site is of significant importance in the drug
development processes [18]. For instance, ligand-based
drug design approaches, such as pharmacophore model-
ing, which are taking into account the spatial orientation

Fig. 1 Generic structure of 6-
fluoroquinolone antibiotics
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of the ligand’s functional groups and scaffold shape
complementarity can be utilized for the construction of
predictive pharmacophore models which can be more
effective for virtual screening (VS). Such a model based
on the similarity of the pharmacophoric features is
particularly useful, if it is able to identify (recognize)
active compounds among a pool of inactive molecules.
Moreover, the availability of three-dimensional (3D)
structure of the protein-ligand complex of interest
enables the implementation of the structure-based
approaches especially molecular-docking calculations of
ligands into the defined binding site of the protein and
the investigation of ligand-protein molecular interactions
[19, 20].

The present study introduces an effective methodology for
the in silico generation of novel unknown 6-fluoroquinolone
(6-FQ) analogs using a combinatorial chemistry approach
coupled with the prediction of values of biological activity by
employing a previously derived neural-networks (NN) [21].
Furthermore, a three-dimensional pharmacophore approach
and molecular docking calculations were used to assess the
generated virtual library utilizing the available experimental
data to select the most promising drug-like compounds. This
scheme – a powerful combination of the chemometric and
VS tools – is aimed to establish new possible SAR
guidelines and trends in 6-fluoroquinolone optimization,
which could be of importance in the on-going antibacterial
lead discovery programs (Fig. 2).

Fig. 2 The overall workflow depicting different stages of the performed chemometric and molecular modeling study
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Computational details

Virtual combinatorial generation

One of the most popular strategies in modern drug
design is the virtual synthesis of analogs of existing
compounds for which the bioavailability and toxicity
studies are already performed and have displayed
activity and potency in human therapy. The implemen-
tation of SAR-based scaffold modifications to obtain
novel molecules for the target under investigation is a
well-known and advantageous strategy for analog
design. There are several software tools available
integrating the combinatorial algorithm for in silico
virtual combinatorial generation. CombiChem add-on
modul available in ChemBioOffice Ultra was used for in
silico generation of 6-fluoroquinolone structural analogs
[22]. For this purpose we employed the original synthetic
pathways of three well known 6-FQ antibiotics: cipro-
floxacin, moxifloxacin, and ofloxacin [23–25]. Using a
building-blocks commercial dataset (Bionet Fragment
Library of 6995 “Rule of 3” filtered lead-like fragments)
[26], and SAR-based structural modifications at positions
1 and 7 of the main 6-FQ scaffold, we built six different
subsets of combinatorially-generated 6-fluoroquinolone
analogs.

The virtual environment enables a rational simplifica-
tion of the real synthetic reactions taking into account
only the crucial synthetic steps for derivation of the final
product (structurally-similar 6-FQ analogs). Such a
rational virtual simplification resulted in two-steps virtual
synthetic pathways for ciprofloxacin and moxifloxacin
(yielding R1-monosubstituted intermediate product, as
well as all possible R1,R7-disubstituted 6-FQ analogs as
final products), and one-step virtual synthetic pathway for
ofloxacin (obtaining all possible R7-monosubstituted
analogs as final products). Taking into account that
position 7 of the main 6-FQ moiety directly interacts with
the DNA gyrase and is of significant importance for
activity [16], additionally we introduced several different
substituents at this position of the main scaffold with non-
amine attachment points. These substructural modifica-
tions enable a total of six virtual combinatorial synthetic
mechanisms to be defined (Fig. 3):

(1) 7-amino substituted ciprofloxacin’s structural analogs.
(2) 7-non-amino substituted ciprofloxacin’s structural

analogs.
(3) 7-amino substituted moxifloxacin’s structural analogs.
(4) 7-non-amino substituted moxifloxacin’s structural

analogs.
(5) 7-amino substituted ofloxacin’s structural analogs.
(6) 7-non-amino substituted ofloxacin’s structural analogs.

Fragments selection for combinatorial enumeration

A building-blocks commercial library of 6995 substructural
fragments was used as a source for the fragment selection
for combinatorial enumeration [26]. Each fragment in such
a library is defined by the “rule of 3” (MW≤300; nHBD,
nHBA, nRB≤3), where MW is the molecular weight, while
nHBD, nHBA, and nRB, are number of hydrogen bond
donors, number of hydrogen bond acceptors, and number of
rotatable bonds, respectively [27]. Fragments selection was
performed by employing the substructure search (SSS)
algorithm. The selection procedure resulted in the extrac-
tion of all possible substructural fragments (primary amines
and secondary amines/non-amines) defined by the virtual
synthetic pathways. Substructural fragmental subsets
selected by the SSS algorithm for each virtual synthetic
pathway were visually inspected for the presence of
possible unwanted species (salt forms, mixtures, charged
forms). These substructural fragments were excluded
from the combinatorial procedure implementing a simple
Boolean filtering algorithm (Y/N (Yes/No)). Furthermore,
all substructural fragments containing more than one
attachment point (two or more amino groups) were eliminated.
The rest of the substructural fragments with (Y) output
obtained using this filtering procedure (described in details in
Table 1 for each virtual combinatorial definition), were used
as a starting point for combinatorial enumeration.

Combinatorial enumeration

The combinatorial enumeration procedure was performed by
implementing a standard methodology [28] for generating
structural analogs in virtual environment (CombiChem) [22].
This procedure of statistical non-repetitive fragmental per-
mutation of the selected building-blocks subsets (R1: primary
amines and R7: secondary amines/non-amines)) in previously
defined variable positions (1 and 7) within the main 6-FQ
scaffold generated all possible virtual 1,7 substituted 6-FQ
structural analogs. The total number of analogs (ρtot)
obtained using this methodology (Table 1), mathematically
can be estimated as a multiplication product between the
total number of selected substructural fragments permutating
at position 1 (R1: primary amines, Ni) and total number of
selected substructural fragments permutating at position 7
(R7: secondary amines/non-amines, Mj) within the main
6-FQ core, using the following equation (Eq. 1) [29]:

rtot ¼ Ni �Mj: ð1Þ

The obtained products (ρtot=53.871) belong to three main
categories of 6-FQ analogs: ciprofloxacin analogs (7-amino
substituted analogs (12.296), 7-non-amino substituted ana-
logs (21.965)), moxifloxacin analogs (7-amino substituted
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analogs (8.510), 7-non-amino substituted analogs (10.731)),
and ofloxacin analogs (7-amino substituted analogs (180),
7-non-amino substituted analogs (189)). The following
designation scheme was used: ciprofloxacin analogs
(7-amino substituted analogs (CIP-Ni-Mj), 7-non-amino

substituted analogs (CIP′-Ni-Mj)), moxifloxacin analogs (7-
amino substituted analogs (MOX-Ni-Mj), 7-non-amino sub-
stituted analogs (MOX′-Ni-Mj)), and ofloxacin analogs (7-
amino substituted analogs (OFL-Mj), 7-non-amino substitut-
ed analogs (OFL′-Mj)). Combining all subsets of analogs

Fig. 3 Generic virtual synthetic pathways for combinatorial enumeration of three different 6-FQs: (A) ciprofloxacin analogs (CIP-Ni-Mj, CIP′-Ni-
Mj), (B) moxifloxacin analogs (MOX-Ni-Mj, MOX′-Ni-Mj), (C) ofloxacin analogs (OFL-Mj, OFL′-Mj)
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obtained by using the combinatorial algorithm, resulted in
building a general virtual combinatorial library (CombiTot)
with a total of 53.871 6-FQ structural analogs, which were
subsequently used for assessing the drug-like properties (all
structures are available as *.sdf file format in electronic
supplementary material, online resource 1).

Drug-likeness assessment using chemometric approaches

Albeit this combinatorial library contains a considerable
number of 6-FQ analogs (CombiTot, ρtot=53.871) it can be
considered as a small sub-space in the available chemical
space [30]. Since the combinatorial algorithm in first instance
increased the molecular complexity, there is a low probability
that each compound in such a virtual library will possess
drug-like properties. Therefore, drug-likeness filtering was
performed taking into consideration the rules of Lipinski [31]
and Veber [32]. Using the ChemBioOffice pre-integrated
cheminformatics functions [22], we developed a robust
drug-likeness filtering tool integrating both rule-sets (Lipinski
“rule of 5” and Veber rules) which was used for filtering of
our general combinatorial library and defining the drug-like
chemical sub-space of 6-FQ analogs. This filtering procedure
yielded a list of 1.101 out of 53.871 virtual combinatorial
6-FQ analogs as promising compounds for further investiga-
tion. These compounds were further assessed for prediction of
their unknown activity values (pMICpred-combi) using a pre-
built QSAR model [21]. Combinatorially-generated 6-FQ
analogs possessing drug-like properties (CombiDL, 1.101
analogs) are available as “electronic supplementary material”
(*.sdf file format, online resource 2).

Prediction of the biological activity values using a derived
non-linear neural networks (NN) model

Our previously published non-linear neural networks (NN)
model (see [21] for details) was used for prediction of

biological activity values (pMICpred-combi) for the external
combinatorial library of 1.101 novel unknown 6-FQ
structural analogs. The model was built employing
counter-propagation artificial neural networks (CP ANN)
methodology using a dataset of 145 structurally-similar
6-fluoroquinolones (all analogs are available as *.sdf file
format in electronic supplementary material, online resource
3) with experimentally-determined biological activity values
(pMICexp) against M. tuberculosis and an extensive set of
nearly 600 calculated 2D molecular descriptors. Heuristic
algorithm and intercorrelation matrix were used for selection
of statistically-significant molecular descriptors for activity.
The Heuristic algorithm which is a suitable method for pre-
selection of molecular descriptors is first calculating the one-
parameter correlation equations between molecular descrip-
tors and activity, eliminating all descriptors that do not fulfill
the pre-defined criteria: (1) The Fisher F-test value for the
one-parameter correlation with the descriptor is less than
1.00, (2) The squared correlation coefficient (R2) for the one-
parameter equation is less than Rmin

2 (the default value is
Rmin

2=0.1), (3) t-test value is less than t1 (where Rmin
2 and

t1=1.5), and (4) the descriptor is highly intercorrelated with
another descriptor (above rfull, where rfull=0.99), and this
other descriptor has a higher squared correlation coeffi-
cient in the one-parameter equations based on these
descriptors. With the remaining descriptors, the algorithm
calculates all possible two- and more-parameter linear
models [33]. Initially, several linear models with up to ten
descriptors were developed. The frequency analysis of
occurrence of the molecular descriptors between these
models, resulted in selection of the most frequently
occuring molecular descriptors which were used as input
variables in neural-networks modeling part. Kohonen
artificial neural networks (KANN) was employed for
splitting the dataset into a training set (Assay2, 115
compounds) and an external validation set (Assay2, 30
compounds). The model was built on the training set using

Table 1 Fragments selection details for combinatorial enumeration. The building-blocks (R7-substructural fragments) with non-amino attachment
point are signed with asterisk (*)

ID Virtual combinatorial definition Substructural fragments Boolean output (Y/N) ρtot

R1 R7 R1 R7 R1 R7

Y (Ni) N Y (Mj) N

1. R1-NH2 R2R3-NH 126 363 116 10 106 257 12.296

2. R1-NH2 R2-* 123 340 115 8 191 149 21.965

3. R1-NH2 R2R3-NH 123 347 115 8 74 273 8.510

4. R1-NH2 R2-* 123 337 73 50 147 190 10.731

5. N/A R1R2-NH N/A 348 N/A N/A 180 168 180

6. N/A R1-* N/A 337 N/A N/A 189 148 189
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CP ANN and internally validated employing the cross-
validation leave-one-out procedure (Rtr=0.96, Rtr-cv=0.62,
where Rtr designates the coefficient of correlation for the
model, while Rtr-cv is coefficient of correlation for cross-
validation leave-one-out) as well as externally validated
for its predictive performances using the external valida-
tion set (Rval=0.8454, where Rval is coefficient of
correlation for the external validation set). Selection of a
subset of combinatorially-generated 6-FQ analogs for
pharmacophore analysis was performed by defining a
global hypothetical activity (GHA) range 0.00≤MICpred-

combi [μg/mL]≤0.10 based on the determined experimental
data for the following 6-FQs: Structure2 (levofloxacin,
MICexp=0.0115 μg/mL), Structure21 (clinafloxacin,
MICexp=0.01 μg/mL), and Structure121 (moxifloxacin,
MICexp=0.025 μg/mL) [21]. This selection resulted in the
extraction of 427 out of 1.101 6-FQ analogs which had their
activity predicted inside the pre-defined GHA range. These
analogs were used as a drug-like combinatorial library
(CombiLib) of novel 6-FQs for three-dimensional pharma-
cophore analysis and molecular docking study (all structures
are available as *.sdf file format in electronic supplementary
material, online resource 4).

Ligand-based and structure-based pharmacophore
modeling of the 6-fluoroquinolone analogs

Although both DNA gyrase A (GyrA) and B (GyrB)
subunits have been solved by the x-ray crystallography [34,
35], currently a full experimental atomistic picture of the
GyrA2GyrB2 tetramer in complex with the DNA and
6-fluoroquinolone molecules remains unidentified. On the
other hand, recent seminal studies on the closely related
type II topoisomerase – topoisomerase IV – the complexes
formed by the Streptococcus pneumoniae ParC (equivalent
of GyrA subunit) and ParE TOPRIM domains of the
topoisomerase IV together with 6-fluoroquinolones interca-
lated in the gap between nucleotides of the DNA were
solved [36]. These data provided the first solid atomistic
insights into the mechanism of action of the fluoroquino-
lone antibacterial agents. As both type II topoisomerases
(DNA gyrase and topoisomerase IV) share a close structural
and functional resemblance we used both available crystal
structures to perform pharmacophore modeling and molec-
ular docking calculations. Furthermore, for the 6-FQ
chemical class a good correlation between the measured
in vitro IC50 values and in vivo MIC activities was
observed. This enables utilization of the in vivo MIC data
also for the interpretation of the atomistic pharmacophore
and docking calculations [37].

Pharmacophore modeling approach is one of the widely
used concepts in modern drug discovery [34]. Several
software tools available today are able to provide predictive

3D pharmacophore models in an automated fashion.
LigandScout [18], a software tool for automatic pharmaco-
phore model generation from the available structural
information was employed for the visualization and
exploration of the topoisomerase IV binding site in
complex with known 6-FQ active agents (structure-based
design approach) as well as for constructing 3D-
pharmacophore models based only on the 6-FQ ligand
structures (ligand-based design approach). Three ligand-
topoIV-DNA cleavage complexes from S. pneumoniae,
available from the Protein Data Bank (PDB) repository
[pdb codes: 3FOE, 3FOF, 3K9F], were used for the 3D-
pharmacophore models generation [36, 38]. The models
were obtained by automatic recognition of the 6-FQ co-
crystallized ligand structures (clinafloxacin (3FOE), moxi-
floxacin (3FOF), and levofloxacin (3K9F)) and the
surrounding amino acid residues of the 6-FQ analogs
binding site and by analysis of possible ligand-protein
interactions. Subsequently, the 3D structure-based pharma-
cophore (SBP) models were generated automatically
(assignment of the pharmacophoric features for each ligand
separately and ligand alignment generation) together with
excluded volume spheres.

Therefore, two structure-based pharmacophore (SBP)
models: shared (SBPshared, interpolation of the identified
pharmacophore features) and merged (SBPmerged, unifica-
tion of the identified pharmacophore features) were
constructed. Furthermore, the experimental conformations
of the three bound 6-FQ analogs, were used for building of
ligand-based pharmacophore (LBP) model. For each of the
molecules, 250 unique conformations were calculated and
aligned to yield a ligand-based pharmacophore (LBP)
model. Finally, both combinatorial (CombiLib) and exper-
imental library (Assay 2) were converted into multi-
conformer libraries (maximum 25 conformations for each
molecule) and subsequently screened with built-in
LigandScout pharmacophore VS engine to evaluate the
matching of the investigated compounds to the derived set
of pharmacophore features.

Molecular docking of the 6-fluoroquiniolone analogs

Molecular docking of the 6-fluoroquinolone molecules
into the type II topoisomerase crystal structure

The docking experiments were performed by using GOLD
docking engine [39], and protein structure with the PDB
code 3K9F was used to define the binding site located
around the experimental coordinates of the bound 6-FQ
inhibitor levofloxacin resulting in a cavity radius of 12.5 Å.
Each investigated molecule was docked 10 times into the
binding site by applying the following parameters of the
GOLD genetic algorithm (GA) (population size=100,
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selection pressure=1.1, no. of operations=100000, no. of
islands=5, niche size=2, migrate=10, mutate=95, cross-
over=95). Early termination was allowed if the top three
solutions were within 1.5 Å of the root-mean-squared-
deviation (RMSD) value. For the assessment of the binding
affinity, GOLDscore scoring function was used [39].

The quality of the generated binding poses were validated
by re-docking the levofloxacin into its binding site and
exploring the positioning of the 145 6-FQ molecules with
the available experimental MIC data [40]. Finally, all
compounds of the generated reduced combinatorial library
(CombiLib, 427 compounds, online resource 4), were docked
into the defined binding site using the same procedure.

Results and discussion

Virtual combinatorial chemistry approach as a strategy for
generating chemical libraries of structurally-similar analogs
for a given compound of interest as well as their investigation
implementing highly-sophisticated cheminformatics algo-
rithms are extensively documented [41–45]. There are two
crucial steps which must be taken into account for
combinatorial generation of structural analogs for the entity
under investigation: the synthetic procedure (generic syn-
thetic reaction) for preparation of the compound as well as
the introduction of substituents onto a scaffold [26]. In our
case, a focused virtual combinatorial library of novel 6-FQ
analogs (CombiTot) utilizing the established combinatorial
algorithm for SAR-based scaffold permutation was obtained.

Druggability properties assessment and defining
the drug-like chemical sub-space

The drug-likeness assessment of the combinatorially-
generated library of 6-FQ structural analogs (CombiTot,
53.871 compounds) was carried out by calculating the
druggability properties: MW, AlogP (Ghose-Crippen’s
atom-based model for logP, i.e., partition coefficient for
n-octanol/water bi-phase system), nHBD, nHBA, MPSA
(molecular polar surface area), and nRB.

The calculated druggability properties were analyzed
using the property distribution comparison methodology
(histogram-type of analysis, Table 2, Fig. 4) [46] between
the dataset of known 6-FQs used in the development of the
NN model (Assay2, 145 compounds, Fig. 4A) [21] and the
combinatorial (CombiTot, 53.871 compounds, Fig. 4B).

The results of the statistical analysis show that only one
of the calculated properties for the experimental compounds
(Fig. 4A) follows normal Gaussian distribution (nHBDexp),
whereas the rest of the calculated properties (MWexp,
MPSAexp, AlogPexp, nHBAexp, and nRBexp) are asymmet-
rically distributed. The peak-analysis (the top-point on the

Gaussian curve where the distribution of the calculated
property reaches 50%) showed acceptable values for drug-
likeness: MWexp=468, AlogPexp=−0.07, nHBDexp=2,
nHBAexp=8, MPSAexp=103, and nRBexp=5. The
corresponding mid-50% values (the interval between 25%
and 75% of the distribution, i.e., first (Q1) and third (Q3)
calculated quartile, respectively) were obtained employing
the quartile calculation: MWexp-mid50%=382–566, AlogPexp-
mid50%=(−0.848)-(+0.394), nHBDexp-mid50%=2, nHBAexp-

mid50%=6–9, MPSAexp-mid50%=74.38-124.77, and nRBexp-

mid50%=3–6 (Table 2A). These results are in accordance
with the Lipinski and Veber rule-sets, respectively, and
clearly define the domain in which the compounds possess
drug-like characteristics [31, 32].

On the other hand, an obvious difference in the property
distribution was observed for the compounds within the virtual
combinatorial set (Fig. 4B). A normal Gaussian distribution
was observed for five calculated properties (MWcombi,
AlogPcombi, nHBAcombi, MPSAcombi, and nRBcombi), while
the nHBDcombi parameter follows an asymmetric distribution.
The peak-analysis for the combinatorial set resulted in
following values: MWcombi=621, AlogPcombi=4.87,
nHBDcombi=2, nHBAcombi=9, MPSAcombi=157, and
nRBcombi=7, whereas the corresponding mid-50% values
were in the following boundaries: MWcombi-mid50%=578–
667, AlogPcombi-mid50%=3.976-5.911, nHBDcombi-mid50%=1–2,
nHBAcombi-mid50%=8–10, MPSAcombi-mid50%=137.36-174.89,
and nRBcombi-mid50%=6–8 (Table 2B).

The increased values (MWcombi and MPSAcombi) pointed
toward the increased molecular complexity [47] and a
decreased probability for a good ligand-protein interaction
[48]. Thus, a pre-filtering of the combinatorial library was
performed by implementing a comprehensive Boolean-type
(T/F (true/false)) drug-likeness filtering algorithm (Com-
biVL; MW<500, AlogP<5.0, nHBD≤5, nHBA≤10,
MPSA≤140, nRB≤10) integrating both rule-sets (Lipinski
“rule-of-five” and Veber rules) [31, 32].

Such a filtering procedure resulted in eliminating all
6-FQ analogs which do not satisfy the above criteria (in the
CombiTot library 52.770 eliminated compounds were
marked as false (F)). The retained 6-FQ structural analogs
(total 1.101 compounds) define the drug-like chemical sub-
space (CombiDL, online resource 2) which was subse-
quently used for prediction of the biological activity values
(pMICpred-combi) employing our derived NN model [21].

Prediction of the biological activity values for the novel
combinatorially-generated 6-fluoroquinolone drug-like
analogs and activity-based subset selection

A derived seven parameter neural-networks (NN) model
(Assay2, 145 compounds, online resource 3) [21] was used
for prediction of the biological activity values (pMICpred-combi)
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for the previously filtered combinatorially-generated drug-
like 6-FQ structural analogs (CombiDL, 1.101 compounds,
online resource 2). Using this developed model the biolog-
ical activity (pMICpred-combi) in the series of novel unknown
6-FQ analogs is correlated to a set of seven constitutional,
topological, and electrostatic parameters (Table 3).

As presented in Table 3, nR09 belongs to the class of pure
constitutional parameters, GATS8v, YZS/YZR, X1A, and
PW3, are molecular descriptors which belong to the class of
topological parameters, while the parameters JGI2 and JGI3,
belong to the class of pure electrostatic parameters. These
molecular descriptors, which in general accentuate the
importance of molecular shape can be linked to the
accommodation of the main 6-FQ scaffold within the GyrA
subunit binding pocket. Since the QSAR model was built
employing a series of structurally-similar 6-FQ analogs with
experimentally determined biological activity values, one
would expect similar biological response of these com-
pounds within the same protein target. In this respect, we
believe that GATS8v parameter alone, as molecular descrip-
tor describing the importance of the atomic van der Waals
volumes of our 6-FQs, is of particular significance for the
biological activity, mainly through establishing proper steric
complementarity between the ligand and the enzyme. On the
other hand, the X1A parameter is a typical topological
molecular descriptor, i.e., a pharmacophore fingerprint that
carries the connectivity information of 6-FQ analogs,
probably through establishing π-π stacking interactions
between the planar aromatic/heteroaromatic systems in the
6-FQs and the GyrA/DNA, respectively.

The electrostatic descriptors JGI2 and JGI3 suggest that
anti-mycobacterial activity is potentially dependent on the
charge indices for the oxygen of the carboxyl and carbonyl

group within the main core. They also describe the
possibility for establishing hydrogen-bonding interactions
between these substituents and the amino acid residues
within the GyrA binding pocket. Moreover, these parame-
ters suggest the possibility of establishing an electrostatic
interaction between the F atom at position 6 and the target
protein which may result in an enhanced binding of the
6-FQ analogs to the complex.

Activity-based subset selection for molecular modeling
calculations

The predicted biological activity values (pMICpred-combi) for the
combinatorially-generated drug-like 6-FQ analogs are in the
range between 0.0125<pMICpred-combi<0.9174, while the
corresponding MICpred-combi values, obtained after pMICpred-

combi de-normalization and anti-logarithmization, are in the
range between 0.0021<MICpred-combi [μg/mL]<6.3726. Using
a GHA range described previously, a subset of 427 6-FQ
analogs (CombiLib, online resource 4) was extracted from the
pool of total 1.101 compounds (CombiDL). Such a selection
procedure ensures that each 6-FQ analog in the MIC-based
isolated subset (CombiLib) possess biological activity
(0.4809<pMICpred-combi<0.9174; 0.0021<MICpred-combi

[μg/mL]<0.1000) against M. tuberculosis. The selected
combinatorial subset (CombiLib, 427 compounds), was subse-
quently used as an external library in the three-dimensional
pharmacophore analysis and molecular docking study.

6-FQs pharmacophore modeling study

Using LigandScout’s the integrated automatic pharmaco-
phore generation algorithm, three pharmacophore models

Table 2 Property distribution analysis of the experimental and the
combinatorial set, respectively (No., number of compounds in the
dataset; Prop., calculated property; Mean, the mean value; Min,
minimum value; Q1, first quartile; Median, the median value; Q3,

third quartile; Max, the maximum value). (A) the experimental set
(145 compounds), (B) the combinatorial set (CombiTot, 53.871
compounds)

A) No. Prop. Mean Min Q1 Median Q3 Max

Experimental set 145 MWexp 467.968 275.280 382.380 419.420 566.490 801.240

AlogPexp −0.069 −2.453 −0.848 −0.337 0.394 6.251

nHBDexp 1.952 1 2 2 2 3

nHBAexp 7.621 4 6 7 9 14

MPSAexp 102.983 57.610 74.380 86.150 124.770 186.310

nRBexp 4.959 1 3 5 6 11

B) No. Prop. Mean Min Q1 Median Q3 Max

Combinatorial set 53.871 MWcombi 621.099 329.280 578.410 623.540 666.620 814.440

AlogPcombi 4.872 −3.735 3.976 5.002 5.911 9.265

nHBDcombi 1.958 1 1 2 2 6

nHBAcombi 8.868 4 8 9 10 13

MPSAcombi 156.742 65.780 137.360 155.030 174.890 272.820

nRBcombi 6.807 2 6 7 8 12
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(LBP, SBPshared, and SPBmerged) were constructed as
described previously. Since the automatic pharmacophore
generation yielded all possible pharmacophoric features,
existing knowledge about the SAR of 6-FQs [16] was
employed for pharmacophoric simplification of all mod-
els. Such a simplification approach resulted in a total of
five pharmacophoric features per model (one aromatic
ring, two hydrophobic features, one hydrogen bond

donor, and one negative ionizable area). The obtained
three-dimensional pharmacophore models (LBP,
SBPshared, and SPBmerged), served as highly effective in
silico filtering tools for subsequent VS of the 6-FQ
ligands (Fig. 5).

Since the core idea of the three-dimensional pharma-
cophoric concept is the selection of active compounds
among a pool of inactive molecules [18], our generated

Fig. 4 Histogram-type of analysis for druggability properties assess-
ment (property distribution). (A) the experimental set (Assay2, 145
compounds), (B) the combinatorial set (CombiTot, 53.871 com-

pounds). The property distribution is fitted with normal distribution
to the histogram of data
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3D pharmacophore models (LBP, SBPshared, and
SPBmerged) were validated for their recognition perform-
ances as in silico filters in a VS experiment using a dataset
of known 6-FQs with experimentally-measured biological
activity values (Assay2, 145 compounds) [21]. Initially,
the LBP model identified 58 active out of total 145
compounds, while the two SBP models (SBPshared and
SPBmerged) identified 62 and 49 compounds, as active
compounds respectively. The experimentally-determined
biological activity values for the successfully filtered
compounds are in the range between 0.001<MICexp [μg/
mL]<3.500, of which around 90% were determined as
highly-active compounds with biological activity values in
the range between 0.001<MICexp [μg/mL]<0.900. The 6-
FQs obtained by the pharmacophore-based VS procedure
(LBP (58), SBPshared (62), and SBPmerged (49)), were
visually inspected for molecular fitness within each of the
pre-defined pharmacophoric features of the models (one
aromatic ring, two hydrophobic features, one hydrogen
bond donor, and one negative ionizable area).

In order to assess the visual inspection more
precisely, a Boolean-type of signing (T/F (true/false))
was introduced. Each visually-determined match be-
tween the 6-FQ’s substructural elements and the
pharmacophore-model features was marked as true (T).
In addition, the biological activity values (MICexp) of the
investigated compounds were implemented as a feature in
the evaluation process using the GHA range. Thus, the
compounds with biological activity values in the GHA
range were marked as true (T), while the rest of the
compounds were marked as false (F). Therefore, only the
compounds with (T) outcome for all the pre-defined
pharmacophoric-model features as well as lying within
the GHA range (electronic supplementary material, online
resource 5, experimental set), can be marked as highly
favorable 6-FQs (LBP (20 highly active 6-FQs out of 58),
SBPshared (19 highly active 6-FQs out of 62), and
SPBmerged (8 highly active 6-FQs out of 49). Online
resource 5, shows that selected compounds from the
experimental set (Structure24, Structure39, Structure75,
and Structure110), which are all potent compounds, were
identified as active compounds by all three pharmaco-
phore models.

The structural analysis of the selected compounds
(online resource 5, see “experimental set” sheet), shows
that the cyclopropyl group is the most frequently used
functional group at position 1 of the main 6-FQ scaffold,
whereas position 7 can be successfully substituted by a
range of substructural fragments, mainly heterocyclic
systems of which 5- and 6-membered N-hetero systems
(aminopyrolidines, piperazines), are the most optimal for
anti-mycobacterial activity. These results suggest the SAR

rules for optimal anti-mycobacterial activity of the 6-FQs
[16] and that the three-dimensional pharmacophore concept
can be successfully employed as a highly-effective in silico
filtering tool [19].

Following the validation on the experimental set [21],
the same 3D pharmacophore models were used
for assessing the combinatorially-generated subset
(CombiLib, 427 novel compounds). The LBP model
initially identified 95 active out of a total of 427
compounds as hits, whereas the two structure-based
pharmacophore models (SBPshared and SBPmerged) identi-
fied 95 and 77 compounds, respectively. Since the
combinatorial subset was built defining a GHA range, all
of the 6-FQ analogs in such a library are hypothetically
active against M. tuberculosis, regarding the MICpred-combi

values (0.0021<MICpred-combi [μg/mL]<0.1000). There-
fore, a visual determination of the matches using (T/F)
designation between the structural elements of the novel
actively-recognized 6-FQs hits (LBP (95), SBPshared (95),
and SBPmerged (77)) and pharmacophoric features within
the models was implemented to identify the most optimal
structural features.

The selected compounds (LBP (32 out of 95), SBPshared
(26 out of 95), and SBPmerged (31 out of 77)), belong
to three general classess of combinatorially-generated 6-FQ
compounds: ciprofloxacin analogs (7-amino (CIP-Ni-Mj)/7-
nonamino derivatives (CIP′-Ni-Mj)), moxifloxacin analogs
(7-nonamino derivatives (MOX′-Ni-Mj)) and ofloxacin
analogs (7-amino (OFL-Mj)/7-nonamino derivatives
(OFL′-Mj)).

The frequency analysis of occurrence of the sub-
structural fragments (throughout the models output,

Table 3 The most important 2D molecular descriptors (pharmaco-
phore fingerprints) for the activity (T, topological; C, constitutional; E,
electrostatic)

ID Descriptor Source Definition Class

1. GATS8v DRAGON Geary autocorrelation-
lag8/weighted by atomic
van der Waals volumes

T

2. nR09 DRAGON Number of 9-membered
rings

C

3. JGI2 DRAGON Mean topological charge
index of order 2

E/T

4. JGI3 DRAGON Mean topological charge
index of order 3

E/T

5. YZS/YZR CODESSA YZ Shadow/YZ
Rectangle

T

6. X1A DRAGON Average connectivity
index chi-1

T

7. PW3 DRAGON Path/Walk 3-Randic
shape index

T
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electronic supplementary material, online resource 5,
see “combinatorial set” sheet) attached at positions 1 and
7 of the main 6-FQ core - explicitly shows that the most
frequently appearing fragment at position 1 (18 times) is
the building-block benzo[d]oxazole marked as Ni=028
in the CIP′-analogs and Ni=016 in the MOX′-analogs,
respectively, while the most frequently appearing frag-
ments at position 7 of the main scaffold are the building-
blocks: 1H-pyrazolo[3,4-b]pyridine (16 times) marked
as Mj=148 in the CIP′-analogs, Mj=116 in the MOX′-
analogs, and Mj=147 in the OFL′-analogs, respectively,
and 1H-pyrazol-5(4H)-one (15 times) marked as Mj=186
in the CIP′-analogs and Mj=144 in the MOX′-analogs. In
summary, six compounds were selected (CIP′-028-148,
CIP′-028-186, MOX′-016-116, MOX′-016-144, OFL′-
147, and OFL-148) as a result of pharmacophore
modeling assessment (Table 4).

Interestingly, these compounds (except for OFL-148,
i.e., an ofloxacin analog) belong to the 6-FQ analogs
structurally different from ciprofloxacin and moxiflox-
acin with non-amino substructural fragments at posi-
tion 7. The predicted biological activity values for
these 6-FQ analogs are in the range 0.0035<MICpred-

combi [μg/mL]<0.1000. The selected combinatorially-
generated 6-FQ analogs, were subsequently used for
assessing the possible interactions with experimentally-
bound 6-FQ protein structure, as an integrated part of the

external combinatorial subset (CombiLib, 427 novel com-
pounds) in the molecular docking study.

Molecular docking study

The molecular docking study on both, the experimen-
tal set (Assay2, 145 compounds) with experimentally-
determined biological activity values and the combina-
torial one (CombiLib, 427 compounds), was performed
by using the experimentally-determined 6-FQs binding
site of the type II topoisomerase protein (3K9F). In a
previously published docking study, only GyrA protein
subunit without full complex details (DNA and GyrB
position), was used to assess the possible binding modes
[49]. The co-crystallized 6-FQ inhibitor levofloxacin
[38] was used for comparison as well as to analyze the
geometric and structural properties of the docked 6-FQ
compounds in the protein. The re-docking validation
procedure [40] of levofloxacin into its binding site was
successful as GOLD was able to reproduce the experi-
mental bound conformation with high accuracy.

The post-docking VS analysis was divided into two
levels. At the first level, the geometric properties of
both sets of compounds were assessed by visually
inspecting each 6-FQ dock position relative to the
experimental conformation of levofloxacin [38]. The
following geometric properties were compared: the visual

Fig. 5 The three pharmaco-
phore models obtained after
pharmacophoric features reduc-
tion (a total of five features per
model). (A) ligand-based phar-
macophore (LBP) model, (B)
structure-based shared pharma-
cophore (SBPshared) model, (C)
structure-based merged pharma-
cophore (SBPmerged) model, (D)
The most promising six combi-
natorial compounds obtained
after pharmacophore models VS
campaign and aligned into the
SBPshared pharmacophore model
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orientation (how the screened 6-FQ compound is oriented
relative to the levofloxacin position), visual fitness (how
well the screened 6-FQ compound fits the experimental

levofloxacin conformation), and the number of the
matching pharmacophoric features (how many common
pharmacophoric features, generated for each docked

Table 4 The combinatorial compounds selected according to the
frequency analysis of the sub-structural fragments (throughout the
pharmacophore models output) attached at position R1 and R7 of the
main 6-FQ scaffold, respectively, together with their corresponding

pharmacophore fitness score (PFS). The selected compounds with
highest predicted biological activity values (MICpred-combi), are
highlighted in gray

ID Chemical structure R1 R7 MICpred-combi pMICpred-combi PFS

1.

CIP’-028-148

028
148 0.0499 1.3022 54.39

2.

CIP’-028-186

028 186 0.1000 1.0002 57.20

3.

MOX’-016-116

016 116 0.0499 1.3022 57.21

4.

MOX’-016-144

016 144 0.1000 1.0002 57.28

5.

OFL’-147

N/A 147 0.0499 1.3022 57.15

6.

OFL-148

N/A 148 0.0035 2.4580 57.06
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conformation, are shared by both screened 6-FQ com-
pound and levofloxacin). Similarly to the pharmacophore
analysis, a Boolean-type of signing (T/F (true/false)) was
employed for assessing the visual orientation and visual
fitness parameters, while the matching pharmacophoric
features were defined numerically. The screened com-
pounds which share 4–5 pharmacophoric features present
in bound levofloxacin, were signed as true (T). Therefore,
the result of the first level assessment can be defined as a
sum of the obtained Boolean answers for all three
investigated properties (electronic supplementary materi-
als, online resource 6).

First level post-docking analysis of the experimental set of
6-FQ analogs docked into the 3K9F binding pocket (online
resource 6, see “Exp-3K9F” sheet) resulted in 102 (T) marked
compounds out of 145, of which 38 compounds have
measured biological activity values within 0.001<MICexp

[μg/mL]<0.1. Moreover, as shown in Fig. 6A, a favorable
positioning of these 6-FQ compounds into the 3K9F binding
pocket could be observed. The structural analysis of these 38
compounds, once again showed that the cyclopropyl group is
the most frequently appearing substituent at position 1 of the
main 6-FQ scaffold (33 times), while the piperazinyl group
attached at position 7 appeared 24 times. These results are
again in accordance with the previous experimental SAR
findings (online resource 6, “experimental set” sheet) [16].

The first level post-docking analysis of the 6-FQ analogs in
the combinatorial set (CombiLib, 427 compounds) docked
into the 3K9F binding pocket (electronic supplementary
materials, online resource 6, see “Combi-3K9F” sheet)
resulted in 166 (T) marked compounds out of 427.

Interestingly, comparing with the previous assessment
using pharmacophore models filters where none of the
MOX-Ni-Mj analogs was recognized as active for further
investigation, the post-docking Boolean procedure per-
formed here identified only one moxifloxacin analog
(MOX-028-064) as geometrically suitable 6-FQ compound
in 3K9F binding pocket. The 6-FQ combinatorial hit
analogs belonging to the other five structural classes (CIP-
Ni-Mj, CIP′-Ni-Mj, MOX′-Ni-Mj, OFL-Mj, OFL′-Mj) were
successfully identified. According to the combinatorial
6-FQ (T) outcome obtained, 166 compounds from the
combinatorial set have geometric properties, comparable to
the co-crystallized levofloxacin (Fig. 6B).

The frequency analysis of occurrence of the substructur-
al fragments attached at positions 1 and 7 of these 166
compounds, indicated that the most frequently appearing
fragments at position 1 are the building-blocks: benzo[d]
oxazole (46 times) marked as Ni=028 in the CIP′-analogs
and in the CIP-analogs, and Ni=016 in the MOX′-analogs,
respectively, and 1-(pyridin-3-yl)ethanone (11 times)
marked as Ni=102. The most frequently appearing frag-

Fig. 6 Results of docking into the 3K9F protein binding pocket. (A)
38 compounds from the experimental set with acceptable geometric
properties. (B) 166 compounds from the combinatorial set with

acceptable geometric properties. Crucial amino acid residues from
the 3K9F 6-FQs binding site are displayed [35]
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ments at position 7 of the main scaffold are the building-
blocks: 4H-furo[3,2-c]pyran-4-one (8 times) marked as
Mj=006, 1H-pyrazolo[3,4-b]pyridine (7 times ) marked as
Mj=148, and 1H-pyrazole (7 times) marked as Mj=176.

Except compound OFL-148, all selected 6-FQs from the
performed pharmacophore analysis (CIP′-028-148, CIP′-
028-186, MOX′-016-116, MOX′-016-144, OFL′-147) were
successfully identified as compounds with favorable three-
dimensional binding geometry as well (online resource 6,
see “Combi-3K9F” sheet). Therefore, all of the selected 6-
FQ analogs from the experimental set (3K9F (102)) and the
combinatorial one (3K9F (166)), respectively, were subse-
quently used for further investigation at the second level
post-docking analysis.

At the second level of the post-docking analysis, the
intermolecular interaction properties of the selected
geometrically suitable 6-FQs from both experimental
and combinatorial sets were investigated (electronic
supplementary materials, online resource 8). The crystal
structure of the S. pneumoniae topoisomerase IV protein
in complex with the co-crystallized ligand levofloxacin
(3K9F) was used as a starting point for measuring the
interaction distances between the ligand’s functional
groups and the surrounding amino acid residues [38]. A
set of five key interactions between the levofloxacin and
the protein were used as standard measures: (R3-COO

-)–
(HO-Ser79) [d3K9F-ref-1=3.18 Å], (R3-COO-)–(HO-
Ser79) [d3K9F-ref-2=3.35 Å], (R3-COO

-)–(HO-Arg117)
[d3K9F-ref-3=3.01 Å], (R7=N-CH3)–(H2N

+=Arg456)
[d3K9F-ref-4=3.30 Å], and (R7=N-CH3)–(

-OOC-Glu475)
[d3K9F-ref-5=4.38 Å]. Since the biological systems are not
static and are characterized with dynamic features, a
distance tolerance of±1 Ångstrom unit around each of
the standard interatomic distance values was employed:
(R3-COO-)–(HO-Ser79) [d3K9F-1=2.18-4.18 Å], (R3-
COO-)–(HO-Ser79) [d3K9F-2=2.35-4.35 Å], (R3-COO

-)–
(HO-Arg117) [d3K9F-3=2.01-4.01 Å], (R7=N-CH3)–
(H2N

+=Arg456) [d3K9F-4=2.30-4.30 Å], and (R7=N-
CH3)–(

-OOC-Glu475) [d3K9F-5=3.38-5.38 Å].
The second level post-docking analysis in 3K9F (online

resource 7, see “Exp-3K9F” sheet) selected 45 out of 102
compounds from the experimental set as optimal 6-FQ
compounds (regarding the interatomic distances). The
biological activity values for these compounds are in the
range between 0.001<MICexp [μg/mL]<6.700 of which
approximately 38% have good measured biological activity
(0.001<MICexp [μg/mL]<0.100). The structural analysis
once again showed that the most frequently occuring
substituent at position 1 of the main 6-FQ scaffold is the
cyclopropyl group (15 times), whereas the most frequent
substituent attached at position 7 of the hit molecules is the
piperazinyl group (12 times), whose results are in accor-
dance with the established 6-FQs SAR rules (Fig. 1) [16].

The second level post-docking analysis of the combina-
torial compounds resulted in selection of a total of 11 out of
166 compounds (online resource 7, see “Combi-3K9F”
sheet). These compounds mainly belong to the class of 7-
nonamino substituted ciprofloxacin analogs CIP′-Ni-Mj

(nine compounds), one 7-amino substituted ciprofloxacin
analog (CIP-Ni-Mj), and one 7-amino substituted ofloxacin
analog (OFL-Mj). No moxifloxacin analogs (MOX-Ni-Mj

and MOX′-Ni-Mj) and 7-nonamino substituted ofloxacin
analogs (OFL′-Mj) were found that could be fitted in this set
of defined interatomic distance boundaries [38].

The frequency analysis of occurrence of the substituents
attached at position 1 and 7 of the main scaffold, once again
pinpointed the fragment marked as Ni=028 as the most
frequently appearing substituent at position 1 (5 times),
while position 7 can be successfully substituted with a
range of different groups. Incorporation of these fragments
thus forms novel 6-FQ compounds that could also serve as
novel target compounds in the synthetically-driven lead
optimization. The list of compounds that complements the
previous selection in Table 4 is presented in Table 5.

Conclusions

In the present study a variety of chemometric and molecular
modeling approacheswere integrated into a powerful complex
scheme capable of constructing as well as evaluating a virtual
combinatorial library of 6-fluoroquinolone analogs (6-FQs).
This 6-FQs library was designed by employing the
synthetically-driven ligand generation rules feasible of yield-
ing ligands which can be readily synthesized and have a
predicted inhibitory activity toward GyrA.

The results can be summarized as follows: (1) a large
number of virtual 6-fluoroquinolone analogs (53.871 com-
pounds) were generated by a combinatorial generation of
all substituted amine and non-amine compounds at posi-
tions 1 and 7, respectively. The selection of a drug-like set
of 427 compounds from the library within the GHA range
was performed by using drug-likeness filters (a combined
Lipinski-Veber filtering tool based on the Lipinski’s and
Veber’s rule-sets for drug-likeness) and our previously
developed and validated neural-networks (NN) chemo-
metric model (built on a dataset of structurally-similar 6-
FQ compounds with experimentally-determined biological
activity values by employing a combined QSAR modeling
strategy, i.e., linear modeling as well as non-linear modeling
using Kohonen and counter-propagation artificial neural
networks) [21]. (2) Experimental data on the structurally-
similar topoisomerase-IV enzyme in complex with levo-
floxacin was used to construct structure-based as well as
ligand-based pharmacophore models to evaluate the most
promising 6-FQs obtained by chemometric methods. The
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models were also validated using available experimental
6-FQs data from the literature. (3) Finally, these compounds
were docked into the topo-IV binding pocket and the
interactions of 6-FQ analogs from virtual library as well as

experimental database with the surrounding amino acid
residues were compared and analyzed.

The outcome of this study shows that promising
compounds for further investigation originate from all three

Table 5 The combinatorial compounds extracted as most suitable
after the second level VS analysis into the 3K9F binding pocket,
together with their GoldScore Fitness (GSF) scoring function and the
corresponding inter-atomic distances (in Ångstrom units) between the

6-FQ sub-structural fragments and the crucial amino acid residues
important for the biological activity. The compounds with highest
predicted biological activity values (MICpred-combi), are highlighted in
gray

ID Chemical structure
MIC
pred-combi

pMIC
pred-combi

GSF
d3K9F-1

[2.18-4.18]
d3K9F-2 

[2.35-4.35]
d3K9F-3

[2.01-4.01]
d3K9F-4

[2.30-4.30]
d3K9F-5

[3.38-5.38]

1.

CIP’-028-059

0.0499 1.3022 78.29 3.31 3.92 3.67 3.99 5.07

2.

CIP’-028-065

0.1000 1.0002 87.09 2.88 3.27 3.29 4.25 4.81

3.

CIP’-028-125

0.0021 2.6818 76.16 3.49 3.86 3.24 3.40 5.15

4.

CIP’-028-154

0.0021 2.6818 80.90 3.16 3.51 2.80 4.19 5.37

5.

CIP’-028-156

0.0783 1.1065 72.18 3.45 4.31 2.62 2.64 5.00
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chemical classes (ciprofloxacin, moxifloxacin, and oflox-
acin analogs), whereas the ciprofloxacin chemical class

yielded the highest number of hits (CIP′-028-059, CIP′-
028-125, CIP′-028-148, CIP′-028-154, CIP′-028-156, CIP′-

Table 5 (continued)

6.

CIP’-037-006

0.0130 1.8851 72.26 3.17 3.51 3.31 3.92 3.43

7.

CIP’-087-073

0.1000 1.0002 71.96 2.96 3.84 3.92 4.08 3.96

8.

CIP’-095-186

0.0401 1.3970 71.79 3.09 3.51 3.60 3.58 5.33

9.

CIP’-102-113

0.1000 1.0002 83.74 3.94 4.33 2.89 4.12 4.91

10.

CIP-103-102

0.0681 1.1666 74.36 3.71 4.17 2.83 4.29 5.29

11.

OFL-127

0.0130 1.8851 72.53 3.34 3.65 3.00 3.01 3.73
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037-006, CIP′-095-186, and CIP-103-102). Furthermore,
the detailed analysis of occurrence of the substructural
fragments present at positions R1 and R7 of the 6-FQ hit
molecules revealed several novel attractive fragments, such
as for R1: [(Ni=028, benzo[d]oxazole), (Ni=037, 2-(hydrox-
ymethyl)phenol), (Ni=095, 1-methoxy-2-methylbenzene),
and (Ni=103, 1-(pyridin-3-yl)ethanone)] and for R7: [(Mj=
006, 4H-furo[3,2-c]pyran-4-one), (Mj=059, 8-chloro-[1, 2,
4]triazolo[4,3-b]pyridazine), (Mj=102, 3-methyl-1H-pyrazol-
5(4H)-one), (Mj=125, 3-(2-methyl-1,3-dioxolan-2-yl)ani-
line), (Mj =148, 1H-pyrazolo[3,4-b]pyridine), (Mj=154,
methyl 5,6-dihydro-4H-cyclopenta[b]thiophene-2-carbox-
ylate), (Mj=156, 1-(2-aminopyridin-3-yl)ethanone), and
(Mj=186, 1H-pyrazol-5(4H)-one], respectively, that satis-
fied the screening conditions at all levels. In conclusion,
we hope that the results of our mixed chemometric-
molecular modeling study will assist in providing new
SAR guidelines to the lead optimization stage of the 6-
FQ’s drug design and thus enable the design of the novel -
much-needed - antibacterial agents.

Acknowledgments Authors thank Agency of Research of R.
Slovenia (ARRS) for the financial support through the Grants P1-
0017 and 1000-07-310016. We are sincerely grateful to Dr. Marjana
Novič for valuable insights, discussion and her continuing support of
this research.

References

1. Munro SA, Lewin SA, Smith HJ, Engel ME, Feetheim A,
Volmink J (2007) Patient adherence to tuberculosis treatment: a
systematic review of qualitative research. PloS Med 4:1230–1245

2. Du Toit LC, Pillay V, DanckwertsMP (2006) Tuberculosis chemother-
apy: current drug delivery spproaches. Respir Res 7:118–136

3. Bhanu NV, van Soolingen D, van Embden JDA, Seth P (2004)
Two Mycobacterium fortuitum strains isolated from pulmonary
tuberculosis patients in Delhi IS6110 harbour homologue. Diagn
Micro Infec Dis 48:107–110

4. Dussurget O, Rodriguez M, Smith I (1998) Protective role of
Mycobacterium smegmatis IdeR against reactive oxygen species
and isoniazid toxicity. Tubercle Lung Dis 79:99–106

5. Field SK, Fisher D, Cowie RL (2004) Mycobacterium avium
complex pulmonary disease in patients without HIV infection.
Chest 126:566–581

6. Zhang Y, Martens KP, Denkin S (2006) New drug candidates and
therapeutic targets for tuberculosis therapy. Drug Discovery Today
11:21–27

7. Wigley DB (1995) Structure and mechanism of DNA gyrase. In:
Eckstein F, Lilley DMJ (eds) Nucleic Acids Molecular Biol.
Springer, Berlin, pp 165–176

8. Barnard FM, Maxwell A (2001) Interaction between DNA gyrase
and quinolones: effects of alaninemutations at GyrA subunit residues
Ser83 and Asp87. Antimicrob Agents Chemother 45:1994–2000

9. Peng H, Marians KJ (1993) Escherichia coli topoisomerase IV.
Purification, characterization, subunit structure, and subunit
interactions. J Biol Chem 268:24481–24490

10. Reece RJ, Maxwell A (1991) DNA gyrase: structure and function.
Crit Rev Biochem Mol 26:335–375

11. Levine C, Hiasa H, Marians KJ (1998) DNA gyrase and
topoisomerase IV: biochemical activities, physiological roles
during the chromosome replication, and drug sensitivities.
Biochim Biophys Acta 1400:29–43

12. Ostrov DA, Hernández Prada JA, Corsino PE, Finton KA, Le N,
Rowe TC (2007) Discovery of novel DNA gyrase inhibitors by
high-throughput virtual screening. Antimicrob Agents Chemother
51:3688–3698

13. Zhang Y (2005) The magic bullets and tuberculosis drug targets.
Annu Rev Pharmacol Toxicol 45:529–564

14. Vashist J, Vishvanath KR, Kapil A, Yennamalli Y, Subbarao N,
Rajeswari MR (2009) Interaction of nalidixic acid and ciproflox-
acin with wild type and mutated quinolone-resistance-determining
region of DNA gyrase A. Indian J Biochem Biophys 46:147–153

15. Hooper DC (1999) Mode of action of fluoroquinolones. Drugs 58
(suppl 2):6–10

16. Peterson LR (2001) Quinolone molecular structure-activity rela-
tionships: what we have learned about improving antimicrobial
activity. Clin Infect Dis 33(Suppl 3):S180–S186

17. Ebalunode JO, Zheng W, Tropsha A (2011) Application of QSAR
and shape pharmacophore modeling approaches for targeted
chemical library design. Methods Mol Biol 685:111–133

18. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores
derived from protein-bound ligands and their use as virtual
screening filters. J Chem Inf Comput Sci 45:160–169

19. Sippl W (2008) Pharmacophore identification and pseudo-receptor
modeling. In: Wermuth CG (ed) The Practice of Medicinal Chemistry,
3rd edn. Academic Press/Elsevier, Amsterdam, pp 572–586

20. Perdih A, Kovač A, Wolber G, Blanot D, Gobec S, Solmajer T
(2009) Discovery of novel benzene 1,3-dicarboxylic acid inhib-
itors of bacterial MurD and MurE ligases by structure-based
virtual screening approach. Bioorg Med Chem Lett 19:2668–
2673

21. Minovski N, Vračko M, Šolmajer T (2010) Quantitative structure-
activity relationship study of antitubercular fluoroquinolones. Mol
Div 15:417–426

22. http://www.cambridgesoft.com/software/ChemBioOffice
23. Schwalbe T, Kadzimirisz D, Jas G (2000) Synthesis of a library of

ciprofloxacin analogues by means of sequential organic synthesis
in microreactors. QSAR Comb Sci 24:758–768

24. Martel AM, Leeson PA, Castañer J (1997) BAY-12–8039:
fluoroquinolone antibacterial. Drugs Fut 22:109–113

25. Serradell MN, Blancafort P, Castañer J (1983) DL-8280. Drugs
Fut 8:395

26. Key Organics, Bionet Fragment Library “Rule of 3”, http://www.
keyorganics.ltd.uk

27. Congreve M, Carr R, Murray CW, Jhoti H (2003) A rule of three
for fragment-based lead discovery? Drug Discovery Today 8:876–
877

28. Minovski N, Šolmajer T (2010) Chemometrical exploration of
combinatorially generated drug-like space of 6-fluoroquinolone
analogs: a QSAR study. Acta Chim Slov 57:529–591

29. Wieland T (1997) Combinatorics of combinatorial chemistry. J
Math Chem 21:141–157

30. Bohacek RS, mcMartin C, Guida WC (1996) The art and practice
of structure-based drug design. Med Res Rev 16:3–50

31. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997)
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. Adv
Drug Deliv Rev 23:3–25

32. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW,
Kopple KD (2002) Molecular properties that influence the
oral bioavailability of drug candidates. J Med Chem 45:2615–
2623

33. Katritzky AR, Lobanov VS, Karelson M (1995) CODESSA.
Reference manual, University of Florida, Gainsville

1752 J Mol Model (2012) 18:1735–1753

http://www.cambridgesoft.com/software/ChemBioOffice
http://www.keyorganics.ltd.uk
http://www.keyorganics.ltd.uk


34. Tretter EM, Schoeffler AJ, Weisfield SR, Berger JM (2010)
Protein Struct Funct Bioinf 78:492–495

35. Fu G, Wu J, Liu W, Zhu D, Hu Y, Deng J, En Zhang X, Bi L,
Cheng Wang D (2009) Crystal structure of DNA gyrase B′ domain
sheds lights on the mechanism for T-segment navigation. Nucleic
Acids Res 37:5908–5916

36. Laponogov I, Sohi MK, Veselkov DA, Pan XS, Sawhney R,
Thompson AW, McAuley KE, Fisher LM, Sanderson MR (2009)
Structural insight into the quinolone-DNA cleavage complex of
type IIA topoisomerases. Nat Struct Mol Biol 16:667–669

37. Kitamura A, Hoshino K, Kimura Y, Hayakawa I, Sato K (1995)
Contribution of the C-8 substituent of DU-6859a, a new potent
fluoroquinolone, to its activity against DNA gyrase mutants of
Pseudomonas aeruginosa. Antimicrob Agents Chemoter 39:1467–
1471

38. Laponogov I, Pan XS, Veselkov DA, McAuley KE, Fisher
LM, Sanderson MR (2010) Structural basis of gate-DNA
breakage and resealing by type II topoisomerases. PloS One
5:e11338(1–8)

39. Jones G, Willet P, Glen RC, Leach AR, Taylor R (1997)
Development and validation of a genetic algorithm for flexible
docking. J Mol Biol 267:727–748

40. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T (2008)
Evaluation of the performance of 3D virtual screening protocols:
RMSD comparisons, enrichment assessments, and decoy
selection-What can we learn from earlier mistakes? J Comput
Aided Mol Des 22:213–228

41. Huc I, Lehn J-M (1997) Virtual combinatorial libraries: Dynamic
generation of molecular and supramolecular diversity by self-
assembly. Proc Natl Acad Sci 94:2106–2110

42. Oprea TI, Gottfries J, Sherbukhin V, Svensson P, Kühler TC
(2000) Chemical information management in drug discovery:
Optimizing the computational and combinatorial chemistry inter-
faces. J Mol Graph Model 18:512–524

43. Langer T, Wolber G (2004) Virtual combinatorial chemistry and in
silico screening: Efficient tools for lead structure discovery? Pur
Appl Chem 76:991–996

44. Seneci P, Miertus S (2000) Combinatorial chemistry and high-
throughput screening in drug discovery: different strategies and
formats. Mol Diversity 5:75–89

45. Oprea TI (2002) Chemical space navigation in lead discovery.
Curr Opin Chem Biol 6:384–389

46. Oprea TI (2000) Property distribution of drug-related chemical
databases. J Comput Aided Mol Des 14:251–264

47. Allu TK, Oprea TI (2005) Rapid evaluation of synthetic and molecular
complexity for in silico chemistry. J Chem Inf Model 45:1237–1243

48. Hann MM, Leach AR, Harper G (2001) Molecular complexity
and its impact on the probability of finding leads for drug
discovery. J Chem Inf Comput Sci 41:856–864

49. Madurga S, Sánchez-Céspedes J, Belda I, Vila J, Giralt E (2008)
Mechanism of binding of fluoroquinolones to the quinolone
resistance determining region of DNA gyrase: towards an
understanding of the molecular basis of quinolone resistance.
Chem Bio Chem 9:2081–2086

J Mol Model (2012) 18:1735–1753 1753



ORIGINAL PAPER

Stacking interaction and its role in kynurenic acid binding
to glutamate ionotropic receptors

Alexander V. Zhuravlev & Gennady A. Zakharov &

Boris F. Shchegolev & Elena V. Savvateeva-Popova

Received: 22 November 2010 /Accepted: 26 July 2011 /Published online: 12 August 2011
# Springer-Verlag 2011

Abstract Stacking interaction is known to play an impor-
tant role in protein folding, enzyme-substrate and ligand-
receptor complex formation. It has been shown to make a
contribution into the aromatic antagonists binding with
glutamate ionotropic receptors (iGluRs), in particular, the
complex of NMDA receptor NR1 subunit with the
kynurenic acid (KYNA) derivatives. The specificity of
KYNA binding to the glutamate receptors subtypes might
partially result from the differences in stacking interaction.
We have calculated the optimal geometry and binding
energy of KYNA dimers with the four types of aromatic
amino acid residues in Rattus and Drosophila ionotropic
iGluR subunits. All ab initio quantum chemical calculations
were performed taking into account electron correlations at
MP2 and MP4 perturbation theory levels. We have also
investigated the potential energy surfaces (PES) of stacking
and hydrogen bonds (HBs) within the receptor binding site
and calculated the free energy of the ligand-receptor
complex formation. The energy of stacking interaction
depends both on the size of aromatic moieties and the
electrostatic effects. The distribution of charges was shown
to determine the geometry of polar aromatic ring dimers.
Presumably, stacking interaction is important at the first
stage of ligand binding when HBs are weak. The freedom
of ligand movements and rotation within receptor site
provides the precise tuning of the HBs pattern, while the
incorrect stacking binding prohibits the ligand-receptor
complex formation.

Keywords Ionotropic glutamate receptors . Kynurenic
acid .Möller-Plesset perturbation theory . Stacking
interaction

Introduction

Noncovalent interactions are known to play a special role in
formation of biomacromolecular structures [1]. Hydrogen
bonds (HB), van der Waals (vdW), hydrophobic and
electrostatic interactions can form and dissociate at physi-
ological conditions: the magnitude of these interactions is at
least 1–2 orders weaker than that of covalent ones. The
spatial direction of HBs and steric correspondence of
contacting chemical groups provide the basis for geometric
specificity of protein and nucleic acid folding, as well as of
ligand-receptor, enzyme-substrate and protein complexes
formation. Thus, a proper understanding of biophysical
conditions for the formation of noncovalent interactions is
necessary for theoretical predictions of macromolecular
structure and computer design of new drugs with specific
pharmacological activity.

π-π Interactions are formed in proteins between the
aromatic moieties of Phe, Tyr, Trp and His amino acid
residues and also between the nucleic acids aromatic
groups. They belong to the weak type of interactions with
the binding energy (EBIND) of ∼5–50 kJ mol-1. Together
with other interactions they determine the specificity of
folding [2] and protein-nucleic acid complex formation [3].
Stacking is a special type of π-π interaction that is
characterized by parallel orientation of the π-electron
moieties. T-shaped interaction is characterized by the
perpendicular orientation of the moieties [4]. The dispersion
and quadrupole-quadrupole interactions are believed to be
of major contribution to the stacking EBIND [1, 5, 6].
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We will study the special role of stacking interactions in
the formation of the aromatic ligands – NMDA and iGlu
receptor complexes. KYNA, an intermediate of the kynur-
enine pathway of tryptophan metabolism, is a weak
aromatic antagonist of iGluRs which preferentially interacts
with the glicyne binding site of N-methyl-D-aspartate
receptor (NMDAR) NR1 subunit. KYNA is the only
known endogenous competitive inhibitor of mammalian
iGluRs with neuroprotective properties. It is believed to be
important for the design of neuroprotective medicines [7].
When binding to iGluRs, KYNA prevents the development
of acute and chronic excitotoxicity [8, 9]. KYNA also
modulates the neurodegenerative processes in Drosophila
central nervous system [10], inhibiting glutamate and/or α7
nicotinic acetylcholine receptors [11].

5,7-di-Cl-KYNA (DCKA), a synthetic specific antago-
nist of NR1 glycine site, is presumed to form a stacking
interaction with Phe92 of receptor binding pocket. This is
supposed to be the common feature in the binding of
aromatic antagonists to iGluRs [12]. DCKA forms several
HBs with receptor pocket residues and mechanically
stabilizes its “open” conformation (Fig. 1a): S1 and S2
subdomains are separated, that causes the inhibition of the
receptor Ca2+ channel. The specific affinity of DCKA
toward the NR1 glycine site could be explained by
hydrophobic interactions [13] together with stacking inter-
action energy contributions [14].

Ki for KYNA is approximately 1.5x10-5 M for the glycine
site and 2x10-4 M for the glutamate site (NR2 subunit) of
NMDAR in rat telencephalon membranes [15]. KYNA is
also a non-selective inhibitor of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR,
GluR1-GluR4 subunits) and kainate receptor [16]. KYNA
affinity for kainate receptors (Kd 7.0±0.4x10-5 M) is higher
than that for AMPAR and lower than that for NR1 NMDAR
(3.5±0.6x10-5 M) in rat spinal cord afferent C fibers [17].

Seemingly, the relative order of KYNA affinity to glutamate
receptor subunits is the following: NR1>GluR>NR2.

The conservative amino acid sequence and 3D structure
of iGluRs subunits: NR1 [12], NR2 [18] and GluR2 [19] –
allows us to propose a common mechanism for KYNA
interaction with binding sites, both in vertebrate and
invertebrate nervous system. The protein homologs of
Drosophila melanogaster, dNR1, dNR2 and dGluR1,
possess a similar conservative amino acid pattern within
the putative binding sites (Table 1). Each subunit contains
an aromatic residue at the same position as Phe92 in NR1.

Computer modeling of KYNA binding to iGluRs may
help to reveal the physical basis of interaction specificity.
Ab initio quantum chemical calculations of the geometry
and EBIND of stacking interaction performed on small
model dimers are advantageous for ligand-receptor interac-
tion modeling. The precise calculations of dispersion
energy impact in π-π interactions could be performed only
considering the electron correlations, for example, at MP2
perturbation theory level [20]. MP2 calculations are known
to overestimate the EBIND in benzene dimer by 30% for T-
shaped interaction and by ∼90% for stacking interaction
[5]. This problem can be partly solved by using coupled
cluster calculations (CCSD(T)) or, presumably, with the
help of the forth order perturbation theory MP4. A parallel
conformation with displaced centers of rings (PD) was
shown to be energetically the most favorable for benzene
[6, 14, 21] and pyridine [22] dimers. Both parallel and
antiparallel PD conformers of pyridine dimer are possible,
EBIND of each being dependent on relative orientation of
the polar N atoms [22]. In benzene dimers both stacking
and T-shaped conformations are stabilized mainly by the
correlation energy impact, electrostatic energy being attrac-
tive only in the T-shaped conformation [6]. A relative
contribution of the correlation energy is variable due to
different basis sets and computational methods [23]. Since
PES of benzene-benzene is very flat, the small energy
differences depending on the computational method may

Fig. 1 The complex of antagonist with the binding site of glutamate
receptor subunit. (a) DCKA in the binding site of NR1 subunit [12];
(b) KYNA in enol form; c. KYNA in oxo form

Table 1 Sequence homology of mammalian (rat) and drosophila
ionotropic glutamate receptor subunits

NR1 dNR1 NR2 dNR2 GluR2 dGluR1
Phe 92 Phe 76 His 88 Trp 89 Tyr 61 Tyt 98

Pro 124 Pro 112 Ser 114 Ser 115 Pro 89 Ala 127

Thr 126 Thr 114 Thr 116 Met 117 Thr 91 Thr 129

Arg 131 Arg 119 Arg 121 Arg 122 Arg 96 Arg 134

Ser 179 Ser 177 Gly 172 Ser 171 Gly 141 Gly 321

Ser 180 Ser 178 Ser 173 His 172 Ser 142 Ser 322

Val 181 Val 179 Thr 174 Thr 173 Thr 143 Thr 323

Trp 223 Trp 221 Tyr 214 Tyr 213 Leu 192 Val 371

Asp 224 Asp 222 Asp 215 Asp 214 Glu 193 Glu 372
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change the stability status of computed PD conformation
toward T-shaped or vice versa [1]. However, the existence
of stable stacking conformations for aromatic dimers has
been shown both empirically [24] and theoretically [25].

To investigate the possible role of stacking interaction in
KYNA-iGluR complexes formation we have calculated the
optimal geometry and EBIND for KYNA dimers with
benzene, imidazole, phenol and indole, considering their
stacking interaction with Phe, His, Tyr and Trp residues of
NR1/dNR1, NR2A, GluR2/dGluR1 and dNR2 receptor
subunits, respectively. Then we docked the optimized
dimers into the binding sites of the receptors and calculated
the free energy of binding (EF). The analysis of the binding
energy components and geometry parameters of stacking in
ligand-receptor complexes reveals the possible mechanisms
of interaction specificity and the role of stacking interaction
upon KYNA-iGluR complexes formation.

Methods

The coordinates of the receptor heavy atoms were taken from
the RCSB Protein Data Bank (www.rcsb.org/pdb/home/home.
do): 1pdq_A – NR1, 2a5s_A – NR2A, 1ftl_A – GluR2. The
amino acid sequences for R. norvegicus and D. melanogaster
receptors subunits were taken from NCBI data base (www.
ncbi.nlm.gov). The automatic homology modeling of dro-
sophila subunits structure in the “open” conformation was
performed using Swiss-Model server [26–28]. The structures
of rat NR1 and GluR2 were used as templates for drosophila
dNR1/dNR2 and dGluR1 models, respectively. Swiss-
PdbViewer 3.7 [27] and VegaZZ 2.0.8 [29] programs were
used for the addition of hydrogen atoms, dimer construction,
computer mutagenesis and manual docking of optimized
dimer into the binding site.

The initial conformations of aromatic dimers were
chosen to resemble the experimentally found geometry of
DCKA – Phe484 complex [12], where the benzene ring of
Phe and the ligand heteroaromatic ring are in PD
conformation and the ligand carboxylic group electrostati-
cally interacts with Arg131 residue. The optimal geometry
of KYNA – benzene was calculated previously at MP2
level [14]. The starting interplanar spacing and parallel
displacement of rings in KYNA – phenol and KYNA –
imidazole corresponded to the optimized geometry of
KYNA – benzene dimer. The starting geometry of
KYNA – indole corresponded to KYNA – Trp complex
after ligand docking into dNR2 binding site (Autodock
3.05 software). The following points served as the ring
centroids: for benzene and phenol - the midpoints of
length between two opposite C atoms, for imidazole –
the midpoint of length between C2 atom and midpoint
of adjoining C4 - C5 atoms, for indole – the midpoint

of conjugated ring common C-C bond, for KYNA – the
midpoint between C2 atom and the opposite ring atom. The
monomers were neutrally charged during optimization.

Though KYNA can exist both in enol and in oxo
tautomeric form (Fig 1b, c), we used the latter one in the
majority of calculations, as it was shown to be pharmaco-
logically active [13]. PC GAMESS 7.0 version of
GAMESS software [30] was used for ab initio full gradient
optimization of geometry (MP2 level of correlations) and
final EBIND calculations (MP4(SDQ) level of correlations).
The basis set superposition error (BSSE) correction [31]
and the permittivity-dependent energy calculations were
performed using GAUSSIAN 03 program [32]. The IPCM
method was used to model the environment with different
permittivity values. We did not make BSSE correction for
this type of calculations, as the ghost atoms added to the
monomer would be centered in the solvent region, that
interferes with the isodensity surface definition [33]. 6-
31 G** basis set [34] was used in full optimization and
EMP4 calculations, aug-cc-pVDZ basis set [35] was used in
EMP2 calculations with BSSE correction. The full atomic
system energy is a sum of Hartree-Fock (EHF) and
correlation components (ECOR). EBIND was calculated as
the difference between the optimized dimer and optimized
monomers full energies. EMP2 and EMP4 are EBIND

calculated at MP2 or MP4 levels, respectively.
The computer programs Autodock 3.05, Autodock 4.0

[36–38] and Quantum 3.3.0 (St. Petersburg State Universi-
ty, the Department of Biochemistry, Russia) were used for
automatic docking of KYNA into the receptor binding sites.
Quantum 3.3.0 was used for EF and IC50 calculations. The
calculations of EF were performed for the anionic form of
KYNA (KYNAi).

The molecular structures were visualized using VMD
software [39].

Results

The calculations of dimers energy and optimal geometry

We performed the full gradient optimization for aromatic
dimers structures at MP2 perturbation level. EBIND and
optimized geometry (Fig. 2, Table 2) was shown to depend
on the chemical nature of KYNA aromatic partner. EMP2 for
previously calculated aromatic dimer was −14.2 kJ mol-1

for benzene-benzene and −35.1 kJ mol-1 for KYNA –
benzene in 6-31 G** basis set [14]. The absolute value of
EBIND decreased being revaluated at MP4 level. The
addition of diffuse functions significantly increases the
binding energy, BSSE correction decreases it almost
twofold, as it has been previously shown for benzene dimer
[6]. Since the absolute value of EBIND strictly depends on
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the method of calculation, the relative differences should be
considered in ligand-receptor relative affinity analysis. The
relative order of EBIND did not change upon the revaluation,
except EBIND non BSSE-corrected absolute value for
KYNA – phenol in aug-cc-pVDZ basis set becoming
higher than for KYNA – imidazole 3. EBIND absolute value
increases in the row: benzene – phenol – imidazole –
indole. EHF was positive in all cases. Thus, dimer stability
was completely determined by ECORR component.

Since the minimal absolute value of EBIND corresponded
to KYNA – benzene, the difference in the strength of
aromatic interaction per se could not explain the highest
KYNA affinity to NR1 glycine binding site. The position of
benzene was symmetric relative to the long axis of KYNA
aromatic moiety and moved half aside the heteroaromatic
ring; this is a classical PD conformation [37]. The
interplanar (dZ) and parallel (dX) displacements (3.17 and
1.24 Ǻ, respectively) were smaller than those calculated for
benzene-benzene using the same approach: 3.4 and 1.4 Ǻ,
respectively [14] or using CCSD(T) method at aug (d,p) 6-

311 G** basis set: 3.5 and 1.8 Ǻ, respectively [6].
Presumably, the difference between the calculated KYNA –
benzene geometry and experimentally established location of
DCKA in NR1 [12] resulted from the additional interactions
with the receptor binding site residues.

EMP2 of KYNA – methylbenzene dimer increased up
to −42.10 kJ mol-1 (6-31 G** basis set), however, its
geometry was almost identical to that of KYNA –
benzene. Thus, it can be concluded that unsubstituted
benzene ring of Phe residue is sufficient for the correct
calculation of KYNA – Phe stacking geometry. The
increase of EBIND upon methylation corresponded to the
data obtained for substituted benzene [14, 21] and for
halogen-substituted KYNA derivatives [14].

Compared to benzene, the phenol ring was displaced
from the long axis of KYNA and was closer to its
hydrocarbon ring (Fig. 2b, e). The hydrogen of hydroxyl
group slightly rotated toward the aromatic ring center,
reminding an improper HB formation between the polar
hydrogen and π-electronic system [1]. This might addition-
ally stabilize the dimer structure, its EBIND being higher
than that for nonpolar benzene (Table 2).

The optimal dimer conformation strictly depended on the
relative orientation of rings polar atoms. Thus, in the case
of two heteroaromatic residues (His, Trp) the electrostatic
interaction might play an important role in the binding
specificity. For the different KYNA enol/oxo and imidazole
ND1/NE2 tautomers the formation of several energetically
stable conformations were shown:KYNA – imidazole 1–4
(Fig. 2c, f). The polar hydrogen atoms were located under
the negatively charged O or N atoms of partner ring, fixing
the optimal rotational conformation for KYNA – imidazole.
The N-H group of indole was located under the 4-oxo
group of KYNA (Fig. 2d). The formation of classical HB
between the monomers (N-H…O) is also possible, thus, the
energy of stacking interaction must be large enough to
provide the rings planes parallel orientation. At the same
time, the interplane angles differed from zero: N-H side of
the partner ring tended to rotate slightly toward N or O
atom of KYNA. EBIND was maximal for KYNA – indole,
probably due to the superposition of two conjugated π -
electron systems.

We also calculated the single-point EMP4 for the number
of conformations derived from the optimized dimer through
the step-by-step displacements of aromatic ring within the
EBIND minimum area (Table 3). The calculations using aug-
cc-pVDZ basis set with BSSE correction did not signifi-
cantly change the optimal dZ value (increased to about 0.1
Ǻ). Thus the calculations in 6-31 G** basis set without
BSSE correction seems to be appropriate for full geometry
optimization of KYNA – benzene dimer. The differences
between the MP2 and MP4 PES minima did not exceed 0.2
Ǻ. EMP4 minimum for KYNA – benzene corresponded to

Fig. 2 The optimized structures of KYNA dimers with the
aromatic amino acid rings. (a) KYNA – benzene; (b) KYNA –
phenol; (c) KYNA – imidazole 3; (d) KYNA – indole; (e)
superposition of dimers: 1. KYNA – benzene, 2. KYNA – phenol,
3. KYNA – indole; (f) superposition of dimers: 1. KYNA enol –
imidazole 1, 2. KYNA oxo – imidazole 2; 3. KYNA oxo – imidazole
3; 4. KYNA oxo – imidazole 4. H is depicted by white color, C – by
cyan, N – by blue, O – by red
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dZ of ∼3.4 Ǻ which was nearer to experimentally found
value [12]. The same shift was observed in the cases of
KYNA – phenol and KYNA – indole (not shown). For
KYNA – phenol and KYNA – imidazole 3 there were no
significant differences in optimal parallel displacements
values: possibly, the less computation method-sensitive
polar interactions mainly define the structure of dimers.

The full optimization of KYNA – benzene and KYNA –
imidazole geometry without MP2/MP4 correlation calcu-
lations did not produce the stable stacking conformation.
The optimization of KYNA – benzene structure achieved
by semi-empirical calculations (AM1) gave the parallel
orientation of the ring planes with the interplanar spacing
greater then 5 Ǻ, extremely differing from both experimen-
tal and calculated stacking geometry. Definitely, ECOR

should be considered for the correct description of ligand-
receptor stacking interaction.

The calculation of dimers potential energy surfaces

The flat form of stacking PES might define its functional
role in ligand-receptor complex formation. This initial
interaction provides a proper position for the ligand within
the receptor binding site providing enough freedom for the
ligand in the receptor pocket, enabling HBs to be formed.
In order to check this assumption we had to compare PS
curves for HB and stacking interaction.

The calculations of benzene – benzene, KYNA –
benzene and KYNA – imidazole 3 PES were performed

for the parallel displacements within the limits of ±1 Ǻ
(Fig. 3). MP2 level-optimized dX/dY and MP4 level-
optimized dZ (3.70 Ǻ - for dibenzene) were chosen as the
initial displacements for each dimer. The benzene – benzene

Table 3 EMP4 potential surfaces of KYNA – aromatic rings dimers
(kJ mol-1). 1. Displacements; 2. KYNA – benzene; 3. KYNA –
phenol; 4. KYNA – imidazole 3. The energy values for new local
minima are printed by black. In brackets: the values of EBSSE (MP2,
aug-cc-pVDZ basis set)

1 2 3 4

0 −17.53 (−36.15) −25.02 −31.80
dZ +0.1 −19.37 (−36.57) −26.82 −33.18
dZ +0.2 −19.96 (−35.73) −27.15 −33.10
dZ +0.3 −19.66 (−34.14) −26.32 −31.97
dX −0.3 −13.85 −23.39 −29.92
dX −0.2 −15.40 −24.06 −30.54
dX −0.1 −16.65 −24.52 −31.17
dX +0.1 −18.03 −24.94 −31.88
dX +0.2 −18.16 −24.89 −31.80
dX +0.3 −18.03 −24.69 −31.46
dY −0.3 −14.64 −23.89 −31.34
dY −0.2 −15.86 −24.31 −31.84
dY −0.1 −16.78 −24.64 −31.97
dY +0.1 −17.95 −24.89 −30.96
dY +0.2 −18.16 −24.81 −29.79
dY +0.3 −18.12 −24.69 −28.07

Table 2 Stacking energy and geometry of KYNA – aromatic
monomers. EMP2_diff – EMP2 in aug-cc-pVDZ basis set, in brackets –
BSSE-corrected energy; OD – dimers with optimized geometry, MD –

dimers after Quantum 3.3.0 MD simulation; dx, dy, dz – the parallel
displacement of aromatic ring centroids. ^ X-ray structure data [12]. #
KYNA in enol form, in all the rest cases KYNA is in oxo form

Monomer Aromatic residue
and receptor subunit

EMP2

kJ/ mol)
EMP4

(kJ/ mol)
EMP2_diff

(kJ/ mol)
dx
( Ǻ)

dy
( Ǻ)

dz (Ǻ) Plane
angle (deg)

Benzene- DCKA^ Phe92 NR1 OD 0.89 −0.57 3.53 9.6

Benzene Phe92 NR1 OD,
Phe76 dNR1 OD

−36.86 −17.53 −68.70 (−36.15) 1.24 0.18 3.17 1.5

Benzene Phe92 NR1 MD −28.91 −17.53 0.68 −0.60 3.70 9.5

Benzene Phe76 dNR1 MD −27.87 −15.23 0.09 0.55 3.53 4.5

Phenol Tyr61 GluR2 OD,
Tyr 98 dGluR1 OD

−46.07 −25.02 −79.54 (−42.05) 0.74 −0.64 3.35 6.0

Phenol Tyr61 GluR2 MD −36.69 −22.30 0.61 −0.40 3.49 4.1

Phenol Tyr98 dGluR1 MD −38.33 −24.69 0.89 −0.63 3.52 1.7

Imidazole 1# His88 NR2A OD −42.76 −25.90 1.46 0.29 2.96 10.7

Imidazole 2 His88 NR2A OD −44.73 −27.45 1.28 −0.36 3.10 7.7

Imidazole 3 His88 NR2A OD −50.63 −31.76 −73.05 (−45.10) 1.29 0.60 2.93 6.5

Imidazole 4 His88 NR2A OD −46.19 −30.12 0.77 −0.50 3.22 7.1

Imidazole His92 NR1* MD −31.92 −22.76
Imidazole H+ His92 NR1* MD −28.20 −19.04
Indole Trp89 dNR2 OD −68.37 −34.77 −112.47 (−64.39) 0.83 0.18 3.09 6.3

Indole Trp89 dNR2 MD −41.71 −26.73 0.46 0.31 3.63 11.0
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PES (a.) was extremely flat, EMP4 value being almost
invariant within the given spatial limits. KYNA – benzene
dX PES (b.) had a more marked minimum, but EMP4 value
changes did not exceed the median thermal vibration
energy (2.5 kJ mol-1 at 298 K) within ±0.5 Ǻ displace-
ments. The positive dZ displacement (e.) led to significant-
ly more pronounced loss of EBIND, though for medium dZ
value (about 0.3 Ǻ) it was also of the thermal vibration
order. The left half of KYNA – benzene dZ PES curve was
very steep due to the tight spatial approach of the aromatic
rings. KYNA – imidazole 3 dX/dY PES curve (c., d.)
resembled the right half of KYNA – benzene dZ curve,
locating much lower than the last one. It can be assumed
that at higher permittivity values it would approach the
position and form of KYNA dX/dY PES.

EBIND for KYNA – Pro124 HB was calculated for the
series of dX (f.) and dZ (g.) displacements starting with
dynamically optimized ligand position within NR1 binding
site (Quantum 3.3.0). Their PES, especially those of Pro
dZ, were steeper than those of KYNA – benzene and
KYNA – imidazole 3 (Fig. 3), crossing these curves at
points of±0.5 – 1 Ǻ from the initial displacements. Thus,
stacking interaction should play an important role at the
initial stage of the complex formation when HBs are weak,
allowing KYNA to optimize its HBs pattern without a
significant loss of EBIND. The vertical aromatic ring
mobility is more limited compared to the parallel one.

The rotation of benzene ring beyond the plane parallel to
KYNA (20/40° around X axis) led to the drastic fall of
KYNA – benzene EMP4 absolute value. Probably, this was

resulted from the steric overlapping of the ring electronic
densities. dZ displacement increased the dimers stability:
PES curve moved parallel to the area of higher dZ values
(Fig. 4). Thus, non-planar rotation of KYNA in the binding
site is impossible without a preliminary significant separa-
tion of the rings.

Dispersion and quadrupole interactions seem to
define the stability of dimers in vacuum [1]. It is still
obscure, whether π-π interaction possesses some special
characteristics distinguishing it from the ordinary vdW
interaction between two non-polar aliphatic groups. We
calculated EMP4 PES (dX and dZ displacements) for the
optimized dimer of Leu side chains (Fig. 5). Both EBIND

values and PES form resembled those for KYNA –
benzene (6-31 G** basis set). As for KYNA – benzene,
the impact of ECOR almost completely defined the dimer
stability (EMP2=−23.97 kJ mol-1, EMP4=−20.25 kJ mol-1,
EHF=−0.88 kJ mol-1).

The addition of diffuse functions on atoms is important
for the precise estimation of aromatic EBIND [37]. EMP2 of
KYNA – benzene and Leu – Leu (6-31++G** basis set)
was −57.65 kJ mol-1 and −26.40 kJ mol-1, respectively: the
addition of diffuse functions increased the absolute value of
EMP2 by 36% and 10%. Thus, π-π interaction seemed to
possess the specific properties compared to aliphatic one,
and the precise value of its EBIND could be calculated only
in the basis set including the diffuse functions.

The electrostatic effects should greatly reduce in the
environment with high permittivity (ε), varying in proteins
from 3–4 in the hydrophobic core up to ∼80 in the outer
solvent layer. For nonpolar benzene EMP2 only slightly
depended on ε value, the electrostatic forces minimally
contributing to dimer stability (Fig. 6). On the contrary,

Fig. 4 EMP4 PES of KYNA – benzene dimers with the rotated
benzene ring, dZ. (a) 0 deg.; (b) 20 deg.; (c) 40 deg

Fig. 3 EMP4 PES of aromatic dimers stacking interaction and
KYNA – Pro124 hydrogen bonds. (a) Benzene – benzene, dX; (b)
KYNA – benzene, dX; (c) KYNA –imidazole 3, dX; (d) KYNA –
imidazole 3, dY; (e) KYNA – benzene, dZ; (f) KYNA – Pro124, dX;
(g) KYNA – Pro124, dZ
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EBIND of imidazole – imidazole decreased greatly with the
growth of ε, up to the limit approximately equal to that of
benzene – benzene. EMP2 for KYNA – benzene remained
highly negative (−28.5 – -24.3 kcal mol-1) at ε=4 – 10, the
possible permittivity values for the receptor binding pocket.
Obviously, vdW interaction is stronger in KYNA – benzene
than in benzene – benzene and imidazole – imidazole. EMP2

for KYNA – imidazole 3 sharply grew, becoming positive
at ε=20, possibly due to the suboptimal dZ value. Although
the absolute energy values were apparently overestimated
due to the lack of BSSE correction, we could observe the
clear trend of the polar interactions weakening in the

solution. The hydrophobic surroundings with low permit-
tivity might be an important factor for the formation of
stacking bond between the heteroaromatic rings.

Docking of optimized dimer structures into receptor
binding sites

Manual docking was performed by superimposing the
aromatic planes of monomer and receptor aromatic residue
(Fig. 7). EF and IC50 for KYNA docked into binding sites
were calculated and then revaluated following the dynam-
ical energy minimization (MD) of the complex using
Quantum 3.3.0 software (Table 4). Since PDB structure of
NR2 subunit was available only in the “closed” conforma-
tion, in order to model KYNA – His binding in the “open”
conformation we introduced a computer mutation Phe92/His
into NR1 (NR1*). Using NR1 we also constructed the NR2
binding site (NR1**) via mutations of the following
residues: Phe92/His, Pro124/Ser, Trp223/Tyr, Phe250/Tyr.

The values of EF and IC50 for KYNA interactions with
binding sites differed before and after MD simulation: the
affinity diminished after MD for the majority of complexes.
IC50 (2.51x10-5 M for KYNA in NR1 prior to MD) was
close to the experimental values: both to IC50 in the
absence of glycine (1.5x10-5 M [11]) and to Ki (1.5

x10-5 M
[15]). The similar value was obtained for dNR1. The
affinity of KYNA to GluR2 and NR1** was lower,
especially after MD. NR1* (His in cationic form) had
higher affinity to KYNA than NR1. Additional three
mutations from aliphatic to polar residues in NR1**
diminished KYNA interaction with NR2-like receptor
pocket. The low affinity of KYNA for dNR2 and dGluR2
subunits rises after MD, mostly due to the electrostatic
interactions optimization.

The MD-optimized KYNA – Phe92 orientations within
Rattus and Drosophila NR1 binding sites resembled the
orientations calculated for KYNA – benzene dimer, though
all of them somewhat differed in the value of parallel
displacements and interplanar angles (Table 2). Notably,
KYNA position in NR1 binding site after MD was in
agreement with the experimentally found DCKA position
[12], revealing the same pattern of ligand-receptor interac-
tions (Fig. 7a). HB was formed when the ligand was in oxo
form: KYNAi NH – O=C Pro124 (EMP4=−32.17 kJ mol-1).
The polar bond was formed between KYNAi COO group
and NH group of Thr126 (EMP4=−89.24 kJ mol-1). Coulomb
interaction was formed between KYNAi and Arg131

(EMP2/MP4=−426.68 /-422.04 kJ mol-1).
The MD-optimized space parameters of KYNA – Tyr61/98

dimer were almost identical to those calculated for
KYNA – phenol (Fig. 7b). The hydroxyl group had a
tendency to approach KYNA aliphatic ring center, thereby
confirming our hypothesis that the interaction of polar

Fig. 6 The permittivity-EMP2 dependence. (a) benzene – benzene; (b)
imidazole – imidazole; (c) KYNA – benzene; (d) KYNA – imidazole
3

Fig. 5 EMP4 PES of noncovalent dimers. (a) Leu – Leu, dZ; (b) Leu –
Leu, dX; (c) KYNA – benzene, dX
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hydroxyl H with the aromatic ring stabilizes the dimer
structure.

The position of KYNAwithin NR1* and NR1** binding
pockets depended on its orientation relative to His
imidazole group. The ligand binding was impossible for
KYNA oxo – His ND1_H dimer (KYNA – imidazole 2),
because the orientation of KYNA prohibited the formation
of HBs and electrostatic bonds (Fig. 7c). Thus, to bind the
physiologically active oxo form of KYNA His92 should be
in NE2_H or in cationic HisH+ (ND1_H, NE2_H) form.
Hence the ligand-receptor affinity should depend on the
extracellular pH. Importantly, EMP4 was −8.95 kJ mol-1 for
KYNA – imidazole rotational position with two NH groups
approaching each other: the binding energy diminished by
18.49 kJ mol-1 relative to the optimal conformation. It is
known that the parallel rotation of rings in dibenzene is
almost unrestricted: the energy value changes are about
0.04 kJ mol-1 [6]. In the case of KYNA – imidazole several
directionally restricted energy minima were observed. Thus,
the protonation character of the rings might predispose the
ligand optimal orientation within the binding pocket.

Although quantum automatic docking failed to produce
NR1*HisH+ – KYNA complex similar to NR1 – DCKA,
the binding of KYNAi to HisH+ form of NR1 was more
energetically favorable than that to the uncharged form,
mostly due to the additional electrostatic interaction. The
similar complex was generated automatically for NR1* His
NE2_H, providing evidence for the importance of proper
protonation for biologically significant ligand-receptor
docking.

The orientation of KYNA in dNR2 after MD somewhat
differed from its initial position relative to indole. In that
position KYNA could form the conservative pattern of
ligand-receptor interactions (Fig. 7d). Probably, the interac-
tion between NH (Trp ring) and KYNA carbonyl group
affected the ligand orientation within the receptor site.

EMP4 of KYNA – aromatic group dimer was calculated
for each ligand-receptor complex afterMDsimulation (Table 2).
For benzene and phenol EMP4 did not differ significantly from
that calculated for optimized dimers. Though the absolute
value of EMP4 was lower in NR1* for HisH+ form than for
His NE2_H (−19.07 and −22.80 kJ mol-1, respectively),

Fig. 7 The complexes of
KYNA – glutamate receptor
binding sites before and after
MD simulation. (a) NR1; (b)
GluR2; (c) NR1**; (d) dNR2.
KYNA – binding sites com-
plexes before MD are depicted
by blue or red thin sticks, after
MD – by cyan sticks. For
NR1** the His88 aromatic ring
is shown in the cationic form;
the optimized complexes of im-
idazole with KYNA both in enol
form (1) and in oxo form (2, 3)
are depicteds
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it could provide the ligand-receptor binding. The inter-
planar distance increased after MD simulation, becoming
closer to MP4 revaluated optimal dZ value. Since the
geometry of ligand-receptor complex should also depend
on HB formation and Coulomb interactions, we simulated
MD in the absence of aromatic interaction, namely in the
complexes of KYNA with mutant NR1 (Phe92/Ala) and
GluR2 (Tyr61/Ala). KYNA changed its position within the
binding sites and its EF absolute value lowered, mostly
due to vdW energy decrease (Table 4). In fact, π-π
interaction determined KYNA position within the receptor
binding site and significantly increased its affinity to
receptor.

We calculated EMP4 values for several aromatic ring
dimers with KYNAi after MD. It decreased moderately for
benzene (−13.39 kJ mol-1) and phenol (−18.37 kJ mol-1),
and more significantly for imidazole 3 (−15.02 kJ mol-1)
and indole (−17.70 kJ mol-1) relative to the uncharged
form of KYNA. EMP4 for the cationic form of imidazole
was −291.83 kJ mol-1: its interaction with KYNAi

appeared to be Coulomb interaction. However, MP2 level
calculations demonstrated that KYNAi – imidazole stack-
ing conformation was not stable in vacuum and trended to
form a classical HB. Since the true ε value was higher
than 1, the electrostatic influence on geometry and EBIND

should be less severe.

KYNA flexible docking into NR1* and NR1** receptor
binding sites

In order to confirm our assumption that the location of
protons may influence the ligand binding to His residue, we
performed Autodock 4.0 automatic docking of KYNA oxo

into NR1* binding site with movable His92 residue in
HD1_H or HE2_H tautomeric form. The majority of 100
structures generated using Lamarckian genetic algorithm
was similar to the experimentally revealed NR1 – DCKA
complex. Being in ND1_H form, His residue interacted
with negatively charged KYNA carboxyl group, their
aromatic rings tilting from parallel orientation and disrupt-
ing the stacking interaction. Surprisingly, His in NE2_H
form and KYNA tended to acquire the equal directional
orientation of NH groups, with the KYNA polar H atom
located under the negatively charged N of His. Presumably,
this conformation was stabilized by polar interactions,
though KYNA – imidazole EMP4 for such a conformation
was only −8.91 kcal mol-1. KYNA position within the
binding pocket seemed to be determined mostly by
Coulomb and hydrogen bond patterns. Undoubtedly, the
localization of protons affects the ligand-receptor binding,
but its influence is rather complicated.

Discussion

Ab initio quantum-chemical calculations have shown that
the relative spatial position of the ring polar atoms
significantly influence the optimal geometry parameters of
KYNA – aromatic residue stacking interaction. In KYNA –
imidazole the imidazole polar hydrogen is located under the
negatively charged N or O atoms of KYNA. The same has
been observed in stacked imidazole dimer [25]. The
protonation character of KYNA and imidazole rings defines
the optimal rotation conformation of KYNA – imidazole, as
in His complexes with the DNA nucleobases [40].
Compared to KYNA – Phe, the polar attraction additionally

Table 4 The energies of ligand-receptor interaction (Quantum 3.3.0).1 – previous to MD simulation, 2 – after MD simulation. $ NR1 in complex
with DCKA [12]

Receptor subunit EF (kJ/mol) IC50 (x10-5 M) EELECTROSTATIC (kJ/mol) E VDW (kJ/mol)

1 2 1 2 1 2 1 2

NR1 −26.69 −22.80 2.57 10.1 −15.90 −32.43 −29.71 −21.46
NR1 (Phe92/Ala) −17.32 −17.49 106 98.5 −5.06 −36.40 −22.22 −14.23
NR1 – DCKA$ −30.46 −20.54 0.58 29.4 −17.03 −30.50 −34.52 −19.96
NR1 (Arg131/Ala) −22.72 −18.54 12.4 65.5 −7.24 4.94 −28.79 −25.23
dNR1 −26.07 −23.43 3.32 9.36 −13.43 −23.56 −30.17 −24.60
NR1* (His HE2) −26.57 −22.18 2.69 15.5 −19.12 −24.69 −27.78 −22.34
NR1* (HisH+) −27.61 −23.60 1.80 8.80 −19.08 −30.92 −29.25 −22.80
NR1** (HisH+) −26.07 −21.51 3.30 20.3 −18.83 −47.45 −27.24 −19.25
GluR2 −25.82 −21.00 3.67 24.6 −12.47 −18.33 −30.33 −22.26
GluR2 (Tyr61/Ala) −22.05 −16.23 16.3 162 −12.01 −21.25 −25.15 −15.23
dGluR1 −25.40 −26.90 4.33 2.37 −12.34 −30.12 −29.83 −26.74
dNR2 −23.22 −24.73 10.2 5.62 −15.86 −30.08 −24.85 −26.78
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stabilizes KYNA – Tyr (an improper HB formation),
KYNA – His and KYNA – Trp complexes, simultaneously
restricting the ligand orientation freedom within the binding
site.

KYNA was shown with the help of computer
modeling to interact with rat and drosophila iGluRs,
being an antagonist of both glycine and glutamate
binding sites. The values of IC50 are closer to
empirically found after the manual docking of the
quantum-chemically optimized dimers into the binding
sites, than after MD. The geometry of stacking
interaction found by Quantum 3.3.0 resemble that being
calculated ab initio, though addition interactions (Cou-
lomb, HB and vdW) with receptor amino acid residues
evidently influence KYNA position within the binding
site. The ligand-receptor affinity decreases for NR1**
and GluR2 compared to NR1, that corresponds to the
experimental fact that KYNA is a more specific agonist
of the glycine binding site. dNR1 has the antagonist
binding properties similar to NR1, their binding sites
being virtually identical (Table 1). dNR2 subunit may
have the unusual binding properties, containing a large
aromatic Trp residue within the binding site. KYNA
affinity to dNR2 and dGluR1 becomes very high after
MD. This may reflect some initial steric tension in the
structure of binding sites obtained via an automatic
homology modeling.

It is difficult to perform MD for ligand-receptor complex
considering stacking effects, because this would require the
correct parametrization of stacking interaction. The physical
nature of stacking is in part the dispersion interaction,
which EBIND might be correctly estimated only using the
basis set with diffuse functions. EMP4 of the fully optimized
benzene dimer (6-31 G** basis set) is −5.69 kJ mol-1, while
the precisely calculated EBIND of stacked benzene dimer is
two-time larger: -11.30 kcal mol-1 [41]. Thus, we expect the
further increase in EBIND for KYNA – aromatic rings using
the precise calculation methods.

The difference between vdW energy of KYNA – NR1
and KYNA – NR1 Phe92/Ala (Quantum 3.3.0, after MD;
Table 4) can be considered as the loss of stacking
interaction resulting from Phe computer mutation. Hydro-
phobic and vdW interactions might be responsible for the
increase in DCKA affinity to NR1 type of receptor subunit
[13], for example, the interaction of ligand with large
hydrophobic system of Trp223 residue. However, Trp223/Ala
computer mutation did not significantly change the EBIND

value for KYNA – NR1 (Table 4). One of the possible
reasons for the increase in ligand specificity is the rise of
stacking energy in halogenated KYNA, as well as in
halogenated benzene dimers [14]. The affinity of DCKA
to NR1 in the X-ray derived DCKA – NR1 complex [12]
increases in comparison with KYNA: IC50 is 5.8x10-6 M,

though the experimentally found value is 0.06 – 0.1x10-6 M
[42]. Seemingly, NR1 – DCKA complex is additionally
stabilized by stacking interaction.

Both vertical and horizontal parallel movements of
KYNA inside the receptor site are accompanied by the
small loss of EBIND (the order of thermal vibration at T
298 K). This can be an important background for the
formation of conservative HBs with backbone Thr N and
Pro/Ser O atoms which are restricted in their movements.
HB is a non-covalent interaction sensitive to the spatial
position of atoms: the donor-acceptor distance and donor-
hydrogen-acceptor angle should be 2.6 – 3.2 Ǻ and 155 –
180°, respectively. Thus, HBs pattern is an important factor
restricting the position of KYNA within the binding site.
The following stages for KYNA – receptor interaction are
proposed:

1. The initial formation of ligand-receptor stacking
interaction, the starting ligand orientation within the
receptor pocket;

2. The formation and tuning of HBs.

The improper location of KYNA and/or of His residue
may prohibit the second stage, because KYNA carboxylic
end may be directed out of the receptor pocket. Also, His
tends to form HB with KYNA and this may disorientate the
ligand within the binding pocket. Tyr OH group may
slightly restrict the freedom of KYNA parallel movements
within GluR2 and dGluR1 binding sites. Due to the
possible existence of several energetic minima for KYNA –
indole dimer, its PS was not evaluated in detail: only one
physiologically active position for the ligand in dNR2 was
found. The existence of two minima was shown for KYNA –
benzene complex, but one of them is not realized in NR1
glycine binding site [14]. Therefore, in spite of higher EMP4

value for KYNA interaction with heteroaromatic rings its
orientation freedom decreases compared to KYNA –
benzene dimers. The absence of rotational preference for
KYNA – benzene stacking interaction could speed up the
first preliminary stage of KYNA – receptor interaction, while
the incorrect pairing with imidazole due to the “improper”
charges distribution must be followed by the stage of
reassociation. In spite of being fast, these processes may
decrease the whole time of ligand-receptor complex exis-
tence, thereby decreasing KYNA inhibitory properties. This
may somewhat diminish KYNA affinity to NR2 subunits
relatively to NR1.

KYNA – Arg Coulomb interaction must be important for
ligand binding and orientation within receptor site. The
absolute value of Coulomb energy at ε=4 (the approximate
value for protein hydrophobic core) is still very high: EMP2

is −141.3 kJ mol-1, compared to −438.2 kJ mol-1 at ε=1.
Quantum 3.3.0 gives smaller values of electrostatic energy
for ligand-receptor interaction (Table 4). The difference of
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electrostatic energy between NR1 – KYNA and NR1
Arg131/Ala – KYNA is 37.32 kJ mol-1: the total energy
gain is close to stacking energy values. At least 2 HBs with
water molecules can be formed by free ionic groups of both
Arg andKYNA (EMP2 in vacuum is ∼−84 and −113 kJ mol-1,
respectively) which are disrupted after the ligand-receptor
complex formation. We propose that Quantum 3.3.0
value (∼ −38 kJ mol-1) is close to actual ligand-receptor
electrostatic binding energy. Thus, the energy value of
stacking within the receptor site is of the same order as that
of Coulomb interaction. The electrostatic contribution to the
EBIND sharply decreases upon the permittivity growth.

KYNA and its synthetic derivatives are known to be
pharmacologically active only in the 4-oxo tautomeric form
[13]. The carbonyl group of DCKA forms a HB with water
molecule in receptor binding site [12]. Another HB is
formed between NH group of KYNA in oxo form and
backbone C=O group of receptor Pro/Ser. In agonist
glycine N atom is in sp3-hybridization and hydrogen of
NH3 group is directed toward carbonyl O of Pro. In KYNA
NH group is located within the plane of aromatic system
(Fig. 1). As shown via Quantum MD simulation, KYNA
keeps rotating until N-H and C=O groups form the straight
line.

We used a rather simple model, the complex of KYNA
with iGluR subunit, to illustrate the impact of stacking
interaction in ligand-receptor complex formation. These
effects may be even more important for other molecular
systems – receptors, izozymes or other structurally related
proteins, where the binding specificity and activity depends
on the local variations of functional aromatic amino acids.
Stacking interaction, its EBIND and geometry should be
considered while developing new drugs with a specific
action toward certain molecular targets, or when construct-
ing new proteins with special binding functions. The
insertion of polar atoms into the ring structure not only
enhances its affinity to binding site residues, but also
governs its rotational and spatial position. This might be
crucial for fine tuning of the complex bonds pattern.
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Abstract The molecular structures and absorption spectra
of triphenylamine dyes containing different numbers of
anchoring groups (S1-S3) were investigated by density
functional theory (DFT) and time-dependent DFT. The
calculated geometries indicate that strong conjugation is
formed in the dyes. The interfacial charge transfer between
the TiO2 electrode and S1-S3 are electron injection
processes from the excited dyes to the semiconductor
conduction band. The simulated absorption bands are
assigned to π→π* transitions according to the qualitative
agreement between the experimental and calculated results.
The effect of anchoring group number on the molecular
structures, absorption spectra and photovoltaic performance
were comparatively discussed.
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Introduction

Nanocrystalline dye-sensitized solar cells (DSSCs) have
attracted much attention as promising alternatives for the
photovoltaic conversion of solar energy owing to their

potentially low fabrication costs, environmentally friendly
components, and relatively high conversion efficiencies [1–6].
The DSSCs typically contain four components: a mesopo-
rous semiconductor metal oxide film (typically TiO2 nano-
particles); a sensitizer (dye); an electrolyte/hole transporter;
and a counter electrode. In these components, the sensitizer
is one of the key components for high solar-to-electric power
conversion efficiencies. The most successful charge-transfer
sensitizers used in DSSCs are ruthenium (Ru) polypyridyl
complexes, yielding conversion efficiencies up to 11-12%
under air mass (AM) 1.5 irradiation [6]. However, the Ru
complexes are facing the problem of costs and environmen-
tal issues, which will limit the large-scale application of
DSSCs [7]. In addition to the Ru complexes, metal-free
organic dyes as sensitizers are also under intensive investi-
gation due to their high molar extinction coefficients, flexible
structural modifications and low costs; and so far some of
them have reached good efficiencies [8–15].

In DSSCs, light-harvesting dyes first absorb visible or
near infrared solar radiation, accompanied by the excitation
of electrons to the excited states. The excited electrons
subsequently are injected into the conduction band (CB) of
the semiconductor, and then transported toward the counter
electrode by electron diffusion through the disordered
network of TiO2. The oxidized dye molecules are regen-
erated by the iodide redox couple or hole-transporter with
the positive charge being transported from the electrolyte to
the platinum counter electrode. Therefore, the performance
of DSSC strongly depends upon the following factors: (1)
Absorption efficiency of the dye sensitizer for solar light
spectrum; (2) Electron injection probability from the
excited state of the dye sensitizer to TiO2 (Efficiency of
the charge separation); (3) Electron transfer probability
from the electrolyte to the oxidized dye [3]. All these
factors are closely associated with the ground and excited
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electronic states of the sensitizer. From this point of view, it
is imperative to investigate the electronic structures of both
ground and excited states of the dye molecule for
understanding the mechanism of the charge separation and
transfer, which are the key processes in this type of solar
cells. In order to design and synthesize more efficient dyes,
it is also necessary to understand the electronic structures of
the existing efficient sensitizers.

Donor-acceptor π-conjugated (D-π-A) dyes possessing
both electron-donating (D) and electron-accepting (A)
groups connected by covalent links (usually π conjugated),
displaying broad and intense absorption spectral features,
are one of the most promising classes of organic sensitizers.
The photoabsorption properties of a D-π-A dye are
associated with intramolecular charge transfer (ICT) exci-
tation from the donor to the acceptor moiety of the dye,
resulting in efficient electron transfer through the acceptor
moiety (such as carboxyl or hydroxyl) from the excited dye
into the semiconductor CB. The charge transfer or
separation between the electron donor and acceptor moie-
ties in the excited dye may facilitate rapid electron injection
from the dye molecule into the semiconductor CB, so that it
would be expected to separate the cationic charge effec-
tively from the semiconductor surface and to restrict
recombination between the photoelectron (the injected
electron) and the oxidized dye sensitizer efficiently. Triphe-
nylamine (TPA) has widely been used as an electron donor
for organic sensitizers due to its excellent electron-donating
capability and aggregation resistant nonplanar molecular
configuration [16]. Aggregation can give rise to self-
quenching, instability of the sensitizer, and reduce the
electron injection efficiency, resulting in low conversion
efficiency of the DSSCs. Recently, Shang et al. [17]
synthesized three TPA-based dyes comprising different
number of anchoring groups (S1-S3, as shown in Fig. 1),
with power conversion efficiencies up to 7.38% under AM
1.5 irradiation.

In this work, to theoretically understand the effect of
anchoring group numbers and sensitized mechanism at a
molecular level, the geometrical and electronic structures of
S1-S3 were studied using density functional theory (DFT),
and the electronic absorption spectra were investigated
based on the time-dependent DFT (TD-DFT) calculations.
DFT has emerged as a reliable standard tool for the
theoretical treatment of the structures as well as the
electronic and absorption spectra. Its time-dependent
extension called TD-DFT can give reliable values for
valence excitation energies with the standard exchange-
correlation functionals. The computational cost of TD-DFT
calculation is comparative to that of a Hartree–Fock based
single excitation theory, such as, configuration interaction
singles (CIS) or time-dependent Hartree–Fock (TD-HF)
method and maintains a uniform accuracy for open-shell

and closed-shell systems. DFT has been extensively used to
study the structures and absorption spectra of sensitizers for
DSSCs [4, 18–34].

Computational method

All calculations were performed with the Gaussian 03
program package [35]. The ground-state geometries were
fully optimized without any symmetry constrains at the
DFT level of theory with Becke’s [36] three parameters
hybrid functional and Lee, Yang and Parr’s correlational
functional B3LYP [37] using a standard 6-31 g(d) basis set
on all atoms. A full natural bond orbital (NBO) analysis
was obtained by using the POP=NBO keyword, along with
a second-order perturbation theory (SOPT) analysis. The
excitation energies and oscillator strengths for the lowest 30
singlet-singlet transitions at the optimized geometry in the
ground state were obtained by TD-DFT calculations using
the same basis set as for the ground state and three kinds of
hybrid functional PBE1PBE, MPW1B95 and BHandHLYP,
respectively. From the calculated results, the UV-vis
absorption spectra were simulated by means of the SWizard
program (Revision 4.6) [38] using a Gaussian convolution
with the full width at half-maximum of 3000 cm-1.
Solvation effects were introduced by the SCRF method,
via the conductor polarizable continuum model (CPCM)
[39, 40] implemented in the Gaussian program, for both
geometry optimizations and TD-DFT calculations.

Results and discussion

Geometries

The sensitizers S1-S3 in this study comprise a triphenyl-
amine donor, thiophene conjugated bridge and different
number of cyanoacrylic acid anchoring groups. The
optimized ground-state geometries of S1-S3 are shown
in Fig. 2, and the selected bond lengths, bond angles and
dihedral angles are listed in Table 1. Most of the
corresponding parameters are in good agreement with the
calculated results for the TPA1 dye (without two butoxy
groups compared to S1) [33], indicating the reasonability
of the present results. All C–C lengths in the thiophene
and phenyl rings are between the distance of a single
bonded C-C and a double bonded C=C, implying that
there exists extensive delocalization throughout the mol-
ecule. The calculated distance between the C atom in
carboxyl and the N atom in aniline is about 10.26Å for
S1-S3, indicating that the distance between the electron
donor and semiconductor surface is practically identical
for these dyes.
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The cyanoacrylic acid group (acceptor) is found to be
fully coplanar with the thiophene bridge, as represented by
the C15-C17-C19-C21 dihedral angle; while the coplanarity
between the diphenylaniline group (donor) and the thio-
phene bridge is destroyed by about 20° due to steric
repulsion between the diphenylaniline and thiophene
groups, as shown by the C7-C9-C12-C13 angle. The
distortion is increased slightly with the increased anchoring
group number from S1 to S3. Thus, it can be concluded that
the donor and acceptor moieties in these dyes are fully
conjugated through the π-bridge. The delocalization in the
conjugate bridge is beneficial to the intramolecular charge

transfer and to the stability of the molecule. The values of
C26-N1-C2-C4 and C27-N1-C2-C3 angles are increased
gradually from S1 to S3, indicating that the anilino groups
are distorted significantly in response to the increased
anchoring group number. The anchoring carboxyl group
(−COOH) is coplanar with the π extended system of the
molecule, as demonstrated by the negligible C15-C17-C23-
O25 values. Therefore, assuming a bidentate bind of the
carboxyl group to the supporting semiconductor’s surface
[41], it could be inferred that the π system of these dyes
most probably lay vertically to the surface, thus giving a
denser package and coverage. In this way, the third
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Fig. 1 Molecular structures of the three organic dyes S1-S3
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Fig. 2 Optimized ground-state
geometries of S1-S3
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cyanoacrylic acid anchoring group in S3 could not bind
with the surface.

NBO analysis

NBO analysis was performed to characterize the intramo-
lecular charge transfer in S1-S3. Table 2 shows the natural
charges of cyanoacrylic acid, thiophene, diphenylaniline
and butoxy groups in S1-S3. There are some charges
transferred from the electron donor (diphenylaniline) to the
electron acceptor (cyanoacrylic acid) through the chemical
bonds of the π-bridge for these dyes. The charge of the
donor shows a remarkable decrease with the increase of
anchoring group number, indicating that the introduction of
more anchoring groups reduces the electron-donating
capability of the donor. The electron-drawing strength of

each cyanoacrylic acid is decreased from S1 to S2 and S3,
as revealed by the decreased charge values of this group.

In order to have a better insight into the nature and
strength of the intramolecular resonance between the
different parts of the molecule, particularly acceptor and
donor moieties, the SOPT analysis of the Fock matrix
within the NBO basis was performed. In the NBO
procedure, the role of electronic delocalization can be
quantitatively evaluated. The directly estimated approach of
π-conjugative stable energies using NBO second order
perturbation analysis will be very helpful to analyze the π-
conjugation strength of S1-S3. The π-conjugation stabili-
zation strength was evaluated by the NBO donor-acceptor
interaction energies which are calculated on the basis of
Lewis- and Pauling-like localized structural and hybridiza-
tion theories and are presented with the classical π-
conjugation concepts by a refinement of NBO analysis.
This interaction energy corresponds to the charge delocal-
ization due to the loss of electronic occupation from the
localized Lewis molecular orbital to the non- Lewis
molecular orbital leading to the distribution of electronic
charge and therefore the perturbation from idealized Lewis
structure description. For a characteristic conjugated π-
bond network with two pairs of conjugated π bonds, the
delocalized molecular orbitals can be pictured using the
refined idealized Lewis structures by NBO donor-acceptor
interaction of πa→πb* and πa→πb*. According to the
perturbation theory, the lowering energy due to πa→πb*
interaction, which is also referred to as the quantum
mechanical resonance energy (denoted as QMRE), is
estimated as [42]:

ΔEð2Þ
ydonor!yacceptor � �2 � Fðacc; donÞ

2

Eacc � Edon
; ð1Þ

where Eacc � Edon is the energy difference of interacting
NBOs and the matrix element and Fðacc; donÞ is the off-
diagonal element associated with the NBO Fock matrix.
The strength of π-type conjugation and its variations by
introducing resonance moieties can be conveniently visual-
ized in terms of the NBO second order perturbation

stabilization energies ΔEð2Þ
ydonor!yacceptor

� �
and the charge

transfer from πa to πb*. The sum of stabilization energies
is chosen as an indicator of the degree of the π-
conjugation. As mentioned above, to prove the reliability
of QMRE as a criterion of π-conjugative strength, we
studied the change of π-conjugation due to the introduc-
tion of conjugated functional groups and changes in
physical properties. According to the NBO donor-
acceptor interaction theory, the charge occupancy of the
π* NBO also indicates the strength of π-conjugation. The
quantities of transferred charge from a given donor to a
given acceptor orbital may be estimated again using

Table 2 Natural charges (e) of different groups in S1-S3

Dyes Cyanoacrylic
acid

Thiophene Diphenylaniline BuO

S1 −0.179 0.081 0.498 −0.200
(−0.200)

S2 −0.152
(−0.152)

0.091
(0.090)

0.315 −0.193

S3 −0.136
(−0.136,
-0.137)

0.097
(0.096,
0.097)

0.118

Table 1 Selected bond lengths (in angstrom), bond angles (in degree)
and dihedral (in degree) of S1-S3

S1 S2 S3

N1-C2 1.3967 1.4104 1.4186

C2-C4 1.4135 1.4086 1.4055

C4-C7 1.3850 1.3882 1.3882

C9-C12 1.4546 1.4590 1.4613

C12-C13 1.3934 1.3906 1.3892

C13-C15 1.3979 1.4002 1.4012

C17-C19 1.4215 1.4248 1.4265

C19-C21 1.3824 1.3797 1.3782

C26-N1-C2 120.8 119.2 120.0

C7-C9-C12 120.8 122.0 121.9

C9-C12-C13 127.9 127.9 127.7

C15-C17-C19 120.3 120.2 120.2

C17-C19-C21 137.3 137.2 137.2

C26-N1-C2-C4 −25.1 −34.0 −41.1
C27-N1-C2-C3 −25.4 −36.3 −41.7
C7-C9-C12-C13 −162.5 −160.3 −159.3
C15-C17-C19-C21 179.9 179.8 179.9

C15-C17-C21-C22 0.2 0.0 −0.1
C15-C17-C23-O25 3.1 1.1 0.4
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elementary perturbation theory arguments, leading to the
following approximate formula:

qdonor!acceptor � 2
Fðacc; donÞ
Eacc � Edon

� �2

ð2Þ

All the NBO parameters from the SOPT analysis are
summarized in Table 3. The charge transfer in S1-S3 is of
chemical significance and essentially one directional, from
the electron-donating to the electron-accepting moiety. The
NBO parameters from the donors to the acceptors decrease
with the increase of anchoring group number, further
confirming that the introduction of more anchoring groups
results in a decrease both in the donor and acceptor strength.
The QMRE sums corresponding to second order perturbation
energy for S1, S2 and S3 are 4770, 7596 and 9896 kcal mol-
1, which drastically rise with the π-conjugation increase from
S1 to S3. As it can be easily observed, as a result of the
introduction of more anchoring groups there is an increased
resonance and stabilization in the molecule, verified by
QMRE corresponding to second order perturbation.

Electronic structures

The dipole moments for S1, S2 and S3 are 18.98, 22.48 and
9.19 Debye, respectively. The polarity of S3 is much lower
than that of S1 and S2, due to its centrosymmetry. The
values of quadrupole moments for S1-S3 are listed in
Table 4, where the average of the diagonal quadrupole
moment tensor elements Qii and unique quadrupole
moment Q are defined as follows:

Qii ¼ ðQXX þ QYY þ QZZÞ=3

Q ¼ QXX � QYY

All the diagonal elements of the quadrupole moment tensor
for S1-S3 are negative, indicating that the negative charge
distribution is farther removed from the molecular center of
the nuclear charges. The off-diagonal tensor elements Qij

vanish whenever the molecule has a plane of symmetry
perpendicular to either one of the coordinates i or j. The
values of the off-diagonal elements QXY and QXZ of S1 are
relatively lower, which can be attributed to its symmetric
plane nearly perpendicular to the x-axis; while the symmetric
plane of S2 is nearly perpendicular to the z-axis, as
demonstrated by the low QXZ and QYZ values.

The frontier molecular orbital (MO) contribution is very
important in determining the charge-separated states of
sensitizers. To create an efficient charge-separated state, the
highest occupied MO (HOMO) must be localized on the
extended donor moiety and the lowest unoccupied MO
(LUMO) on the acceptor moiety. The MO energies and
isodensity plots of S1-S3 are shown in Figs. 3 and 4,
respectively. For S1, the HOMO, lying at −4.90 eV, is
dominated by a delocalized π orbital contribution over the
cyanoacrylic acid group through the diphenylaniline group
whereas the HOMO-1, lying 1.06 eV below the HOMO, is
also delocalized over the entire molecule. The LUMO,
lying at −2.50 eV, is a π* orbital localized from the
cyanoacrylic acid to the nitrogen atom. The LUMO+1,
lying 1.80 eV above the LUMO, is also a π* orbital
localized in the cyanoacrylic acid, thiophene, and dipheny-
laniline groups. For S2, the HOMO, lying at −5.14 eV, is a
π orbital delocalized over the entire molecule except the
butyl group. The HOMO-1, lying 0.90 eV below the
HOMO, is localized in the cyanoacrylic acid, thiophene,
and phenyl groups connected to the bridge. The LUMO and
LUMO+1, lying at −2.72 and −2.53 eV, respectively, are π*
orbitals localized in the cyanoacrylic acid, thiophene, and
phenyl groups connected to the bridge. As to S3, the

Table 3 Conjugative interaction energies (in kcal mol-1) between the π and π* orbitals in S1-S3 from the second-order perturbation theory
analysis of the Fock matrix within the NBO analysis

Dye Donor orbital Acceptor orbital ΔE(2)/kcal mol-1 Eacc-Edon/a.u. F(acc, don)/a.u. qdonor→acceptor/e

S1 π(C2=C4) π*(C7=C9) 61.42 0.46 0.151 0.216

π(C7=C9) π*(C12=C13) 28.97 0.46 0.105 0.104

π(C12=C13) π*(C15=C17) 49.89 0.49 0.143 0.170

π(C15=C17) π*(C19=C21) 49.08 0.53 0.146 0.152

S2 π(C2=C4) π*(C7=C9) 54.27 0.47 0.144 0.188

π(C7=C9) π*(C12=C13) 25.13 0.47 0.098 0.087

π(C12=C13) π*(C15=C17) 46.55 0.50 0.140 0.157

π(C15=C17) π*(C19=C21) 45.91 0.54 0.142 0.138

S3 π(C2=C4) π*(C7=C9) 49.86 0.48 0.139 0.168

π(C7=C9) π*(C12=C13) 23.22 0.47 0.095 0.082

π(C12=C13) π*(C15=C17) 44.57 0.50 0.137 0.150

π(C15=C17) π*(C19=C21) 44.06 0.54 0.139 0.133
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HOMO, lying at −5.31 eV, is delocalized over the entire
molecule; while the LUMO, lying at −2.78 eV, is a π*
orbital localized in two of the three cyanoacrylic acid,
thiophene and phenyl groups, indicating that the third
anchoring group does not work during the HOMO-LUMO
excitation. The LUMO+1, also lying at −2.78 eV, is π*
with major contributions from all the cyanoacrylic acid,
thiophene, and partial phenyl groups.

Apparently, in S1 and S2, the HOMO is quite delocal-
ized on the extended donor moiety, while the LUMO is
essentially centered on the respective acceptor groups.
Thus, the HOMO-LUMO excitation on S1 and S2 induced
by light irradiation could move the electron distribution
from the donor moiety to the anchoring/acceptor moiety.
This orientational spatial separation of HOMO and LUMO
is ideal for DSSCs, as it facilitates rapid interfacial electron
injection from the excited dyes to the TiO2 conduction band
and slows down the recombination of injected electrons in
TiO2 with oxidized sensitizers due to their remoteness.
However, for S3, the electron density movement from the
donor group to the acceptor groups is also significant
during the HOMO-LUMO+1 transition. Both the HOMO
and LUMO energies are computed to decrease with the
increase of anchoring group number, pointing out that the
introduction of more anchoring groups decreases the donor
and acceptor strength (in agreement with the previously
discussed natural charge results). The isodensity plots of
LUMO exhibit a charge transfer to the anchoring acid
group from S1 to S2, indicating that the introduction of

more anchoring groups results in an increased contribution
of the acid group to the LUMO. As a consequence of the
variation of MOs energies, the HOMO-LUMO gap
increases when going from S1 (2.39 eV) to S2 (2.42 eV)
and S3 (2.53 eV), the latter molecules being expected to
absorb at higher energies.

The calculated HOMO and LUMO energies of the
bare Ti38O76 cluster as a model for nanocrystalline are −6.55
and −2.77 eV, respectively, resulting in a HOMO-LUMO gap
of 3.78 eV; while the lowest transition is reduced to 3.20 eV
according to TD-DFT, which is slightly smaller than the
typical band gap of TiO2 nanoparticles [4]. Furthermore, the
HOMO, LUMO and HOMO-LUMO gap of (TiO2)60 cluster
is −7.52, -2.97, and 4.55 eV (B3LYP/VDZ), respectively
[43]. In addition, the edges of the valence band (VB) and
CB of a TiO2 anatase (101) surface are computed at −8.70
and −3.74 eV [44]. Usually an energy gap of more than
0.2 eV between the LUMO of the dye and the CB of the
TiO2 is necessary for effective electron injection [25].
Taking the above data into account, it can be found that
the HOMO energies of these dyes lie above the VB of
TiO2 and the LUMO energies lie above the CB of TiO2.
The above data also reveal the sensitized mechanism: the
interfacial electron transfer between the TiO2 electrode
and the dye sensitizers are electron injection processes
from the excited dyes to the semiconductor CB. This is a
kind of typical interfacial electron transfer reaction [45].
Relatively large energy gaps between the LUMO energies
of these dyes and the semiconductor CB would be
beneficial to the photovoltaic conversion efficiencies.

Absorption spectra

The UV-vis absorption spectra of S1-S3 were measured in
CHCl3 solution, and consist of a very intense and well
isolated absorption band at 510 (33,000 M-1 cm-1), 506
(46,000 M-1 cm-1) and 484 nm (84,000 M-1 cm-1) and of
less intense bands in the UV region, respectively [17]. The
absorption bands are blue-shifted and broadened when
going from S1 to S2 and S3, which is attributed to the
decreased donor and acceptor strength with the increased
anchoring group number.

TD-DFT calculations in CHCl3 solution were performed
with three kinds of hybrid functional PEB1PBE,
MPW1B95 and BHandHLYP based on the optimized
ground-state geometries, taking the 30 lowest spin-

Fig. 3 Frontier molecular orbital energies of S1-S3 together with the
TiO2 anatase (101) conduction band

Table 4 Quadrupole moments
(in Debye·Å) of S1-S3 Dyes QXX QYY QZZ QXY QXZ QYZ Qii Q

S1 −214.3 −353.3 −388.3 −10.9 −17.7 137.0 −318.6 139.0

S2 −396.9 −375.5 −473.5 −103.7 −1.7 −16.3 −415.3 −21.4
S3 −596.3 −454.2 −505.4 −186.4 70.5 13.1 −518.6 −142.1

J Mol Model (2012) 18:1767–1777 1773



allowed singlet-singlet transitions into account. The simu-
lated UV-vis absorption spectra of S1 using the hybrid
functional PEB1PBE, MPW1B95 and BHandHLYP are
shown in Fig. 5 as representative. The hybrid functional
MPW1B95 is more suitable than PBE1PBE and BHandH-
LYP for calculating absorption spectra of these dyes. The
calculated vertical excitation energies and oscillator

strengths along with the main excitation configurations of
these dyes calculated by MPW1B95 are listed in Table 5.
The simulated absorption spectra by MPW1B95 are shown
in Fig. 6. The calculated line shapes and relative strengths
are in satisfactory agreement with those of the experiment,
and the overall spectral blue-shift when going from S1 to
S2 and S3 is also correctly reproduced. The first band of S1

MOs S1 S2 S3

H-3 

H-2 

H-1 

HOMO 

LUMO 

L+1

Fig. 4 Isodensity plots
(isodensity contour=0.02 a.u.)
of the frontier orbitals of S1-S3
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and S2 clearly corresponds to the previously described
HOMO-LUMO transition thus possessing high transition
intensity, and is of charge transfer character as demonstrated
by the electron distribution differences between the HOMO
and LUMO levels in Fig. 4. Since the HOMO and the

LUMO are of the π and π* type, the HOMO-LUMO
transition can be classified as a π-π* intramolecular charge
transfer. The second and less intense band of S1 and S2 also
corresponds to a π-π* transition with a strong HOMO-1 to
LUMO character. For S3, the first band is considered as the

Fig. 5 Simulated absorption spectra of S1 using the hybrid functional
PBE1PBE, BHandHLYP and MPW1B95

Table 5 Electronic transition configurations, computed excitation energies and oscillator strengths (f) for the optical transitions with f >0.05 of the
absorption bands in visible and near-UV region for S1-S3 in CHCl3 at MPW1B95/6-31 g(d) level (H=HOMO, L=LUMO, L+1=LUMO+1, etc.)

Dye Configuration Excitation energy
(eV/nm)

f Assign. Exp.
(nm)

S1 H→L (+89%) 2.36/525.1 1.1564 π→π* 510
H-1→L (+86%) 3.41/363.4 0.4525

H→L+1 (+78%); H→L+2 (+8%) 4.04/306.6 0.2028

H→L+3 (+35%); H-7→L (28%); H-3→L (+16%); H→L+5 (+5%) 4.37/283.5 0.2432

H→L+3 (+54%); H-7→L (+20%); H-4→L (+6%); H-3→L (6%) 4.39/282.6 0.1026

H→L+5 (+61%); H-4→L (+24%) 4.57/271.5 0.1343

S2 H→L (+90%) 2.31/536.8 1.1714 π→π* 506
H→L+1 (+91%) 2.62/472.9 0.7348

H-1→L (+82%) 3.34/371.3 0.8252

H-1→L +1(+53%); H-2→L (31%) 3.45/359.3 0.3306

H→L+2 (+54%); H→L+3 (16%); H→L+4 (+15%) 3.91/316.9 0.0668

H→L+2 (+32%); H→L+3 (+28%); H→L+4 (23%) 4.05/305.8 0.0906

H-6→L (+31%); H-5→L+1 (14%); H→L+4 (+10%); H-7→L+1
(+10%); H-4→L (+8%); H→L+3 (+8%)

4.21/294.8 0.0646

H→L+4 (+33%); H→L+3 (+28%); H-4→L (6%) 4.26/291.1 0.0887

S3 H→L (+55%); H→L+1 (35%) 2.44/509.0 0.9784 π→π* 484
H→L+1 (+55%); H→L (+35%) 2.44/507.8 1.6938

H-2→L (+32%); H-1→L+1 (+28%); H-1→L (17%); H-2→L+1 (+5%) 3.37/367.7 0.2246

H-2→L (+29%); H-1→L+1 (23%); H-2→L+1 (+11%); H-2→L+2
(11%); H-1→L (+9%)

3.39/365.7 1.0171

H-2→L+1 (+29%); H-1→L (+21%); H-1→L+1 (+16%); H-1→L+2
(+13%); H-2→L (6%)

3.40/365.1 0.3470

H-2→L+2 (+74%); H-1→L+1 (5%) 3.76/329.6 0.0675

H-3→L (+54%); H→L+3 (22%); H→L+4 (15%) 4.08/303.6 0.0892

H-3→L+1 (+38%); H→L+4 (+26%); H→L+3 (19%); H→L+5 (7%) 4.09/303.2 0.0828

Fig. 6 Simulated absorption spectra of S1-S3 at the MPW1B95/6-
31 g(d) level
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combination of HOMO to LUMO and LUMO+1 transition,
which probably results from the same energy level of
LUMO and LUMO+1.

The solar-to-electric conversion efficiency (η) of the DSSCs
is calculated from short-circuit current (JSC), the open-circuit
photovoltage (VOC), the fill factor (FF) and the intensity of the
incident light (Pin) according to the following equation [46]:

h ¼ ½JscðmAcm�2Þ�½VocðV Þ�½FF�
PinðmWcm�2Þ ð3Þ

The experimental JSC of these dyes is in the following
order: S1<S2<S3. Generally, the JSC is determined by two
processes: one is the rate of electron injection from the excited
dyes to the semiconductor CB, and the other is the rate of
redox between the excited dyes and electrolyte. The latter one
is very complex and is not taken into account in the present
calculations. On the basis of the analysis of excitation
energies, electronic transition configurations, oscillator
strengths and molecular orbitals of S1-S3 in UV-vis region,
it can be found that the sensitizer with more anchoring groups
have larger oscillator strengths for the most excited states with
intramolecular charge transfer character, giving rise to the
larger light-induced transition probability, the higher total
electron injection rate and thus the larger JSC. The experi-
mental VOC of these dyes decreases in order of S1>S2>S3.
According to the sensitized mechanism (electron injected
from the excited dyes to the semiconductor CB), the energy
gap between the LUMO of the dyes and the CB edge of
semiconductor ELUMO- ECB is denoted as the driving force of
the electron injection, and larger driving force are desirable for
higher VOC [47, 48]. The sensitizer with less anchoring groups
possesses higher ELUMO, thus leading to larger VOC.

Conclusions

A DFT study on the geometrical and electric structures of
three TPA-based dyes with different anchoring group
number (S1-S3) used for DSSC has been performed. The
calculated geometries indicate that strong conjugation is
formed in the dyes, which is of benefit to the intramolecular
charge transfer. The NBO results suggest that there are
some charges transferred from the electron donor (diphe-
nylaniline group) to the electron acceptor (cyanoacrylic
acid) through the chemical bonds of the conjugate
thiophene bridge in the dyes. The introduction of more
anchoring groups leads to a decrease both in the donor and
acceptor strength, but an increased resonance and stabili-
zation in the molecules. The HOMO energy levels are
computed to be −4.90, -5.14 and −5.31 eV, while the
LUMOs are −2.50, -2.72 and −2.78 eV for S1, S2 and S3,
respectively, pointing out that the electron transfer from the

excited dyes to the TiO2 conduction band is possible. The
UV-vis absorption spectra of the dyes have been simulated
by TD-DFT calculations. The absorption bands of the dyes
are assigned to π→π* transitions according to the qualita-
tive agreement between the experimental and calculated
results. The comparative analysis of electronic structures,
spectra and photovoltaic properties point out that the larger
JSC of the sensitizer with more anchoring groups may be
determined by the larger oscillator strengths for the most
excited states with intramolecular charge transfer character;
while the larger VOC of the sensitizer with less anchoring
groups may be deduced by the higher ELUMO. Therefore, the
TPA-based dyes with good performance for DSSC are
required for good absorption properties with intramolecular
charge transfer character in UV-vis region and higher ELUMO.
The incorporation of appropriate numbers of acceptors in the
TPA structure is very important for the molecular design of
new TPA-based dyes with improved performance.
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Abstract InhA, the NADH-dependent 2-trans-enoyl-ACP
reductase enzyme from Mycobacterium tuberculosis
(MTB), is involved in the biosynthesis of mycolic acids,
the hallmark of mycobacterial cell wall. InhA has been
shown to be the primary target of isoniazid (INH), one of

the oldest synthetic antitubercular drugs. INH is a prodrug
which is biologically activated by the MTB catalase-
peroxidase KatG enzyme. The activation reaction promotes
the formation of an isonicotinyl-NAD adduct which inhibits
the InhA enzyme, resulting in reduction of mycolic acid
biosynthesis. As a result of rational drug design efforts to
design alternative drugs capable of inhibiting MTB’s InhA,
the inorganic complex pentacyano(isoniazid)ferrate(II)
(PIF) was developed. PIF inhibited both wild-type and
INH-resistant Ile21Val mutants of InhA and this inactiva-
tion did not require activation by KatG. Since no three-
dimensional structure of the InhA-PIF complex is available
to confirm the binding mode and to assess the molecular
interactions with the protein active site residues, here we
report the results of molecular dynamics simulations of PIF
interaction with InhA. We found that PIF strongly interacts
with InhA and that these interactions lead to macromolec-
ular instabilities reflected in the long time necessary for
simulation convergence. These instabilities were mainly
due to perturbation of the substrate binding loop, particu-
larly the partial denaturation of helices α6 and α7. We were
also able to correlate the changes in the SASAs of Trp
residues with the recent spectrofluorimetric investigation of
the InhA-PIF complex and confirm their suggestion that the
changes in fluorescence are due to InhA conformational
changes upon PIF binding. The InhA-PIF association is
very strong in the first 20.0 ns, but becomes very week at
the end of the simulation, suggesting that the PIF binding
mode we simulated may not reflect that of the actual InhA-
PIF complex.

Keywords Conformational changes . FAS-II pathway .

InhA .Molecular dynamics simulations .Mycobacterium
tuberculosis . Pentacyano(isoniazid)ferrate(II)
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Introduction

The 2-trans-enoyl-ACP (acyl carrier protein) reductase
enzyme (InhA or ENR, EC number: 1.3.1.9) from Mycobac-
terium tuberculosis (MTB) is a member of type II dissociated
fatty acid biosynthesis system (FAS-II) in MTB [1–4]. This
pathway, consisting of monofunctional enzymes and ACP [1],
elongates FAS-I acyl fatty acid precursors to produce the long
carbon chains (50–60 carbons) [2, 5] of the meromycolate
branch of mycolic acids, the hallmark of mycobacterial cell
wall [6]. InhA, a NADH-dependent reductase, has specificity
for long-chain substrates (12–24 carbons) [7], consistent with
its involvement in mycolic acid biosynthesis [8]. InhA has
been shown to be the primary target of isoniazid [9]. Isoniazid
(INH, isonicotinic acid hydrazide), one of the oldest synthetic
antitubercular drugs [10], is a prodrug [11] which is
biologically activated by the MTB catalase-peroxidase KatG
enzyme [12]. The activation reaction promotes the formation
of an isonicotinyl-NAD adduct which inhibits the InhA
enzyme, resulting in reduction of mycolic acid biosynthesis
[4, 5]. Drugs such as INH, ethionamide (ETH), and
pyrazinamide (PZA) require activation for activity against
MTB. Interestingly, both activated forms of INH and ETH
target the InhA enzyme, despite their different activation
processes [13–15]. Based on the mechanism of activation
proposed for INH, via electron transfer reaction [8, 16–18],
an alternative to the self-activation route was proposed for the
design of new drugs for the treatment of wild-type (WT) and
INH-resistant tuberculosis, through the nonenzymatic INH
activation method that mimic the isonicotinyl-NAD adduct
[19]. Efforts to reproduce this mechanism of activation are in
progress and new small molecule compounds have been
suggested, for example: SQ109 diamine-based [20], alkyl
diphenyl ethers [21], pyrrolidine carboxamide analogues [22],
and others [23–25]. These compounds are not expected to be
activated prior to interacting with its cellular target. Within
this approach Basso, Moreira, Santos and collaborators [26–
29] have proposed an INH analog, namely pentacyano
(isoniazid)ferrate(II) that contains a cyanoferrate moiety, a
metal center and the INH ligand [26]. This class of
compounds constitutes a suitable model system for new
perspectives of novel drug development for the treatment of
MDR-TB [27].

The small molecule pentacyano(isoniazid)ferrate(II)
(PIF) is the result of a rational drug design effort to find
alternative drugs capable of inhibiting InhA [4, 5, 26]. PIF
was found to inhibit both WT and INH-resistant Ile21Val
mutants of InhA and this inactivation does not require
activation by KatG [26]. Since crystal structures of the
InhA-PIF binary complex are not available, we performed
computational docking studies to predict the binding mode
(s) of PIF in the InhA active site [27]. For that we used two
crystal structures of InhA: the binary complex with the

NADH coenzyme (PDB ID: 1ENY) [30] and the ternary
complex with NAD+ and a substrate analog (PDB ID:
1BVR) [31]. We found that PIF preferentially occupies the
pyrophosphate and nicotinamide sites in the NAD(H)
binding pocket. However, we could not unambiguously
assign a unique binding mode due to the distinct InhA
active site conformations from the different PDB structures.
We concluded that the flexibility of both, enzyme and
inhibitor, should be taken into account to properly evaluate
their interactions and to conform to the mechanism of slow-
binding inhibition proposed for PIF based on WT InhA
kinetic studies [27]. In a previous molecular dynamics
(MD) simulation study of the NADH interaction with WT
InhA and the mutants Ile21Val and Ile16Thr [31], both
resistant to INH, we showed that InhA is a considerably
flexible enzyme, capable of undergoing the conformational
changes necessary to accommodate either substrate and
inhibitor in an effective manner. Furthermore, we demon-
strated that the mutations lead to conformational changes
that reduced the affinity of the InhA-NADH complex.
These results were soon after confirmed by X-ray crystal-
lographic studies [32]. A recent characterization of PIF
binding to MTB’s InhA, using spectrofluorimetric techni-
ques [28], hinted at the possibility that the quenching in
protein fluorescence upon ligand binding, reported by the
tryptophan amino acid (Trp) fluorescence, is due to
conformational changes in the protein as previously
suggested [27]. The identification of this enzyme’s confor-
mational changes requires a considerable experimental
effort, highlighting the practical value of computer simu-
lations in their prediction. Consequently there is current
interest in the prediction of the three-dimensional (3-D)
nature of InhA-PIF specificity, how the enzyme binds to the
inorganic complex, which conformational changes takes
place upon binding, the effect of these changes on the Trp
residues solvent accessibility, and which amino acid
residues are responsible for PIF binding in the enzyme
active site. We address these issues using computational
methods, including automated molecular docking and MD
simulations. Classical MD simulations make possible the
detailed analysis of the individual movements of the atoms
in the molecules as a function of time, resulting in an ideal
model for understanding the atomic and molecular mech-
anisms involved in the formation of non-covalent enzyme-
ligand complex [33–36].

Methods

The initial structure of the complex

We obtained the initial structure of WT InhA from the first
crystal structure of the InhA-NADH binary complex (PDB
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ID: 1ENY) determined at 2.2 Å resolution [30]. The
optimized structure of PIF and the Cartesian coordinates
(x, y, z) of the InhA-PIF complex were taken from our
previous molecular docking work, with the initial position
of PIF in the active site of InhA taken from Oliveira et al.
[27] (cluster 4 of Table 1 and Fig. 11e in reference 27). This
cluster was top ranked and contained only one docked
conformation. A simple translation and/or rotation could
easily reproduce any of the other three top ranked clusters
[27].

Although size exclusion chromatography analysis dem-
onstrates that MTB’s InhA biologically active structure is a
homo-tetramer in solution, [37], each monomer binding
cavity works independently. This is due to the fact that the
active sites of the four monomers are about 40.0 Å apart from
each other and are facing opposite sides in the quaternary
structure. Hence, in this work, for all modeling and
simulations, we use the InhA monomer (PDB ID: 1ENY).
The all-atom model of the apo InhA enzyme contains 4,009
atoms with a net charge of −3 since His120 is protonated.

Force field and charges for PIF

Pentacyano(isoniazid)ferrate(II) is a new molecule [26] with
28 atoms and unknown charges and force field parameters.
The partial atomic charges of PIF were determined as
described by Oliveira et al. [27], and its force field
parameters empirically derived by comparison with similar
small molecules [38, 39]. To test these parameters, we run
MD simulations of the PIF molecule fully solvated with
TIP3P [39] water molecules at a temperature of 298.16 K.
The initial cell dimensions containing the solute were
30.401×29.770×27.680 Å3 with PIF solvated by a layer of
water molecules of at least 10.0 Å in all orthogonal
directions [40]. The test confirmed the PIF force field
parameters we developed are adequate to be used in the
MD simulation of the InhA-PIF complex. It is important to
point out that the inorganic Fe+2 atom in the PIF molecule is
covalently attached to its cyanide groups (Fig. 1a).

MD simulations

The main MD simulation started from the initial structure
of InhA with the docked PIF inhibitor. InhA in complex
with PIF (InhA-PIF) contains 4,037 atoms and a net
molecular charge of −6, considering His120 protonated in
the crystal structure. Hence, six sodium ions (Na+) were
added to neutralize the net negative charge density of the
complex, which was then immersed in an orthorhombic box
containing a total of 10,502 TIP3P water molecules [39].
The simulation cell dimensions were 77.725×73.328×
77.345 Å3 and the complex was solvated by a layer of
water molecules of at least 10.0 Å in all orthogonal

directions [40]. The simulation cell contained a total of
35,549 atoms. Energy minimization, equilibration and
production phases of the MD simulations were performed
as described earlier [40]. The simulation was computed in a
NPT ensemble at 298.16 K with the Berendsen temperature
coupling [41] and constant pressure of 1.0 atm, with
isotropic molecule-based scaling [42]. The SHAKE algo-
rithm [43] was applied, with a tolerance of 10−5 Å, to fix all
bonds that contained a hydrogen atom, allowing the use of
a 2.0 fs time step in the integration of the equations of
motion. No extra restraints were applied after the equili-
bration phase. Periodic boundary conditions were applied,
with electrostatic interactions between non-bonded atoms
evaluated by the particle-mesh Ewald (PME) method. The
Lennard-Jones interactions were evaluated using a 9.0 Å
atom-based cutoff [44]. Four independent molecular sys-
tems’ simulations were generated. The first one consisted of
a 70.0 ns simulation of the PIF molecule alone in a neutral,
with three Na+ ions, aqueous solution. The apo InhA
enzyme consisted of the second one and the third was
composed by the binary complex InhA-PIF. For these two
simulations, data were collected for 25.0 ns. From the
InhA-PIF MD simulation we built the fourth simulation,
named InhA-PIF(−). For this simulation we removed the PIF
molecule and three Na+ counter-ions “on-the-fly” from the
third system (InhA-PIF) at 10.0 ns. The InhA-PIF(−) system
was then allowed to relax for another 15.0 ns. “On-the-fly”
[31] means that we modified the InhA-PIF molecular
system and continued the MD simulation without reassign-
ment of velocities.

Snapshots were collected at every 0.5 ps for analysis. All
MD simulations were performed with the SANDER module
of AMBER9 [42] using the ff99SB force field [45]. The
stability of the simulations were analyzed in terms of the
convergence of energy components, secondary structure
content, solvent accessible surface area (SASA), radius of
gyration (Rgyr), and the root-mean-squared deviation
(RMSD) [46] from the initial, crystal structure (PDB ID:
1ENY). The tetramer structures for the InhA enzyme were
generated using the symmetry operators available in the
crystal structure (PDB ID: 1ENY) at the protein interfaces,
surfaces and assemblies (PISA) web server of the EBI (http://
www.ebi.ac.uk/pdbe/prot_int/pistart.html) [47].

Analysis of the MD simulation trajectories

The MD simulation trajectories were visually monitored
with the computer graphics software VMD [48]. Individual
3-D structures were further analyzed with Swiss-PdbViewer
[49] and their illustrations prepared with the PyMOL
molecular graphics system [50]. There are many different
ways to evaluate the nature of intermolecular interactions or
recognition, including making predictions of the estimated
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free energy of binding, involved in protein-ligand affinity.
In this work intermolecular recognition is evaluated by
analyzing the total number of direct non-bonded interac-
tions, i.e., hydrogen bonds (HB) and hydrophobic contacts
(HC). Although waters play a major role in intermolecular
recognition, here water-mediated H-bond interactions are
not being considered. The total number of direct H-bonds in
the InhA-PIF complex was calculated with the HBPLUS
program [51] using a maximum donor-acceptor atoms’
distance of 3.4 Å and a minimum angle of 90.0º. We used
the program LIGPLOT [52] for plotting H-bonds and HCs.
PROMOTIF [53] was used to evaluate the InhA secondary
structure pattern along the MD simulation trajectories.
NACCESS [54] was used to calculate the SASA parameters
of the Trp amino acid residues. The RMSD and the radius
of gyration (Rgyr) were calculated with the Ptraj module of
AMBER9 [42]. For all comparative analyses we used as
reference the initial crystal structure (PDB ID: 1ENY).
Graphics and statistical analyses were performed with
Origin 7 Scientific Graphing and Analysis Software
(Microcal Software, OriginLab, Northampton, MA). We
also developed in house Python-based software to automate
the analysis of the 270,000 snapshots generated by the four
MD simulations described in this work. In the analyses, we
adopted the PDB [55] numbering scheme of the reference
structure with amino acid residues represented by a three-
letter code.

Results and discussion

Tests of the PIF parameters

To test the empirically derived PIF force field (FF)
parameters, we first performed MD simulation in a water

environment. No extraneous energy values and conforma-
tions were observed. Figure 1b shows the RMSD of the
coordinates of PIF in water with respect to the initial
structure [27]. The all-atoms RMSD fluctuates between 0.3
Å and 2.5 Å along the 70.0 ns simulation. During this time
the PIF molecule reversibly explores four different sets of
conformers (Fig. 1b). These sets are populated with 39,591,
42,076, 28,677, and 29,656 molecules, respectively. Their
RMSD averages 0.5±0.3 Å, 1.3±0.2 Å, 1.8±0.2 Å, and
2.3±0.2 Å, correspondingly. The observed fluctuations are
due to PIF’s intrinsic flexibility mainly due to the ability of
its pyridine moiety to flip about the N6-Fe bond, and the
torsions about the other two rotatable bonds of PIF
(Fig. 1a). The rigid, pentacyanoferrate(II) moiety of PIF
has stable RMSD values during the entire simulation,
converging to an insignificant change of about 0.4 Å.
Altogether, these results demonstrate the stability of the PIF
molecule when free in an aqueous solution. They showed
that its FF parameters are adequate for PIF to be further
explored in other simulation studies. Hence, we simulated
the aqueous InhA-PIF complex. In this simulation the PIF
movements about the N6-Fe and the other two rotatable
bonds are severely restricted by interactions with the amino
acids residues in its InhA’s binding site. As a result the
RMSD of PIF in the complex fluctuates much less, ranging
from 0.4 Å to 1.4 Å (Fig. 2) whilst the rather rigid
pentacyanoferrate moiety RMSD values converged to
0.4 Å, as expected.

InhA conformational features

After the warm-up phase of the MD simulation, the first
120 ps, the enzyme backbone RMSD with respect to the
initial structure of the apo InhA increases slowly and
monotonically to a value close to 2.1 Å about which it

Fig. 1 (a) Ball-and-stick
model of the 3-D structure of
pentacyano(isoniazid)ferrate(II)
(PIF) molecule. The atoms at the
ends of a rotatable bond are
highlighted. The first one is
between the nitrogen atom (N6)
of the pyridine ring and the iron
atom (Fe) of the pentacyanofer-
rate moiety. The second one is
delimited by atoms C8 and C11
and the last one by C11 and N11.
(b) The RMSD as a function of
time for the entire PIF molecule
(black line) and the pentacyano-
ferrate moiety (gray line). The
four molecular structures at the
right illustrate each of the four
sets of conformers adopted by PIF
during the 70.0 ns MD simulation
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remains the entire simulation time with very small fluctua-
tions (Fig. 3). The RMSD for the InhA-PIF complex
(Fig. 3) ranges from 0.7 to 2.9 Å with a median value of
2.1 Å. After the thermalization phase it oscillates in the
region of 1.7 Å remaining so for the next 2.0 ns. Then it
rapidly decreases and stabilizes for another 1.0 ns. After
that period the RMSD stably progresses to higher values
reaching an average of 2.3±0.1 Å in the last 5.0 ns (interval
from 20.0 to 25.0 ns). Because this analysis involved InhA
backbone atoms only, the observed drifting of the RMSD to

higher values suggests that some degree of conformational
change took place in the enzyme structure during the
simulation of the complex. To test whether these changes
were caused by the presence of the ligand, at 10.0 ns PIF
and three Na+ ions were removed from the complex. The
remaining apoenzyme, named InhA-PIF(−), in the simula-
tion box, was allowed to relax for another 15.0 ns. During
this simulation the enzyme backbone RMSD reached a
plateau around 2.5±0.1 Å in the first 4.0 ns, followed by a
gradual decrease over the remaining 11.0 ns, stabilizing at
2.4±0.1 Å in the last 5.0 ns of the simulation. The apo
InhA and the InhA-PIF simulations suggested that the
conformational changes observed in the enzyme were in
fact due to the formation of a tight InhA-PIF complex
during the first part of the simulation (0.0-10.0 ns of the
InhA-PIF complex). It is interesting to notice that, even
after 15.0 ns of simulation, the InhA-PIF(−) system did not
recover from the changes caused by the interaction with PIF
in the first 10.0 ns.

Inspection of other parameters such as the Rgyr and
local secondary structure conservation, points to significant
global and local changes in the InhA-PIF complex. The
Rgyr is a measure of the protein dimension or compactness
and, as the RMSD, is a measure of global structural
changes in a protein. Figure 4 shows that, while for the apo
InhA simulation Rgyr has an average of 17.9±0.1 Å and
fluctuates about the experimental, crystal structure value of
17.9 Å, in the InhA-PIF and InhA-PIF(−) Rgyr averages
18.3±0.1 Å and 18.4±0.1 Å, respectively, for the last 5.0 ns
of their MD trajectories. While these values are statistically
identical, they are different from that of the apo InhA.

Fig. 2 Time dependence of the RMSD of (a) the entire PIF molecule
in the binary InhA-PIF complex (black) and (b) the pentacyanoferrate
moiety (gray). Compared to Fig. 1b, PIF movement is severely
restricted when in the complex with the InhA enzyme

Fig. 3 RMSD of InhA backbone atoms (N, Cα, C, O) with respect to
the initial, crystal structure (PDB ID: 1ENY) along the 25.0 ns MD
simulation trajectory. The gray dashed line indicates the apo InhA
simulation. The light gray represents the simulation of the InhA-PIF
complex, and the black line indicates the InhA-PIF(−) simulation. The
vertical dotted line at 10.0 ns indicates the time at which the PIF
molecule was removed on-the-fly from the InhA-PIF complex. See the
Methods section for details

Fig. 4 Radius of gyration (Rgyr) for the backbone atoms of InhA as a
function of time. The vertical dashed line at 10.0 ns indicates the time
at which the PIF molecule was removed on-the-fly from the InhA-PIF
complex. The horizontal black line indicates the radius of gyration for
the initial, crystal structure (PDB ID: 1ENY). The dark gray line
indicates the apo InhA simulation, the light gray represents the
simulation of the InhA-PIF complex while the black line indicates the
InhA-PIF(−) simulation
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These differences become even clearer when we look at
Fig. 4. From the InhA-PIF simulation, up to 10.0 ns, the
Rgyr changes drastically.

In view of the fact that the RMSD as well as the Rgyr
parameters measure global changes in the enzyme, it is
possible that cooperation of local structural changes that led
to the observed large deviations will take much longer than
15.0 ns to restore the RMSD values of the InhA-PIF(−)

simulation to those of the apo InhA. Because Rgyr was
calculated using the enzymes’ backbone atoms, we hypoth-
esize that these conformational changes could be the result
of local disorder in regular (helices and sheets) and irregular
(turns) secondary structure elements of the enzyme. These
observations lead us to investigate the conservation of
secondary structure in the InhA-PIF and InhA-PIF(−)

systems.
To confirm this hypothesis and to detail the structural

nature of the conformational changes, PROMOTIF [53]
was used to measure the time dependence of InhA
secondary structure (SS) content during the MD simulations
(Fig. 5). These analyses suggest a considerable perturbation
resulting in conversion of regular SS (α-helix mainly) in to
irregular structures (coils) in the InhA-PIF complex. These
alterations can be seen in the tertiary structure (Fig. 6).
Comparing the MD snapshots at 10.0 ns (Fig. 6b) and
25.0 ns (Fig. 6c) with the initial enzyme structure (Fig. 6a)

we notice that these structural changes mainly occur in the
substrate binding loop [7], comprehending helices α6 and
α7, and that the overall Rossmann fold [56–58] of the
enzyme remained unchanged. This result is in agreement
with the X-ray diffraction studies of Sullivan et al. [21].
These authors identified similar changes in MTB’s InhA
3-D structure upon binding of alkyl diphenyl ethers or
triclosan. Our observations are important as they support
the hypothesis that PIF binding to InhA induces a
conformational change [27, 28] albeit, in our models, it is
not directly interacting with the substrate binging site. Up
to 20.0 ns PIF interacts with a site that overlaps with the
NADH binding site (see details below). This observation is
in agreement with the experimental results by Oliveira et al.
[32] which imply that the inhibition mechanism of PIF may
involve interaction to both the NADH coenzyme and the
substrate binding sites [27]. However, after 20.0 ns and in
the last 5.0 ns, PIF abruptly dissociates from the complex
(see details below).

Experimental data on intrinsic InhA fluorescence indi-
cated that PIF binding to the enzyme active site triggers a
conformational change, inducing the formation of a more
stable enzyme-inhibitor complex [28]. This observation is
important since protein fluorescence usually is related to the
solvent accessibility of Trp amino acid side-chains and this
is a suitable method to study protein conformational
changes and interactions with others molecules [59]. To
understand and possibly correlate our data with the
experimental fluorescence results of the InhA-PIF interac-
tion [28], we identified all Trp residues in InhA and
measured their solvent accessible surface area (SASA) in
the initial structure and along the MD simulation.

Changes in SASA of tryptophan residues correlate
with the fluorescence spectra of InhA-PIF complex

MTB’s InhA enzyme has four Trp residues. Trp160 is
located in the A-loop, Trp222 in helix α7, Trp230 is in the
loop between helices α7 and α8, and Trp249 is located in a
loop at the C-terminus. As we are simulating the InhA
monomer, and the InhA biological unit is a tetramer [7],

Fig. 5 InhA secondary structure content (in %) as a function of time
along the MD simulations. The vertical dashed line at 10.0 ns
indicates the time at which the PIF molecule was removed on-the-fly
from the InhA-PIF complex. (a) Content of irregular structures and
coils for the InhA-PIF(−) simulation. (b) The reference helical content
based on the crystal structure (PDB ID: 1ENY). (c) Content of
irregular structures and coils for the InhA-PIF simulation. (d) The
reference coil and irregular structures’ content based on the crystal
structure (PDB ID: 1ENY). (e) Content of α-helices for the InhA-PIF
complex. (f) Content of α-helices for the InhA-PIF(−) simulation. (g)
Content of β-sheet for the InhA-PIF simulation. (h) The reference β-
sheet content based on the crystal structure (PDB ID: 1ENY). (i)
Content of β-sheet for InhA-PIF(−) simulation

Table 1 Trp residues’ solvent accessible surface area (SASA)
analysis. The Trp SASA (in Å2) for each monomer in the tetramer
built from the experimental initial protein structure (PDB ID: 1ENY)
and from the snapshot at 25.0 ns

Trp residue Tetramer’s SASA (Å2)
PDB ID: 1ENY

Tetramer’s SASA (Å2)
for snapshot at 25.0 ns

160 4.62 12.42

222 11.33 0.02

230 17.72 28.43

249 39.51 93.7
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SASA for those Trp residues located in the tetramer
interfaces were not realistic. In a single subunit these
residues are overexposed to the solvent (Fig. 7). Examples
are Trp249 and Trp160, located in the interfaces of the
tetramer subunits. To partially overcome this problem, we
built two InhA tetramers models as described in the
Methods section. One used the initial InhA structure (PDB
ID: 1ENY) for reference purposes and the other the MD
simulation snapshot at 25.0 ns. The total SASA for the Trp
residues were calculated with NACCESS [54] and their
values compared. Trp249 and Trp160, located internally in
the tetramer, have a SASA remarkably reduced when

compared to their values in the monomer (Trp160monomer=
53.02 Å2, Trp160tetramer 0.0 ns=4.62 Å2, Trp249monomer=
189.91 Å2, Trp249tetramer 0.0 ns=39.51 Å2). The SASA of
Trp222 and Trp230 are closer independently of the form of
calculation, (Trp222monomer=15.55 Å2 , Trp222tetramer 0.0 ns=
11.33 Å2, Trp230monomer=23.18 Å2, Trp230tetramer 0.0 ns=
17.72 Å2 ). Hence, we conclude that Trp222 and Trp230
residues are the ones likely to be related to the changes in the
InhA-PIF fluorescence [28]. Table 1 shows the Trp SASA in
the tetramers in the initial structure (PDB ID: 1ENY) and at
the end of the InhA-PIF simulation at 25.0 ns. The
conformational changes affect the SASA of the Trp residues

Fig. 6 Ribbon representation of the tertiary structure of the InhA-PIF
complex (top) and their interactions calculated with HBPLUS and
illustrated with LIGPLOT (bottom). (a) and (d) represent the initial
simulation structure of the InhA-PIF complex; (b) and (e) the snapshot
at 10.0 ns; and (c) and (f) the snapshot at 25.0 ns. The InhA motifs
interacting with the inorganic PIF molecule (in dark blue stick model)
are highlighted in different colors. The substrate binding loop (helices
α6 and α7) is sand color, the A-loop is magenta, and the B-loop is

cyan. At 10.0 ns we can notice a significant perturbation of the
substrate binding loop and some disorder in helix α2, maintained until
the end of the 25.0 ns simulation. In the initial structure PIF makes
hydrophobic contacts and H-bond to nine and one residues of InhA,
respectively. At the end of 10.0 ns PIF makes hydrophobic contacts
and H-bonds to six and four residues of InhA, respectively. Finally, at
25.0 ns, only three residues makes hydrophobic contacts and only one
makes a H-bond
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and consequently the fluorescence. After analyzing the data
more closely we concluded that Trp222 is the one with the
largest reduction in SASA when the tetramer’s models are
compared in the initial and final conformations of the InhA-
PIF complex (Table 1). Figure 8 shows the SASA variation
of Trp222 and Trp230 along the 25.0 ns MD simulations.
Although there is a tendency of the Trp230 SASA to
increase during the dynamics simulation, it is evident that
there is a reduction of the SASA for Trp222, which is located
in helix α7 that, together with helix α6, forms the substrate
binding loop. Most of the structural changes occur in this
motif. Together, these data corroborate the hypothesis that
PIF causes 3-D conformational changes in InhA, thus
agreeing with the findings of Sullivan et al. [21], and
explaining from a structural dynamics standpoint the
experimental studies of Vasconcelos et al. [28].

InhA-PIF association

The initial structure of the InhA-PIF complex was taken
from our previous automated molecular docking studies,
with the initial position of PIF in the active site of InhA
obtained from cluster 4 of Table 1 and Fig. 11e from
Oliveira et al. [27]. In this predicted complex the PIF ligand
made 11 hydrophobic contacts (HCs) with InhA. To obtain
further insight into the PIF-binding mechanism in InhA we
explored their mode of interaction by atomistic MD
simulations. Analysis of the InhA-PIF interactions along

the simulation identified those residues important for PIF
binding. We computed direct H-bonds as well as HCs with
LIGPLOT [52]. Our analyses focused on the number and

Fig. 7 Molecular surface representation of the InhA tetramer built
from the initial structure (PDB ID: 1ENY). The ribbon representation
of the monomers is white colored. The Trp residues are represented by
van der Waals spheres colored in red

Fig. 8 The solvent accessible surface area (SASA) for Trp222 (black)
and Trp230 (gray) as a function of simulation time for the three
simulations: apo InhA, InhA-PIF complex and for InhA-PIF(−). The
horizontal lines show the SASA values in reference tetramer for the
initial structure. The vertical dashed line at 10.0 ns in the InhA-PIF(−)

simulation indicates the time at which the PIF molecule was removed
on-the-fly from the InhA-PIF complex
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nature of the combined H-bonds and HCs interactions as
described in the Methods section. Estimations of free-
energy of binding, and its corresponding enthalpic and
entropic contributions, are out of the scope of this
investigation. Tables 2 and 3 show the percentage of time
H-bonds and HCs, respectively, lasted during the whole
simulation. The values indicate that 13 InhA amino acids
residues make H-bonds to PIF in at least one snapshot
during the 25.0 ns simulation. Residues Ile15, Ser20,
Phe41, Arg43 and Thr196 interact with PIF over 50% of
the time. Hence, they are considered as the most important
residues for InhA-PIF interaction (Table 2). For instance, at
10.0 ns (Fig. 6e) only H-bonds from Arg43 are missing.
Furthermore, 25 residues make HCs with PIF, with Gly14,
Ile15, Ile16, Ser20, Gly40, Phe41, Arg43, Ile47 and Thr196
being the most important, interacting in more than 50% of
the simulation time. These residues are located in the loop
formed between helix α1 and strand β1 (Gly14, Ile15,
Ile16, Ser20), in strand β2 (Gly40, Phe41), in the loop
between strand β2 and helix α2 (Arg43), in helix α2
(Ile47), and in helix α6 (Thr196). Figures 9 and 10 show
the total number of InhA residues making H-bonds and
HCs with PIF as a function of the simulation time.
Approximately five residues make H-bond interactions
with PIF throughout almost the whole simulation time.
Starting at about 20.0 ns this number drops sharply during
the next 5.0 ns (Fig. 9), and at the end of the simulation
there is only one residue (Thr196) making H-bond in the
InhA-PIF complex (Fig. 6f).

The number of residues making HCs drops quickly from
17 to 7 in the first 10.0 ns (Fig. 10). Similarly to the
dynamic behavior of H-bonding residues (Fig. 9), from

Table 2 Hydrogen bonds analysis. Amino acids residues H-bonded to
PIF along the 25.0 ns and during the last 5.0 ns of the MD simulation
expressed as percentage (%) of time

Amino acids that
H-bonds to PIF

% of total time
for 25.0 ns

% of total time for
the last 5.0 ns

Gly14 47.97 19.64

Ile15 76.01 37.97

Ile16 0.05 0.24

Thr17 7.35 35.95

Ser19 0.85 4.24

Ser20 83.57 36.66

Phe41 76.48 45.10

Asp42 1.25 6.24

Arg43 56.84 35.82

Ser94 18.56 0.77

Gly96 0.24 0.09

Arg195 0.24 1.21

Thr196 73.58 87.21

Table 3 Hydrophobic contacts analysis. Amino acids residues making
hydrophobic contacts to PIF along the 25.0 ns and during the last
5.0 ns of the MD simulation expressed as percentage (%) of time

Amino acids making
HCs to PIF

% of total time
for 25.0 ns

% of total time for
the last 5.0 ns

Gly14 83.94 40.71

Ile15 86.48 39.20

Ile16 98.53 94.39

Thr17 10.65 45.86

Ser19 2.56 12.73

Ser20 89.81 52.40

Ile21 14.73 0.06

Ala22 15.11 0.00

Gly40 72.47 30.81

Phe41 93.31 66.54

Asp42 10.69 24.94

Arg43 70.81 70.97

Leu46 0.02 0.12

Ile47 86.42 39.88

Ser94 48.69 20.93

Ile95 6.99 1.14

Gly96 4.75 3.40

Phe97 0.16 0.04

Gln100 0.01 0.00

Met103 0.11 0.53

Met147 1.16 0.00

Arg195 3.11 13.60

Thr196 82.84 92.89

Leu197 21.04 29.39

Ala198 13.83 0.43

Fig. 9 Number of residues making H-bonds to PIF in the InhA-PIF
complex as a function of time. The solid line represents smoothing of
the data to facilitate the visualization
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20.0 to 25.0 ns, the number of HCs-making residues fell
rapidly to a much lower value. At the end of the simulation
time only three residues are making HCs to PIF in the
InhA-PIF complex. This clearly indicates a dissociation of
PIF from the initial InhA-PIF complex. These analyses and
visual inspection of the InhA-PIF MD simulation trajectory
with VMD [48] showed that, after forming a tight binding
InhA-PIF complex during the first 20.0 ns, PIF starts to
dissociate from the complex.

All this data supports the notion that PIF first strongly
interacts with the InhA enzyme, causing large conforma-
tional changes that mostly affect, by diminishing, the
content of regular secondary structures. The fact that the
residues involved in PIF interaction with InhA include
those involved in InhA mutations related to resistance to
INH and other anti-tuberculosis drugs that targets InhA
might explain PIF’s ability to inhibit both wild type and
I21V INH-resistant InhA [27]. In addition to that, PIF
dissociation observed at the end of the InhA-PIF complex
simulation strongly suggests that, despite the strong InhA-
PIF association at the beginning of the simulation, the
initial position of PIF in the binding site adopted for the
initial structure might not be the one expected for this
ligand. This binding site overlaps with that of InhA innate
NADH coenzyme. This is encouraging since many impor-
tant enzymes in humans contain the NAD(P)H coenzyme.
If PIF does not compete with this site, it is likely to be a
promising inhibitor candidate of MTB’s InhA.

Conclusions

There is still no 3-D structure of the InhA-PIF binary
complex to confirm the binding mode and to assess the

molecular interactions PIF makes with the InhA active site
residues which includes those that bind to the NADH
coenzyme and those that make up the substrate binding
cavity. While X-ray crystallography and nuclear magnetic
resonance (NMR) are powerful and the preferred techni-
ques to determine the 3-D structure of enzymes and their
complexes, it is not always possible to obtain single crystals
or NMR solution of macromolecular complexes. Mean-
while, alternative, computational methods, such as molec-
ular docking and fully solvated all-atom MD simulations of
the wild-type InhA enzyme in complex with PIF, can
provide comparable and useful information to help eluci-
date the molecular nature of InhA inhibition by the
inorganic PIF ligand. We also performed MD simulations
of apo InhA enzyme and the InhA enzyme (InhA-PIF(−))
after PIF removal from the initial InhA-PIF complex. These
two simulations served as control simulations. They
showed that the results observed for the InhA-PIF complex
simulation are not an artifact of the method. Our approach
for this work has provided important insights about the
InhA-PIF interactions based on the analyses of the RMSD,
Rgyr, SASA of Trp residues, H-bonds and HCs. We were
capable of identifying all residues that interact with the
inorganic PIF ligand along the simulation, the nature of
these interactions, whether H-bonds and/or HCs, and details
of the conformational changes undergone by InhA upon
PIF binding. The PIF compound appears to be a promising
candidate to further antitubercular drug development and
may represent a new class of lead compounds since it needs
no activation by KatG or other enzyme, and furthermore,
there is no need for the formation of any kind of adduct
with the coenzyme NADH to bind to its molecular target,
the M. tuberculosis InhA enzyme [26]. From this work, we
can conclude that PIF strongly interacts with InhA and that
these interactions leads to macromolecular instabilities
reflected in the long time necessary for simulation
convergence. The instability caused by the PIF interaction
with InhA is mainly due to perturbation of the substrate
binding loop, particularly the partial denaturation of helices
α6 and α7. We also found that residues Gly14, Ile15, Ile16,
Ser20, Gly40, Phe41, Arg43, Ile47, and Thr196 are
responsible for the strong InhA-PIF association in the first
20.0 ns of the simulation. During this period, PIF directly
competes for the NADH binding site. However, because at
the end of the simulation PIF is almost completely
dissociated from the InhA-PIF, we conclude that the mode
of InhA-PIF interaction we simulated in this work may not
reflect the actual InhA-PIF binding mode. It is worth
remembering that the initial position of PIF in the InhA-PIF
complex investigated here overlapped with the NADH
binding site. We have also been able to correlate the
changes in the SASAs of the Trp residues with the recent
spectrofluorimetric investigation of the InhA-PIF complex

Fig. 10 Number of residues making HCs to InhA-PIF as a function of
time. The solid line represents smoothing of the data to facilitate the
visualization
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[27] and confirm their suggestion that the changes in
fluorescence are due to InhA conformational changes upon
PIF binding. Work underway in our laboratory is now being
able to explore other possible InhA-PIF binding modes, as
well as with other ligands. One possibility is to have PIF
directly bound in the substrate binding cavity. As future
work we will perform MD simulation of such complexes in
order to provide knowledge and support to further the use
of PIF as a lead compound to develop alternative treatment
for tuberculosis using MTB’s InhA as a target. Finally, we
believe that this work constitutes a relevant contribution to
the field of drug design and development with the use of
molecular docking and MD simulations to help elucidate
the binding mode of ligands, or prospective lead com-
pounds, to their target protein receptor.
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Abstract Aldose reductase (ALR2) plays a vital role in
the etiology of long-term diabetic microvascular compli-
cations (DMCs) such as retinopathy, nephropathy and
neuropathy. It initializes the polyol pathway and under
hyperglycemic conditions, catalyzes the conversion of
glucose into sorbitol in the presence of NADPH. Many
ALR2 inhibitors have been withdrawn from clinical trial
studies due to their cross reactivity with other analogues
enzymes or due to impairment with detoxification role of
ALR2. To address these issues we characterized the
possible rationalities behind the selectivity problem
associated with the enzyme-inhibitor interactions. Novel
molecules were designed for the induce fit cavity region
of ALR2. Docking studies were carried out using Glide
to analyze the binding affinity of the designed molecules
for ALR2. The analysis showed that the designed ALR2
inhibitors are selective for ALR2 over its close analogs.
These inhibitors are also specific for the induced cavity
region of ALR2 and do not interfere with the detoxifi-
cation role of ALR2.

Keywords ALR2 . Detoxification . Docking . Induced fit
cavity . Selectivity . Specificity

Introduction

Hyperglycemic condition causes diabetic microvascular
complications (DMCs), majorly affecting nervous system,
kidney and eyes [1]. One of the key mechanisms
responsible for DMCs is the activation of Polyol pathway
[2]. In normal physiological conditions glucose is phos-
phorylated by hexokinase, whereas in hyperglycemic
conditions the excess glucose becomes the substrate to
initiate the Polyol pathway. Polyol pathway comprises two
consecutive steps. In the first rate limiting step, reduction of
glucose to sorbitol takes place with the help of aldose
reductase (ALR2), that requires NADPH as the cofactor.
The second step is the reduction of sorbitol to fructose by
sorbitol dehydrogenase with NAD+ as the cofactor [3] (Fig.
S1). Kinetic and structural studies showed that glucose acts
as the substrate for ALR2 under intracellular hyperglycemic
condition. Accumulated sorbitol causes osmotic stress, the
underlying mechanism of DMCs like neuropathy, nephrop-
athy and retinopathy. Thus, the inhibition of ALR2 is an
effective approach for prevention of DMCs. ALR2 has been
gaining increasing attention in the last two decades as a
promising therapeutic target, as it is involved in the etiology
of a variety of pathologies that comprise major health
problems of the 21st century [4–12]. Intense efforts have
been directed toward the development of effective aldose
reductase inhibitors (ARIs) that can be effective in
addressing diabetes microvascular complications (DMCs)
though with little success. Thus, it is very challenging to
develop novel chemotypes with rich pharmacokinetic
profile and fewest side-effects. Many ALR2 inhibitors have
successfully reached various clinical trial phases but most
of them were withdrawn either due to severe adverse effects
produced by them or their inefficacy [13].
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Aldose reductase (ALR2) is a monomeric (α/β)8-barrel
protein of aldo-keto reductase (AKR) super family and a
close paralog of aldehyde reductase (ALR1) [14]. ALR1
and ALR2 have similar molecular weight and substrate
specificity. Moreover the two enzymes are supposed as
isoenzymes [15, 16]. Both the enzymes share 65%
sequence identity between them and the catalytic active
site residues like Tyr48, His110 are also conserved for two
enzymes [17]. Consequently, many ALR2 inhibitors like
sorbinil and tolrestat also inhibit ALR1 [18]. Besides,
ALR2 and ALR1, tolrestat is also present as a cocrystal
complexed with AKR1B10 [19]. This non-selective binding
seems the primary cause for the side effects produced by
ALR2 inhibitors [20]. Hence the newly designed inhibitors
must be selective for ALR2 over ALR1 and AKR1B10 to
eliminate their undesired effect. In addition to sorbinil like
non selective inhibitors, there are other ALR2 inhibitors,
which are more selective toward ALR2. The adverse effect
associated with the latter type of ALR2 inhibitors remains
to be an obstacle in the drug development process. The
withdrawal of selective ALR2 inhibitors from clinical trial
studies encourages us to figure out the exact cause for
toxicity associated with current ALR2 inhibitors.

The structural analysis of ALR2 revealed that the active site
residues are more suitable for making hydrophobic interac-
tions with the substrate rather than the H-bonding interactions
which is characteristic of the majority of the sugar binding
proteins [21, 22]. Literature reveals that ALR2 catalyzes the
reduction of toxic metabolite products of the membrane
lipids. The inhibition of ALR2 leads to the accumulation of
lipid peroxidation products contributing to cytotoxicity [23].
Thus, in normal physiological conditions, the role of ALR2
may be detoxification of toxic metabolites instead of
reduction of glucose. For example, methylglyoxal, a toxic
2-oxo-aldehyde is detoxified via reduction in the presence of
ALR2. Hence the alteration of aldehyde-detoxifying role of
ALR2 may be one of the reasons for withdrawal of current
ALR2 inhibitors. Therefore, the aim of the current study is to

focus on the selective inhibition of ALR2 to prevent binding
of glucose to the active site region without interfering with
the detoxification role of ALR1, ALR2 and AKR1B10.

To explore the above aspects further, we carried out
preliminary comparative crystal structural analysis of ALR2
complexes. Studies of various high resolution ALR2 co-crystal
structures enable us to look into the active site of ALR2 in a
more detailed manner (Fig. 1). Thr111 residue demarcates the
active site in two main regions. The rigid anion binding site
consists of Tyr48 and His110, the charged catalytic residues,
responsible for the detoxification mechanism of ALR2 [24].
The other region consists of highly flexible C–terminal loop,
which extends when inhibitors like zopolrestat with an extra
aromatic ring system bind to it. The latter leads to opening of
an induced cavity region in ALR2. The comparative crystal
structure analysis of human proteins similar to human ALR2
revealed that the induced cavity region is selective for ALR2
over other close paralogs like ALR1 and AKR1B10 [25].

In the present study, we have designed the new ALR2
inhibitors, which bind to the induced cavity region and leave
the anion binding site free for detoxification. The cross
docking analysis proves the concept that the newly designed
inhibitors have better binding profile for ALR2 over ALR1
and AKR1B10. Moreover, the newly designed inhibitors
prevent the binding of glucose to ALR2 thus avoiding its
reduction to harmful sorbitol. This study supports the
optimization of withdrawn ALR2 inhibitors and thus aids in
drug development process. In the future, the newly designed
inhibitors will be checked for their inhibitory activity and the
lead molecules will further be optimized.

Materials and methods

Sequence based profile search

Human ALR2 protein sequence information was retrieved
from Kyoto encyclopedia of genes and genomes) (KEGG)

Fig. 1 Human ALR2 (ribbon
model) showing the active site
region in surface view. The red
color corresponds to anion bind-
ing region and green color repre-
sents the induced cavity region
(Left). On the right, enlarged view
of active site region is displayed.
The catalytic residues (i.e., Tyr 48
and His 110) in anion binding
region are displayed in stick
model. The rest of the residues
are shown in line model. Trp111
demarcating the two cavities is
also shown in stick model
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(KEGG I.D. → hsa:231) gene database [26]. Sequence
similarity Database (SSDB) of KEGG was used to
characterize the orthologs to human ALR2 in various
organisms [27]. The orthologs from higher eukaryotes with
greater than 70% sequence identity to ALR2 were
exclusively considered for further analysis (Table S1). Thus
screened 14 protein orthologs and human ALR2 were
subjected to multiple sequence alignment (MSA) using
ClustalX program [28]. The generated multiple sequence
alignment was used to build Hidden Markov Model (HMM
profile) using HMMER [29, 30]. A default E-value of 10
was taken to develop HMM profile. The human proteome
was downloaded from the NCBI database and the HMM
profile generated in the previous step, was used as query to
search against human proteome. A total of 18 significant
hits obtained in this study were used for further analysis.
The hits include eight AKR super family members along
with 10 hypothetical proteins. The hits were then catego-
rized in various groups based on the sequence similarity to
various isoforms of AKR family members (Table S2).

Comparative crystal structure analysis

The comparative crystal structure analysis involved two
major aspects: the detailed study of human ALR2 structures
bound to various inhibitors and the comparison of ALR2
with other AKR superfamily members (hits obtained in
sequence based profile search). For the first study, the high
resolution human ALR2 co-crystal structures were down-
loaded from PDB [31]. All structures were imported in
SYBYL7.1 [32] and aligned to the holoenzyme (PDB code:
1ADS) structure. The RMSD was calculated with respect to
Cα atoms. To analyze the induced cavity region, cavity
volume analysis of various co-crystal structures was
performed using Q-SiteFinder [33].

To examine the difference between ALR2 and hits
obtained from sequence based profile search, the crystal
structures of representative proteins (bolded in Table S2)
were downloaded from the protein databank (PDB) [31]
and were aligned to ALR2 complexed with zopolrestat
(2FZ8) with respect to Cα atoms in SYBYL7.1 [32].

ALR2: rational drug design and selectivity analysis

The rational drug design for the ALR2 induced cavity
region involved two major steps, i.e., the design of the core
region for induced cavity region to make the molecules
selective for ALR2 followed by elongation with various
linkers to optimally occupy the catalytic site region.

Various heteroaromatic ring systems were tried for
binding to induced cavity region. The X-ray crystal
structures of ALR2 bound with zopolrestat (PDB ID:
2FZ8) was retrieved from RCSB protein databank. The

hydrogens were added and the protein was minimized using
protein preparation wizard of Schrödinger. Charge on
NADP was corrected manually. The designed molecules
were sketched and minimized with LigPrep using the
OPLS2005 force field. The molecules were docked into
the active site of ALR2 using Glide (version 9.0,
Schrödinger, Inc.) in standard precision mode (Glide SP)
[34]. The binding region was defined by a 20Å box
centered around the bound zopolrestat in the active site
region to confine the centroid of the docked ligand. The van
der Waals scaling factor for the nonpolar atoms was set to
0.8 to allow for some flexibility of the receptor. Default
settings were used for the rest of the parameters. Moreover,
no constraints were included during the grid generation.
The top 20 poses were generated for each ligand. The
docking poses were then energy minimized with Macro-
model in the OPLS2005 force field, with flexible ligand
and rigid receptor. Best pose was selected on the basis of
Glide score and the interactions formed between the ligands
and receptor's residues.

The benzothiazole ring portion of zopolrestat was first
docked into the ALR2 followed by various modifications in
it. The ring systems binding well in the induced cavity
region, were further considered for elongation step. The
linkers were designed keeping in mind that they should not
interact in the anion binding region. The newly designed
molecules with connected linkers were then docked in
ALR2 using Glide SP (details mentioned previously).

For validation of toxicity issue, we did the cross-
docking of newly designed ALR2 inhibitors in ALR1
and AKR1B10. The crystal structures for ALR1 (PDB
ID: 2ALR) and AKR1B10 (PDB ID: 1ZUA) were
downloaded from RCSB protein databank. The docking
protocol was the same as in case of ALR2 docking. The
proteins were prepared using protein preparation wizard
of Schrödinger. The charge on NADP was corrected
manually. The rest of the parameters were kept the same
as in ALR2 docking to accurately compare the result.
The best docked pose was selected on the basis of
Gscore and the protein-ligand interactions.

Toxic metabolites: binding studies in ALR2-new inhibitors
complex

The bound zopolrestat was extracted from the ALR co-
crystal structure (PDB ID: 2FZ8). This structure devoid of
zopolrestat (i.e., the holoenzyme), and the one in which
PI_1 was docked were taken for this study. The cofactor
(NADP) was kept intact in both the cases. The binary
(ALR2-NADP) and ternary (ALR2-NADP-PI_1) protein
complexes were prepared for docking using protein
preparation wizard of Schrödinger. The charge on NADP
was corrected manually. Glucose-6-phosphate, and methyl-
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glyoxal molecules were considered as the representative of
toxic metabolites. As the glyceraldehyde-3-phosphate is the
substrate for ALR2 in the case of in vitro assay procedure,
we also included this molecule for our study. The three
molecules were sketched and minimized using LigPrep.
The prepared molecules were docked into the active site of
ALR2-NADP and ALR2-NADP-PI_1 complexes using
Glide (version 9.0, Schrödinger, Inc.) in standard precision
mode (Glide SP). The binding region was defined by a 20Å
box centered around the active site residues, i.e. Tyr48,
His110 and Lys77 to confine the centroid of anion binding
site. No scaling factors were applied to the van der Waals
radii. Default settings were used for all the remaining
parameters. The top 20 poses were generated for each
ligand. The docking poses were then energy minimized
with Macromodel in the OPLS2005 force field, with
flexible ligand and rigid receptor. The best pose was
selected on the basis of Glide score and the interactions
formed between the ligands and hinge region amino acids.

Novel ALR2 inhibitors: ADME prediction

The QikProp program was used to obtain the ADME
properties of the newly designed inhibitors [35]. This
predicts both physically significant descriptors and phar-
maceutically relevant properties. The newly designed
inhibitors were prepared by LigPrep and submitted to
QikProp module of Schrödinger. The program was
processed in normal mode, and predicted 44 properties
for the molecules, consisting of principal descriptors and
physiochemical properties like QPPCaco, #metab, %
absorption and PSA etc. We have considered the MW,
QPPCaco, #metab, % absorption, CNS activity and PSA
for our analysis.

Results and discussion

Sequence based profile search

To get rid of the adverse effects associated with current
ALR2 inhibitors, it is needful to ascertain the human
proteins which are similar to ALR2. Sequence based profile
search is an effective approach to enlist the proteins similar
to ALR2 in human proteins. Total 14 enzymes were
obtained in SSDB-KEGG search as ortholog sequences to
human ALR2. The sequences are from eukaryotes, with
more than 70% sequence identity to human ALR2. Most of
the hit sequences correspond to AKR superfamily members
from various organisms (Table S1). The best hit sequence
was ALR2 from Rhesus monkey (denoted by mcc which
stands for Macaca mulatta; 705957 represent the entry
number) with identity of 0.98 (Table S1). Multiple sequence

alignment (MSA) of human ALR2 protein and the rest of
the 14 sequences are shown in Fig. S2. The active site
residues are conserved among all sequences. The multiple
sequence alignment was used to generate HMM profile.
The HMM profiles are statistical models of multiple
sequence alignments, which are a well-suited methods for
searching databases that uses multiple sequence alignments
instead of single query sequences. Thus developed HMM
profile, was employed for HMM search against human
proteome. The details of various human proteins obtained
in HMM search are given in Table S2. The best scoring hit
obtained was from aldo-keto reductase family 1 member,
B10, i.e., AKR1B10 with a score of 734.3 and it has the
least E-value, i.e., 3.10E-217. The HMM score obtained is
related to the statistical significance of the alignment. A
score of zero is marginal according to the model's statistics.
The higher the score, the better the alignment. The other
hits are AKR1A1 (i.e., ALR1), AKR1D1, AKR1C1-2 etc.
(Table S2). Thus screened, highlighted proteins from
various groups represent that the human proteins have high
similarity to human ALR2 sequence and thus may be
responsible for toxicity caused by current ALR2 inhibitors.
In the light of the above analysis, it is necessary to consider
the structural properties of all representative proteins to
neglect the toxicity issues associated with ALR2 inhibitors.

Comparative crystal structure analysis

The existence of induced fit phenomenon in ALR2 and its
role in inhibitor selectivity encourages us to do the
comparative crystal structure analysis for ALR2. ALR2 is
a structurally well explored target and more than 100 crystal
structures are available in the protein data bank (PDB). The
comparative crystal structure analysis was performed to
study the characteristics of induced fit cavity region and to
choose the best structure out of a hundred ALR2 structures
for further drug designing. The overall structure of the
human ALR2 folds into an eight-stranded α/β-barrel, made
up of 315 amino acids. The active site is located at the C
terminal end of the barrel and cofactor (NADP+) binding
site is located at the adjacent to the active site region. The
active site is demarcated by Trp111 into the catalytic anion
binding site and the induced cavity region. The induced
cavity adopts multiple conformations based on the nature of
bound ligand. The deeply buried catalytic site consists of
Tyr48, Lys77, His110 and Trp111 residues.

Ligands with appropriate aromatic ring system frequent-
ly provoke “induced-fit” adaptations of the induced cavity
making the Trp111 indole moiety to face the protein core
and Ala299, Leu300, and Phe122, to adopt different
rotameric states (Fig. 2). Interestingly, the induced cavity
emerges due to the effect of conformational changes in loop
A which is made up of residues 121–135 and another short
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segment of loop C which is made up of residues 298–303.
Due to this, Phe122 participates in the ligand interactions
and Leu300 acts as a gate keeper between the open and
closed conformation. In complex crystal structure of ALR2
with fidarestat (PDB code: 1PWM) the amide group of
fidalrestat interacts with Leu300 of the short segment which
is susceptible to conformational change. This hydrogen
bonding makes fidalrestat selective for ALR2. S-(1, 2-
dicarboxyethyl) glutathione (DCEG) conjugated bound
ALR2 structure (PDB code: 2F2K) revealed that carboxyl-
ate terminal of glutathione interacts with Tyr48 and His110
of anion binding region while the C-terminal of DCEG
binds to the ALR2 loop C. The analysis of DCEG bound
ALR2 suggests that we can prevent the interaction with
catalytic residues by truncating the carboxylate and similar
groups in newly designed ALR2 inhibitors. It is observed
that the naphthalene group of tolrestat and the benzothia-
zole moiety of zopolrestat fit into the hydrophobic pocket
of ALR2. It suggests that the aromatic ring system is crucial
to induce the cavity in ALR2. The volume analysis of
ALR2 co-crystal structure using Q-SiteFinder reveals that
in the case of zopolrestat bound ternary structure, the
volume is maximal, i.e., 191Å3 (in all other cases the
maximal volume ranges from 120Å3 to 170Å3). Since the
active site consists of a rigid catalytic portion and a flexible
induced cavity region and hence, the difference among
cavity volume is directly correlated to the volume of the
induced cavity. In the case of zopolrestat bound ternary
structure, the maximum volume of active site suggests that
the induced cavity opens to the maximal extent in the case

of zopolrestat bound ALR2 structure. Thus, zopolrestat
bound structure is found to be the best structure to design
specific ligands for ALR2 induced cavity.

Since zopolrestat induces maximum change in the
induced cavity region, it is mandatory to study the
structural features of zopolrestat as well. The analysis of
zopolrestat bound ALR2 structure (PDB ID: 2FZ8)
revealed the essential interactions with the induced cavity
region. The pharmacophoric features of zopolrestat were
analyzed using the phase module of Schrödinger [36]
(Fig. 3). The presence of aromatic ring system in zopolre-
stat and complementary Trp111 conveys the importance of
aromatic system for induced cavity binding. The terminal
trifluoro- group and corresponding Thr113 in ALR2
suggests the importance of electronegative substituent for
H-bonding with ALR2. The presence of electron withdraw-
ing feature in zopolrestat and corresponding backbone NH-
of Leu300 residue in ALR2 suggest the requirement of H-
bonding of Leu300 for strong binding to ALR2 induced
cavity. Besides the interactions with the residues of induced
cavity region, the terminal carboxylic group of zopolrestat
interacts with the catalytic residues of ALR2 thus altering
the physiological detoxification role of ALR2. The newly
designed ALR2 inhibitors must be devoid of any substit-
uent corresponding to terminal carboxylic group of zopol-
restat preventing the interaction with the catalytic site
residues. The comparative analysis of various ALR2
cocrystal structures helps in exploring the induced cavity
region in detail which was useful while designing new
ALR2 inhibitors.

To eliminate the toxicity related issue, we also performed
the structural analysis of hit proteins (obtained in sequence
based profile search) w.r.t. ALR2. For all representative

Fig. 2 Zopolrestat bound ALR2 structure: the eight α/β-barrel
structure, catalytic Tyr48 (shown in sphere model), induced cavity
region (semi-transparent marine blue surface) and bound zopolrestat
(stick model) are displayed

Fig. 3 Pharmacophoric features of zopolrestat. Red → hydrogen
bond acceptor, blue → hydrogen bond donor, orange → aromatic and
green → hydrophobic. Various interactions with protein residues are
displayed as dotted lines
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proteins of each group aligned to ALR2, RMSD value was
less than one (Table S2). AKR6A was an exception with
RMSD value of 2.348 thus not considered for further
analysis. The significant difference in all aligned proteins
was observed in C-terminal region (Fig. S3). The induced
cavity of ALR2 lies in the same C-terminal region. The
structural variation among all aligned proteins was observed
in other portions of the enzymes as well. Since these
locations were distant from active site region, these were not
considered for further analysis. The structural analysis
revealed that there is no cavity region in many of the aligned
proteins corresponding to the induced cavity of ALR2. (Fig.
S3). It is only in the case of AKR1B10 that the similar cavity
was observed. Further alignment of AKR1B10 and ALR2
revealed that in AKR1B10, Gln114 occupies the position of
Thr113 of ALR2 (Fig. S4). Besides Gln114, Leu300
andCys303 of ALR2 were replaced by Val300 andMet303
of AKR1B10 respectively. In light of the above discussion, it
is clear that although AKR1B10 consists of the cavity
corresponding to induced cavity region of ALR2, yet one
can selectively target the ALR2 induced cavity due to
structural difference in the cavity region of two enzymes.

As many ALR2 inhibitors are reported to show adverse
effect as a result of non-selective inhibition of ALR1.
Moreover, AKR2 inhibitors like sorbinil and tolrestat are
also present as co crystallized ligands in ALR1. Thus, we
took care of ALR1 and AKR1B10 both while designing
new ALR2 inhibitors. The comparative structure analysis
leads to the following conclusions which were considered
during rational drug design: 1) ALR2 induced cavity region
is selective for inhibitors binding and is hydrophobic in

nature, 2) Trp111 is the aromatic residue in induced cavity
which is in favorable orientation to make π- π interaction
with the small molecules, 3) Hydrogen bonding with
Thr113, Cys303 and with backbone NH- of Leu300 makes
inhibitors selective to ALR2 over ALR1 and AKR1B10,
thus minimizing toxicity related issues, 4) The anion
binding site should be optimally occupied so that the linear
toxic metabolites can bind to catalytic residues and at the
same time preventing bulkier molecules like glucose
binding to catalytic residues.

ALR2: rational drug design and selectivity analysis

The comparative volume analysis disclosed the volume
difference in induced cavity region for various ALR2 co-
crystals. The significance of induced cavity region for
selectivity and specificity issues and the existence of
maximum volume in induced cavity region for zopolrestat
bound ALR2 (PDB code: 2FZ8) encourages us to use
zopolrestat bound ALR2 structure for the purpose of
designing new ALR2 inhibitors.

The newly designed inhibitors consist of heteroaryl ring
systems connected to optimal linker via a carbonyl linkage
(Table S3). These inhibitors have a high affinity toward the
induced cavity region without any interaction with the
catalytic residues, i.e., with Tyr48 and His110. For most of
the new ALR2 inhibitors, the binding affinity is in good
range of −8 to −10 kcal mol-1 (Table 1). Interestingly the
linker portion of designed inhibitors partly occupies the
anion binding region (Fig. 4a). Thus partly occupied anion
binding site is supposed to prevent the entry of bulky

Table 1 Newly designed ALR2 inhibitors, their docking scores and respective H-bonding residues in various proteins

Molecule ALR2 AKR1B10 ALR1

Gscore H-bonding residues Gscore H-binding residues Gscore H-binding residues

PI_1 −10.49 111,113,300 −6.13 −6.36
PI_2 −10.13 113,113,300 −6.93 298 −7.03 299

PI_3 −9.72 111,113,300 −6.84 301 −6.63 122

PI_4 −9.51 113,300,303 −6.22 301,303 −7.03 80

PI_5 −9.43 111,113,300 −6.4 303 −6.48 299

PI_6 −9.18 113,300,303 −6.96 125 −6.7 122

PI_7 −8.92 111,113,300 −6.22 −6.29 299

PI_8 −8.89 113,300,303 −7.07 303 −6.64 299

PI_9 −8.88 111,113,300 −7.47 303 −7.49 80

PI_10 −8.62 113,300,303 −8.06 303 −7.22 299

PI_11 −8.61 113,300,303 −7.04 −7.15 300

PI_12 −8.54 111,113,300 −7.18 125 −7.09 122

PI_13 −8.53 113,300,303 −7.5 298 −7.42 300

PI_14 −8.39 111,113,300 −6.68 −6.5 122

PI_15 −8.22 111,113,300 −7.34 303 −6.99 122
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glucose and at the same time allow detoxification of linear
toxic metabolites. The latter point is further validated in
binding studies of toxic metabolite section.

The hydrogen boding residues correspond to Thr113,
Leu300 and Cys303 in the induced cavity region. In
addition to H-bonding, all inhibitors make strong π-π
interactions with Trp111. In Fig. 4b, best docked pose of
PI_1 inhibitor is shown. PI_1 has the docking Gscore of
−10.49 kcal mol-1 and it makes H-bonds with Thr113, and
with backbone nitrogen of Leu300. It also shows hydrogen
bonding and π-π interaction with Trp111. None of the
newly designed inhibitor interacts with the catalytic
residues, i.e., Tyr48 and His110 and hence detoxification
role of ALR2 should not be interrupted.

Zopolrestat has better binding affinity to ALR2 (Gscore
−14.31 kcal mol-1) over our designed inhibitors. The study
of zopolrestat bound ALR2 structure suggested the pres-
ence of an extra aromatic ring system in zopolrestat.
Zopolrestat binds to anion binding region as well and
interacts with catalytic Tyr48 and His110 residues thus
altering the physiological detoxification mechanism of
ALR2. Although the docking score of the designed
molecules is less than that of zopolrestat, yet we have
overcome the adverse effect issue by keeping catalytic
residues free for detoxification. Moreover, the docking
score for our designed molecules are in good range (−8 to
−10 kcal mol-1) which can further be optimized in future.

Besides keeping the anion binding site free for detoxi-
fication, the newly designed ALR2 inhibitors should also
not bind to proteins which are highly similar to ALR2 to
get rid of adverse effects. AKR1B10 and ALR1 are the
close analogs of ALR2 predicted from sequence based
profile search. The lower binding score of designed
inhibitors for ALR1 (Gscore −6.3 to 7.5 kcal mol-1) and
AKR1B10 (Gscore −6.1 to 8.0 kcal mol-1) suggests the
lesser binding affinity of the newly designed inhibitors for
close analogs of ALR2 thus further minimizing the risk of
adverse effects.

Toxic metabolites: binding studies in ALR2-new inhibitors
complex

All docking calculations were performed using the
“standard precision” (SP) mode of Glide program and
with OPLS-AA2005 force field. All three toxic com-
pounds in the study were docked in the anion binding
region of ALR2-NADP and ALR2-NADP-PI_1 com-
plexes in separate cases and the binding interactions
were calculated. The estimated docking scores (Gscore)
by the algorithm for these compounds are listed in Table
S4. As shown in Fig. 5c, glucose-6-phophate interacts in
the anion binding site region of ALR2-NADP complex
with a significant docking Gscore of −8.54 kcal mol-
1(Table S4). However, in the case of the ALR2-NADP-
PI_1 ternary complex, glucose molecule could not access
the catalytic pocket, instead it remains on the surface of
the protein and makes irrelevant interaction with Ser302
(Fig. 5c). From the comparative docking analysis, it is
clear that glucose-6-phosphate binds to ALR2-NADP
complex with very high affinity and its affinity decreases
significantly in the case of ALR2-NAPD-PI_1 ternary
complex. (Table S4). Hence, our designed molecules
prevent the reduction of glucose-6-phosphate to harmful
sorbitol formation.

Furthermore, there is no significant difference for the
binding affinity of glyceraldehyde-3-phosphate and meth-
ylglyoxal in ALR2-NADP and ALR2-NADP-PI_1 com-
plexes (Table S4). As shown in Fig. 5, the molecules make
interaction in the anion binding region in both cases and
there is similar H-bonding pattern between these molecules
and Tyr48 and His110 residues. The binding pose of the
molecules was also the same in both cases (i.e., the binary
and ternary ALR2 complex).

Based on the above observation, we can conclude that
our designed inhibitors do not alter the detoxification role
of ALR2 and at the same time, prevent the catalytic
reduction of glucose to sorbitol.

Fig. 4 ALR2 (PDB code:
2FZ8) (a) containing designed
molecules docked in the induced
cavity region leaving Tyr48 and
His110 free for detoxification,
(b) Docking pose of HI_1 in the
induced cavity region

J Mol Model (2012) 18:1791–1799 1797



Novel ALR2 inhibitors: ADME prediction

Potential drug candidates fail in the clinical trials due to their
poor pharmacokinetic profile. Thus, the ability to predict the
ADME (absorption, distribution, metabolism and excretion)
profile would have a great impact on the drug discovery
process. Our designed inhibitors show good ADME profile
(Table S5). As far as the CNS activity is concerned, our
designed molecules are presumably better than the already
reported inhibitors and in few cases it is −2. Out of 15
molecules 10 molecules showed more than 70% absorption.
The predicted polar surface area varies in acceptable range
from 76 to 160, which indicates better water solubility for
newly designed inhibitors. The passive diffusion representative
QPPCaco value varies widely in our designed molecules from
a very low value in the case of PI_11 to a very large value in
case of PI_1. All other molecules except PI_11 lie within the
satisfactory range. The designed molecules are also predicted
to be metabolically stable as the #metab value in the case of
the designed inhibitors ranges from 1 to 3. Thus, based on the
above discussion, it is clear that our designed inhibitors have
good ADME profile, which can further be optimized in future.

Conclusions

In the present study, we tried to understand the molecular
mechanism behind the failure of current ALR2 inhibitors.

We had carried out a sequence based profile search which
revealed ALR1B10 and ALR1 as the close paralogs of
ALR2, thus may be responsible for the current adverse
effect associated with the current ALR2 inhibitors. ALR2
shows the induced fit phenomenon and this induce cavity
region is selective for ALR2 over its close analogs. Thus
new ALR2 inhibitors would be designed for induced fit
cavity region leaving the catalytic site free for detoxifica-
tion. The comparative crystal structure analysis of all
human ALR2 structures revealed that in case of zopolrestat
bound ALR2 the induced cavity opens to the maximal
extent thus is the best structure to design specific inhibitors
for ALR2.

The newly designed ALR2 inhibitors make interac-
tions in the induced cavity region via H-bonding with
Trp111, Thr113 and Leu300. Moreover these inhibitors
do not bind in the anion binding region. The detailed
docking analysis performed on ALR2, complexed with
newly designed inhibitors revealed that they do not
allow glucose to interact with catalytic residues, i.e.,
Tyr48 and His110. Furthermore, the toxic metabolites
make similar interaction with ALR2 holoenzyme as well
as ALR2 bound with newly designed inhibitors. Thus,
newly designed inhibitors are have a better binding profile
for ALR2 and also they do not interfere with the
detoxification mechanism of ALR2. In the future, the
molecules will be checked for their inhibitory activity and
will further be optimized.

Fig. 5 GlideSP docking of (a) Glyceraldehyde-3-phosphate (G3P),
(b) methylglyoxal (MG) and Glucose-6-Phosphate(G6P) in ALR2 [ a
(i) b(i) and c(i) ] and in PI_1 bound ALR2 complex [a(ii), b(ii) and c

(iii)]. Only the active site region of ALR2 is shown in surface view
highlighting catalytic Tyr48 residue in stick model
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Abstract Oximate anions are used as potential reactivating
agents for OP-inhibited AChE because of they possess
enhanced nucleophilic reactivity due to the α-effect. We
have demonstrated the process of reactivating the VX–
AChE adduct with formoximate and hydroxylamine anions
by applying the DFT approach at the B3LYP/6-311 G(d,p)
level of theory. The calculated results suggest that the
hydroxylamine anion is more efficient than the formox-
imate anion at reactivating VX-inhibited AChE. The
reaction of formoximate anion and the VX–AChE adduct
is a three-step process, while the reaction of hydroxylamine
anion with the VX–AChE adduct seems to be a two-step
process. The rate-determining step in the process is the
initial attack on the VX of the VX–AChE adduct by the
nucleophile. The subsequent steps are exergonic in nature.
The potential energy surface (PES) for the reaction of the
VX–AChE adduct with hydroxylamine anion reveals that
the reactivation process is facilitated by the lower free
energy of activation (by a factor of 1.7 kcal mol−1) than that
of the formoximate anion at the B3LYP/6-311 G(d,p) level
of theory. The higher free energy of activation for the
reverse reactivation reaction between hydroxylamine anion
and the VX–serine adduct further suggests that the
hydroxylamine anion is a very good antidote agent for the
reactivation process. The activation barriers calculated in
solvent using the polarizable continuum model (PCM) for
the reactivation of the VX–AChE adduct with hydroxylamine

anionwere also found to be low. The calculated results suggest
that V-series compounds can be more toxic than G-series
compounds, which is in accord with earlier experimental
observations.

Keywords Reactivation . OP-inhibited AChE . Alpha-
nucleophiles . Density functional calculations .

Hydroxylamine anion

Introduction

VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphospho-
nothiolate) is a member of the family of extremely toxic
nerve agents known as the V-series. Due to its nonvolatile
nature, VX is highly persistent compared to G-series nerve
agents [1, 2]. The binding of VX to the enzyme acetylcho-
linesterase (AChE) leads to cause asphyxiation [3]. VX can
enter the system through not only inhalation but also skin
penetration [3]. AChE catalyzes the ester hydrolysis of the
neurotransmitter acetylcholine (ACh) to end synaptic trans-
mission [4–6]. Inhibition of AChE occurs as a consequence
of the phosphylation of the active serine residue with
organophosphorus compounds [7–9]. AChE inhibition
results in acetylcholine accumulation at cholinergic receptor
sites, thereby excessively stimulating the cholinergic recep-
tors. This can lead to various clinical disorders, and
occasionally death. Therefore, the reactivation of organo-
phosphorus compound inhibited AChE is required in order
to make its catalytically active in the hydrolysis of ACh
again. The inhibited AChE may further undergo an “aging”
process that normally involves dealkylation or deamidation,
depending upon the nature of organophosphorus compounds
attacked, and is irreversible in nature [10–12]. Therefore,
there is a need to create efficient reactivating agents for OP-
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inhibited AChE. Computational methods offer a way to
discover such reactions [3, 12–24] while avoiding exposure
to these deadly agents, and are thus very useful for proposing
new nucleophiles with superior efficiency for inhibited
AChE reactivation. It has been reported that α-nucleophiles
such as oximes are capable of reactivating organophosphate–
cholinesterase conjugates, giving rise to the free enzyme
[22]. In our previous studies, we reported that hydroxyl-
amine anion (NH2O

−) is an efficient α-nucleophile for the
detoxification of organophosphorus compounds such as VX
and sarin [20, 21]. In this article, we report the reactivation
efficacy of NH2O

− towards the VX–serine adduct.

Computational methodology

All geometries were optimized using the B3LYP [25–27]
density functional and the 6-311 G(d,p) basis set. Harmonic
frequency calculations at the same level were used to
confirm the stationary points and to calculate thermody-
namic corrections. The Gibbs free energy is particularly
relevant to calculations of activation energies, and can be
obtained from the equation G = H − TS. Therefore, the
Gibbs free-energy profiles were plotted against the reaction
coordinates of geometries involved in the reactivation
process at the B3LYP/6-311 G(d,p) level of theory. The
reaction coordinates in the present study are bond making
between the nucleophilic atom and the phosphorus center
and bond breaking between the phosphorus center and the
leaving group of VX-inhibited AChE (Scheme 1).

The key equation for calculating rate constants from the
Gibbs free energy in the present study is k = (kBT/hc˚)
e−Δ*G˚/RT, where c˚ = 1 and the appropriate values are
simply plugged into the other variables. Single-point
calculations were performed at the B3LYP/6-311 + G(d,p)
level to get accurate energies using B3LYP/6-311 G(d,p)
geometries. Aqueous energies of solvation of the gas-phase
structures were determined with the polarizable continuum
model (PCM) [28–32]. Intrinsic reaction coordinate (IRC)
calculations were performed to connect all of the transition
states with their corresponding minima [33, 34]. Wiberg
bond orders were obtained from NBO calculations. All
quantum chemical calculations were performed using
Gaussian 03, revision E.01 [35].

Results and discussion

Conformational analysis

Initially, an extensive conformational search was performed
for the VX-serine adduct as a model for VX-inhibited
AChE because of its flexibility. The conformational
changes associated with the rotations of the C−O (SC1)
and C−N (SC2) bonds were analyzed by constructing a
two-dimensional potential energy scan using B3LYP/6-
311 G** in the gas phase (Fig. 1). To construct the potential
energy surface representing the effect of the internal
rotations, the C−O and C−N bonds are allowed to rotate
180° in increments of 10°. The two unique lowest-energy
conformers, adducts 1 and 2, were chosen from the
potential energy surface, and the energy difference between
these two conformers was 2.7 kcal mol−1.

The conformational difference between these two VX–
serine adducts is due to the orientation of the –NHCHO
group of the serine moiety. The greater stabilization of
adduct 1 is due to the strong intramolecular hydrogen
bonding between the hydrogen of the –NH group and the
oxygen of the phosphonyl group (Fig. 2). This situation is
similar to that for sarin-inhibited AChE, as we observed
previously [36]. Our close analysis of the crystal structures
(PDB IDs: 1VXO and 1VXR) of VX-inhibited AChE
revealed that intramolecular hydrogen bonding is not present
in any VX-inhibited AChE [37]. To examine the reactivation
process of VX-inhibited AChE, we considered adduct 2,
which closely resembles the observed crystal structures.

Recently, hydroxylamine and its anionic form have been
of considerable interest due to variations in their structural
behavior and reactivity under different reaction conditions
[38, 39]. Among α-nucleophiles, the superior reactivity of
NH2O

− with phosphate esters [40] makes it an important
candidate for exploring the reactivation process of OP-
inhibited AChE. The solvolysis of sarin and VX with
hydroxylamine anion has been found to be a very efficient
way to detoxify such OP compounds [20, 21]. Recent
studies have shown that the reactivation of the sarin-
inhibited AChE adduct with nucleophiles involves addi-
tion–elimination pathways [22, 24]. The reaction energy
profiles generated for formoximate anion and hydroxylamine
anion with the VX-inhibited AChE adduct also follow a

Scheme 1 Reaction pathway for the reactivation process along the reaction coordinates
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similar addition-elimination pathway involving a trigonal
bipyramidal intermediate. In the VX–AChE adduct, we used
a serinemoiety to emulate AChE, as suggested in the literature
[22, 24].

Reactivation with formoximate anion

The reaction energy profile in terms of the Gibbs free
energy at the B3LYP/6-311 G(d,p) level for the reaction

between the VX–serine adduct and formoximate anion is
shown in Fig. 3, and the corresponding stationary points are
depicted in Fig. 4. Two complexes and two intermediate
structures were located as local minima on the potential
energy surface. Three corresponding transition state struc-
tures that link these minima were also located as first-order
saddle points. The intrinsic reaction coordinate (IRC)
calculations connect the transition states to the respective
minima.

Fig. 1 Two-dimensional potential energy surface of the VX–serine adduct in the gas phase, as calculated at the B3LYP/6-311 G** level of theory

Fig. 3 Free-energy (kcal mol−1) profile diagram for the reactivation of
VX–serine adduct 2 with formoximate anion in the gas phase, as
calculated at the B3LYP/6-311 G(d,p) level of theory

Fig. 2 Geometries of two unique conformers of the VX–serine adduct
and their relative energies (kcal mol−1) (gray carbon, red oxygen, blue
nitrogen, white hydrogen, orange phosphorus), optimized at the
B3LYP/6-311 G** level of theory

J Mol Model (2012) 18:1801–1808 1803



The VX–serine adduct and the formoximate anion form
a complex, C1a. The anionic nucleophile and VX–serine
adduct are stabilized through charge dipole type interac-
tions as well as two C–H…O type hydrogen bonds in
complex C1a (Fig. 4). The free energy of activation
computed for the attack of the formoximate anion on the
VX phosphorus atom is 6.9 kcal mol−1 compared to
complex C1a. The formoximate anion approaches opposite
to the oxygen atom of the serine moiety in a slightly
nonlinear fashion (∠O–P–O=165.0°), and the P–ONCH2

bond distance is 2.638 Å (TS1a) (Fig. 4). The Wiberg bond
index calculated for the P–ONH2 bond in TS1a was found
to be 0.09 au, which is about 0.08 au higher than that of
C1a, signifying a stronger interaction in the former case.
After TS1a, the TBP intermediate IN1a is created, which is
4.1 kcal mol−1 stable than TS1a. The P–ONCH2 bond
distance and that between P and the oxygen atom of serine

are 1.953 Å and 1.828 Å, respectively, in IN1a. The
corresponding bond indices of 0.38 and 0.45 reveal the
strengthening and weakening of the corresponding bonds
compared to TS1a.

To stabilize the leaving group, the ethoxy group rotates
toward the serine moiety of the VX–serine adduct through a
rotational transition state TS2a of imaginary frequency
52i cm−1, and forms another TBP intermediate, IN2a
(Fig. 4). The elimination of the leaving serine group is
exergonic in nature, and requires only 1.1 kcal mol−1 of free
energy of activation (TS3a) from the intermediate IN2a.
The Wiberg bond index of 0.50 au for P–ONH2 further
suggests a strong interaction, and the smaller bond index of
0.13 au for the distance between P and the oxygen atom of
serine indicates the expulsion of the leaving group. The
forward-direction intrinsic reaction coordinate (IRC) calcu-
lation for TS3a leads to a complex (C2a) between the OP

Fig. 4 Geometries optimized at
the B3LYP/6-311 G(d,p) level of
theory and selected bond
distances (Å) for the modeled
VX–serine adduct 2 involved in
the reactivation process with
formoximate anion in the gas
phase. Gray carbon, red oxygen,
blue nitrogen, white hydrogen,
orange phosphorus
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moiety and the leaving group, at a distance of 3.826 Å. The
reactivation process that occurs between the formoximate
anion and the VX–serine adduct is governed by the first
step, and the overall process is exergonic in nature at the
B3LYP/6-311 G(d,p) level of theory.

Reactivation with hydroxylamine anion

The reaction energy profile in terms of the Gibbs free
energy at the B3LYP/6-311 G(d,p) level for the reaction
between the VX–serine adduct and hydroxylamine anion is
shown in Fig. 5, and the corresponding stationary points are
depicted in Fig. 6. Again, in this case, two complexes and
two intermediate structures were located as local minima on
the potential energy surface. Three corresponding transition
state structures that link these minima were also located as
first-order saddle points. The IRC calculations connect the
transition states to the respective minima. The VX–serine
adduct and the hydroxylamine anion forms a complex,
C1b. The anionic nucleophile and the VX–serine adduct are
stabilized through charge dipole type interactions as well as two
C–H…O type hydrogen bonds in the complex C1b (Fig. 6).
The free energy of activation computed for the attack of
NH2O

− on the VX phosphorus atom is 5.2 kcal mol−1

compared to the complex C1b. NH2O
− approaches opposite

to the oxygen atom of the serine moiety in a slightly nonlinear
fashion (∠O–P–O=164.0°), and the P–ONH2 bond distance is
2.990 Å (TS1b) (Fig. 6). The Wiberg bond index calculated
for the P–ONH2 distance in TS1b was found to be 0.05 au,
which is about 0.03 au higher than that of C1b, signifying a
stronger interaction in the former case. In this transition state,
N–H…O hydrogen bonding (2.506 Å) was observed between
the nucleophile and the –P=O bond of VX-inhibited AChE
(Fig. 6) besides the C–H…O type interactions.

After TS1b, TBP intermediate IN1b was found to be
14.3 kcal mol−1 more stable than complex C1b. The P–
ONH2 bond distance and that between P and the oxygen
atom of the serine are 1.804 Å and 1.833 Å, respectively, in

IN1b. The corresponding bond indices of 0.52 and 0.46
reveal the strengthening and weakening of the corresponding
bonds compared to TS1b. The hydrogen-bonding interaction
between the nucleophile and the P=O bond of the VX–serine
adduct becomes stronger as the H-bond distance shortens
(1.961 Å) in IN1b (Fig. 6). To stabilize the leaving group,
the ethoxy group rotates toward the serine moiety of the
VX–serine adduct through a rotational transition state TS2b
of imaginary frequency 60i cm−1, and forms another TBP
intermediate, IN2b (Fig. 6). The elimination of the leaving
serine group is exergonic in nature and requires a free energy
of activation of only 0.3 kcal mol−1 (TS3b) from the
intermediate IN2b. The Wiberg bond index of 0.64 au for
P–ONH2 further suggests a strong interaction, and the
smaller bond index of 0.11 au for the distance between P
and the oxygen atom of the serine indicates the expulsion of
the leaving group. The forward-direction IRC calculation for
TS3b leads to a complex (C2b) between the VX moiety and
the leaving group, at a distance of 3.817 Å. The reactivation
process between the hydroxylamine anion and the VX–
serine adduct is also governed by the first step, and the
subsequent steps are downhill in nature. We consider that this
reaction is mainly a two-step process, as the third step is
almost barrierless.

The calculated free energy of activation computed at the
same level of theory for the reaction of hydroxylamine
anion with the VX–serine adduct is 5.2 kcal mol−1, which is
1.7 kcal mol−1 less than that of the formoximate anion. We
have calculated the rate constants from the Gibbs free
energies of activation for the rate-determining steps of the
reactions involving the hydroxylamine anion and the
formoximate anion with the VX–serine adduct. The first-
order rate constants for the reactivation reactions involving
the formoximate and hydroxylamine anions are 5.4 ×
107 s−1and 9.6×108 s−1, respectively. The calculated rate
constant results further indicate that NH2O

− should give a
reaction that is nearly 20 times faster than that given by the
formoximate anion.

The potential energy profile further suggests that the
free-energy activation barrier of the rate-determining step
for inverse reactivation with NH2O

− is 26.3 kcal mol−1,
which is much higher than the corresponding barrier for
inverse reactivation with the formoximate anion (Table 1).
These results also indicate that NH2O

− is a better reactivat-
ing agent for the VX-inhibited AChE.

To examine the effect of solvent, and to better describe
the anions for the reactions between the nucleophiles
CH2NO

− and NH2O
− and the VX–serine adduct, single-

point calculations at the B3LYP/6-311+G(d,p) level were
performed using the polarizable continuum model (PCM)
in aqueous solution. The energetics obtained at the B3LYP/
6-311+G(d,p)// B3LYP/6-311 G(d,p) level for the reaction
between CH2NO

− or NH2O
− and the VX–serine adduct

Fig. 5 Free-energy (kcal mol−1) profile diagram for the reactivation of
the VX–serine adduct 2 with hydroxylamine anion in the gas phase, as
calculated at the B3LYP/6-311 G(d,p) level of theory
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also suggests that the VX–serine adduct is more easily
reactivated by the hydroxylamine anion than by the
formoximate anion (Table 2).

The reactivation of the VX–serine adduct with formox-
imate anion and hydroxylamine anion showed that the
hydroxylamine anion is a better reactivating agent. How-
ever, note that the calculated free energy of activation is
1.7 kcal mol−1 lower with the hydroxylamine anion
compared to the formoximate anion. The reactivation of
the sarin–serine adduct computed for both nucleophiles

suggested similar trends, but reactivation with the hydrox-
ylamine anion was found to be preferred by 4.1 kcal mol−1

over formoximate anion [36]. Overall, hydroxylamine

Table 1 Gibbs free-energy activation barriers at the B3LYP/6-311 G
(d,p) level in the gas phase for the direct and inverse reactivation
reactions in kcal mol−1

Reactivation NH2O
− Oximate

Direct 5.2 6.9

Inverse 26.3 10.5

Fig. 6 Geometries optimized at
the B3LYP/6-311 G(d,p) level of
theory and selected bond
distances (Å) for the modeled
VX–serine adduct 2 involved in
the reactivation process with
hydroxylamine anion in the gas
phase. Gray carbon, red oxygen;
blue nitrogen; white hydrogen;
orange phosphorus)

Table 2 Electronic energies (kcal mol−1) computed at the B3LYP/6-
311+G(d,p) level of theory in the aqueous phase using B3LYP/6-311G(d,
p) gas phase optimized geometries for the reactivation of the VX–serine
adduct with either the formoximate or hydroxylamine anion

B3LYP/6-311+G(d,p)// B3LYP/6-311 G(d,p)

Structure ΔE(CH2NO
−) ΔE(NH2O

−)

C1 0.0 0.0

TS1 5.3 3.9

IN1 6.0 −3.4
TS2 6.2 −0.3
IN2 7.0 −3.3
TS3 10.6 −0.8
C2 4.9 −7.4
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anion seems to be a better reactivating agent for both G-
and V-series compounds, which are responsible for the
inhibition of AChE. The higher free energy of activations
obtained for the reactivation of the VX-serine adduct as
compared to the sarin–serine adduct suggests that the
reactivation of VX-inhibited AChE is more difficult than
that of sarin-inhibited AChE [36]. These calculated results
are in line with the toxic behavior of VX vs. that of sarin
[41]. Results from our preliminary study of the mechanism
of inhibition of a model of AChE by either VX or sarin (a
similar model of AChE was used in both cases) also agreed
with the experimental results reported in the literature [41].
The inhibition process with VX is preferred by a free
energy of activation of 7.7 kcal mol−1 over the inhibition
process with the sarin at the same level of theory. The
higher toxicities of V-series compounds are also indicated
by their nonvolatility. Our calculated results suggest that the
inhibition and reactivation of VX may also be responsible
for the higher toxicities of V-series compounds compared to
G-series compounds.

Conclusions

In the present work, density functional calculations employ-
ing B3LYP/6-311 G(d,p) were performed for the reactiva-
tion of VX-inhibited AChE with either hydroxylamine
anion or formoximate anion. The computed free energy of
activation (5.2 kcal mol−1) for the reactivation of VX-
inhibited AChE is lower with the hydroxylamine anion than
with the formoximate anion. The reactivation process with
formaoximate anion follows a three-step mechanism,
whereas it can be considered a two-step process with
hydroxylamine anion. The activation barriers calculated in
solvent using the polarizable continuum model (PCM) for
the reactivation of the VX–AChE adduct with NH2O

− were
also found to be low. The calculated rate constants and free
energies of activation for the reverse reactivation reactions
of the VX–serine adduct with either formoximate or
hydroxylamine anion suggest that hydroxylamine anion
could be a very good antidote agent for the reactivation
process. The reactivation of the VX–serine adduct with the
formoximate anion or the hydroxylamine anion would be
slower than the corresponding reactivation of the sarin–
serine adduct. The inhibition process also indicates that VX
is more toxic than the sarin compound [41].

Acknowledgments The authors thank the Department of Science
and Technology (DST), New Delhi, India for financial support of this
work. One of the authors, MASK, is thankful to the Council of
Scientific and Industrial Research (CSIR), New Delhi, India for a
fellowship (grant no. NWP-0010). We thank the reviewers for their
comments and suggestions, which have helped us to improve the
paper.

References

1. Yang YC, Baker JA, Ward JR (1992) Decontamination of
chemical warfare agents. Chem Rev 92:1729–1743

2. Somani SM (1992) Chemical warfare agents. Academic, San
Diego

3. Benschop HP, De Jong LPA (1988) Nerve agent stereoisomers:
analysis, isolation and toxicology. Acc Chem Res 21:368–374

4. Kolb HC, Sharpless KB (2003) The growing impact of click
chemistry on drug discovery. Drug Discov Today 8:1128–1137

5. Quinn DM (1987) Acetylcholinesterase: enzyme structure, reac-
tion dynamics and virtual transition states. Chem Rev 87:955–979

6. Shafferman A, Kronman C, Flashner Y, Leitner M, Grosfeld H,
Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D, Harel M,
Silman I, Sussman JL, Velan B (1992) Mutagenesis of human
acetylcholinesterase identification of residues involved in catalytic
activity and in polypeptide folding. J Bio Chem 267:17640–17648

7. Wang J, Roszak S, Gu J, Leszczynski J (2005) Comprehensive
global energy minimum modeling of the sarin–serine adduct. J
Phys Chem B 109:1006–1014

8. Wang J, Gu J, Leszczynski J (2006) Phosphonylation mechanisms
of sarin and acetylcholinesterase: a model DFT study. J Phys
Chem B 110:7567–7573

9. Taylor P, Lappi S (1975) Interaction of fluorescence probes with
acetylcholinesterase site and specificity of propidium binding.
Biochemistry 14:1989–1997

10. Eddleston M, Szinicz L, Eyer P, Buckley N (2002) Oximes in
acute organophosphorus pesticide poisoning: a systematic review
of clinical trials. QJM-Ass Int J Med 95:275–283

11. Berends F, Posthumus CH, Sluys IVD, Deierkauf FA (1959)
Biochim Biophys Acta 34:576–579

12. Wong L, RadićZ, BrüggemannRJM, Hosea N, BermanHA, Taylor P
(2000) Mechanism of oxime reactivation of acetylcholinesterase
analyzed by chirality, and mutagenesis. Biochemistry 39:5750–5757

13. Bermudez VM (2007) Computational study of the adsorption of
trichlorophosphate, dimethyl methylphosphonate, and sarin on
amorphous SiO2. J Phys Chem C 111:9314–9323

14. Bandyopadhyay I, Kim MJ, Lee YS, Churchill DG (2006)
Favorable pendant-amino metal chelation in VX nerve agent
model systems. J Phys Chem A 110:3655–3661

15. Šečkutė J, Menke JL, Emnett RJ, Patterson EV, Cramer CJ (2005)
Ab initio molecular orbital, and density functional studies on the
solvolysis of sarin and O, S-dimethyl methylphosphonothiolate, a
VX-like compound. J Org Chem 70:8649–8660

16. Zheng F, Zhan CG, Ornstein RL (2001) Theoretical studies of
reaction pathways and energy barriers for alkaline hydrolysis of
phosphotriesterase substrates paraoxon and related toxic phospho-
fluoridate nerve agents. J Chem Soc Perkin Trans 2:2355–2363

17. Patterson EV, Cramer CJ (1998) Molecular orbital calculations on
the P–S bond cleavage step in the hydroperoxidolysis of nerve
agent VX. J Phys Org Chem 11:232–240

18. Daniel KA, Kopff LA, Patterson EV (2008) Computational
studies on the solvolysis of the chemical warfare agent VX. J
Phys Org Chem 21:321–328

19. Menke JL, Patterson EV (2007) Quantum mechanical calculations
on the reaction of ethoxide anion with O, S-dimethyl methyl-
phosphonothiolate. J Mol Struct THEOCHEM 811:281–291

20. Khan MAS, Kesharwani MK, Bandyopadhyay T, Ganguly B
(2009) Solvolysis of chemical warfare agent VX is more efficient
with hydroxylamine anion: a computational study. J Mol Graph
Model 28:177–182

21. Khan MAS, Kesharwani MK, Bandyopadhyay T, Ganguly B
(2010) Remarkable effect of hydroxylamine anion towards the
solvolysis of sarin: a DFT study. J Mol Struct THEOCHEM
944:132–136

J Mol Model (2012) 18:1801–1808 1807



22. Wang J, Gu J, Leszczynski J, Feliks M, Sokalski WA (2007)
Oxime-induced reactivation of sarin-inhibited AChE: a theoretical
mechanisms study. J Phys Chem B 111:2404–2408

23. Wang J, Gu J, Leszczynski JJ (2006) Theoretical modeling study
for the phosphonylation mechanisms of the catalytic triad of
acetylcholinesterase by sarin. Phys Chem B 110:7567–7573

24. Delfino RT, Figueroa-Villar JD (2009) Nucleophilic reactivation of
sarin-inhibited acetylcholinesterase: a molecular modeling study. J
Phys Chem B 113:8402–8411

25. Becke AD (1993) Density-functional thermo chemistry. III. The
role of exact exchange. J Chem Phys 98:5648–5652

26. Lee C, Yang W, Parr RG (1988) Development of the Colle–
Salvetti correlation-energy formula into a functional of the
electron density. Phys Rev B 37:785–789

27. Beck JM, Hadad CM (2008) Hydrolysis of nerve agents by model
nucleophiles: a computational study. ChemBiol Interact 175:200–203

28. Tomasi J, Persico M (1994) Molecular interactions in solution: an
overview of methods based on continuous distributions of the
solvent. Chem Rev 94:2027–2094

29. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of
solvated molecules: a new implementation of the polarizable
continuum model. Chem Phys Lett 255:327–335

30. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities
for the computation of solvation free energies by the polarizable
continuum model. J Chem Phys 107:3210–3221

31. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of
molecular structures in solution by the polarizable continuum
model. J Comput Chem 19:404–417

32. Cossi M, Barone V (1998) Analytical second derivatives of the
free energy in solution by polarizable continuum models. J Chem
Phys 109:6246–6254

33. González C, Schlegel HB (1990) Reaction path following in
mass-weighted internal coordinates. J Phys Chem 94:5523–5527

34. González C, Schlegel HB (1991) Improved algorithms for
reaction path following: higher–order implicit algorithms. J Chem
Phys 95:5853–5860

35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant

JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B,
Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada
M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M,
Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE,
Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R,
Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C,
Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P,
Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain
MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K,
Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski
J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I,
Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY,
Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen
W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision
E 01. Gaussian Inc., Wallingford

36. Khan MAS, Lo R, Bandyopadhyay T, Ganguly B (2011) Probing
the reactivation process of sarin-inhibited acetylcholinesterase
with α-nucleophiles: hydroxylamine anion is predicted to be a
better antidote with DFT calculations. J Mol Graph Model
29:1039–1046

37. Millard CB, Koellner G, Ordentlich A, Shafferman A, Silman I,
Sussman JL (1999) Reaction products of acetylcholinesterase and
VX reveal a mobile histidine in the catalytic triad. J Am Chem
Soc 121:9883–9884

38. Kirby AJ, Tondo DW, Medeiros M, Souza BS, Priebe JP, Lima
MF, Nome F (2009) Efficient intramolecular general-acid catalysis
of the reactions of α-effect nucleophiles and ammonia oxide with
a phosphate triester. J Am Chem Soc 131:2023–2028

39. Kirby AJ, Davies JE, Brandão TAS, da Silva PF, Rocha WR,
Nome F (2006) Hydroxylamine as an oxygen nucleophile.
Structure and reactivity of ammonia oxide. J Am Chem Soc
128:12374–123275

40. Kirby AJ, Manfredi AM, Souza BS, Medeiros M, Priebe JP,
Brandão TAS, Nome F (2009) Reactions of alpha-nucleophiles
with a model phosphate diester. ARKIVOC 3:28–38

41. Maxwell DM, Brecht KM, Koplovitz I, Sweeney RE (2006)
Acetylcholinesterase inhibition: does it explain the toxicity of
organophosphorus compounds? Arch Toxicol 80:756–760

1808 J Mol Model (2012) 18:1801–1808



ORIGINAL PAPER

A comparative theoretical study of the catalytic activities
of Au2

- and AuAg- dimers for CO oxidation

Peng Liu & Ke Song & Dongju Zhang & Chengbu Liu

Received: 3 January 2011 /Accepted: 4 August 2011 /Published online: 18 August 2011
# Springer-Verlag 2011

Abstract The detailed mechanisms of catalytic CO oxidation
over Au2

- and AuAg- dimers, which represent the simplest
models for monometal Au and bimetallic Au-Ag nano-
particles, have been studied by performing density functional
theory calculations. It is found that both Au2

- and AuAg-

dimers catalyze the reaction according to the similar mono-
center Eley–Rideal mechanism. The catalytic reaction is of the
multi-channel and multi-step characteristic, which can proceed
along four possible pathways via two or three elementary
steps. In AuAg-, the Au site is more active than the Ag site,
and the calculated energy barrier values for the rate-
determining step of the Au-site catalytic reaction are remark-
ably smaller than those for both the Ag-site catalytic reaction
and the Au2

- catalytic reaction. The better catalytic activity of
bimetallic AuAg- dimer is attributed to the synergistic effect
between Au and Ag atom. The present results provide
valuable information for understanding the higher catalytic
activity of Au-Ag nanoparticles and nanoalloys for low-
temperature CO oxidation than either pure metallic catalyst.

Keywords AuAg- . CO Oxidation . Au2
- . DFT

Introduction

The supported [1–4] and unsupported [5–7] gold nano-
particles have attracted worldwide attention due to their

unusual catalytic activity for oxidation reactions in contrast
to bulk gold since the pioneering findings of Haruta et al.
concerning low-temperature CO oxidation [8–10].
Researchers have shown the catalytic activity of the gold
nanoparticles is sensitive to their size and shape [11–15],
the nature of the support [16–18], and the preparation
methods [19, 20]. During the past decades, extensive
research interest has been paid to improve the catalytic
activity of gold nanoparticles by tuning the particle
morphology, modifying the substrate, and controlling the
pretreatment conditions.

Recently, an alternative strategy to enhance the reactivity
of gold nanoparticles, alloying gold nanoparticles with a
second metal to form a bimetallic gold catalyst (“nano-
alloy”), has attracted significant attention [21–23]. It has
been shown that some Au-based binary-alloy catalysts,
such as Au-Ag [24–27], Au-Pt [28, 29], Au-Pd [30], Au-Cu
[31, 32], and Au-Sr [23], possess better activity and
stability than the corresponding monometallic catalysts for
many important processes, including CO oxidation [24–
27], direct synthesis of H2O2 from H2 and O2 [30], and
CH3OH oxidation [29]. Among these Au-based bimetallic
catalysts, Au-Ag nanoalloy is of particular interest because
Au and Ag atoms are in intimate proximity to each other
(Ag-Ag and Au-Au bond lengths in bulk materials are
2.889 and 2.884 Å, respectively) and thus easy form
nanoalloy. So far, experimental studies [24–27] have
established that the synergistic effect between Au and Ag
leads to the higher activity of Au-Ag nanoalloy for low-
temperature CO oxidation than either pure metallic catalyst.
In particular, Wang et al. [27] found that the alloy
nanoparticles with an Au/Ag ratio close to 1:1 have the
highest activity. On the other hand, the theoretical studies
on the geometrical and electronic structures [33–35] of Au-
Ag binary clusters and on their reactivity toward CO and
O2 [36–38] have also received considerable interest in
recent years. And relevant results have provided useful
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information in elucidating the synergistic effect of catalytic
activity. However, the catalytic mechanism details of Au-Ag
nanoalloy is still not well understood, and our knowledge
about the origin of the exceptionally high activity of Au-Ag
alloy nanoparticles is still far from complete. In recent
years, density functional theory (DFT) has become a
valuable tool for studying the properties of molecules and
materials [39, 40] and for identifying reaction mechanisms
[41, 42]. In this work, we present a comparative theoretical
study of the catalytic activity of Au2

- and AuAg- dimers for
CO oxidation, from which we expect to provide under-
standing to some extent about the synergistic catalytic effect
of Au-Ag nanoalloys. It is known that Au is the most
electronegative metal and the polarization effect are
usually observed in Au and its alloy nanoparticles
supported on substrates, leading to the negatively
charged nanoparticles. Thus the anionic clusters seem
to be appropriate for mimicking the catalytic reactivities
of Au and Au-Ag nanoparticles. In particular, previous
studies [5, 43] show that Au2

- is the smallest unit that can
catalyze CO oxidation. So in the present study, we chose
Au2

- and AuAg- dimers as representative models of
nanoparticles.

Computational details

The catalytic cycles studied in this work are summarized in
Eq. 1. For AuAg- dimer, the reaction branches into the Au-
site catalytic series and Ag-site catalytic series. So we
actually need to perform theoretical calculations for three
catalytic cycle systems.

2COþ O2 ���������������!AuX� X ¼ Au;Agð Þ
CO2 ð1Þ

Calculations were carried out in the framework of
density functional theory (DFT) by use of the hybrid
B3LYP [44, 45] functional as implemented in the Gaussian
03 program package [46]. We chose Los Alamos
LANL2DZ [47, 48] effective core pseudopotentials (ECPs)
and valence double-ζ basis sets for gold and silver atoms,
as well as 6-311+G(d) basis sets for carbon and oxygen
atoms. The structures of the reactants, products, intermedi-
ates, and transition states were fully optimized without any
symmetry constraints. Frequency calculations were carried
out for each optimized structure at the same level to identify
the natures of all the stationary points (minima or first-order
saddle points) and to calculate the zero-point vibrational
energies (ZPEs). Intrinsic reaction coordinate (IRC) [49]
calculations were conducted in both directions (forward and
reverse) from the transition states to the corresponding local
minima to identify the minimum-energy paths. Stability
tests of wave functions [50, 51] for all identified stationary

points have been carried out to ensure that the lowest
energy solutions in the SCF procedures are found. Charge
delocalization has been carried out using natural bonding
orbital (NBO) analysis. All calculations were carried out by
resolving unrestricted Kohn-Sham equations.

Results and discussion

Previous investigations [37, 38, 52] showed that the B3LYP/
LANL2DZ combination is sufficiently accurate for describ-
ing noble-metal systems. To further clarify the reliability of
our calculations, we here provide benchmark calculations of
the geometries, dissociation energies, and vertical ionization
potentials (vertical electron detachment energies for anionic
systems) for Au2

-, AuAg-, CO, O2 and CO2. As shown in
Table 1, all calculated data are in fairly good agreement with
the corresponding experimental results [53–56]. In addition,
we have also calculated the adsorption energy of O2 on Au2

-,
and it is found that the theoretical result, 0.97 eV, is in
reasonable agreement with the corresponding experimental
value (1.01±0.14 eV) [57]. Therefore, we believe that the
level of theory selected in this work can describe the present
systems with acceptable accuracy and precision.

Complexes of Au2
- and AuAg- with O2 and CO

The formation of complexes of Au2
- and AuAg- dimers

with O2 and CO molecules is expected to be the initial step
of CO oxidation. Our calculations considered various
possible geometries where the O2 or CO molecule
approaches the dimers with different orientations, and
different possible spin combinations between the dimers
and O2 molecule. The optimized most stable complexes are
shown in Fig. 1, where the values in parenthesis denote
natural charges of atoms calculated by performing NBO
analysis. The ground states of all these complexes are found to

Table 1 Calculated and experimental bond lengths (d), dissociation
energies (D), and vertical electron detachment energy (vDE) (I) or
vertical ionization potentials (vIP) (II) for Au2

- and AuAg- dimers and
CO and O2 molecules

d (Å) D
(kcal mol-1)

vIP or vDE
(kcal mol-1)

Au-Au- 2.737 (2.58)a 39.85 (44.27)a (I) 46.84 (46.35)a

Au-Ag- 2.772 26.99 (24.90)b (I) 33.01 (32.98)b

C-O 1.128 (1.13)c 249.04 (259.20)c (II) 327.40 (323.07)d

O-O 1.206 (1.21)c 117.30 (120.60)c (II) 292.34 (278.10)d

O-C-O 1.157 (1.16)c 376.25 (389.02)c (II) 318.47 (317.54)d

The experimental data are shown in parentheses. aRef. 50, bRef. 51,
cRef. 52, dRef. 53
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be in their doublets. We see that in all complexes, the dimers
interact with molecules in single-site binding mode (i.e., one
atom of the molecules coordinates with one atom of the
dimers) in a tilted manner, and net electron transfer occurs
from the dimers to molecules. Such bonding mode can
achieve the maximum orbital overlap between the HOMO
of Au2

- (AuAg-) and the LUMO of O2 (CO) to form the
stable complexes. In Fig. 2, we show the HOMO and
LUMO isosurfaces of Au2

- and AuAg- dimmers as well as
O2 and CO molecules. Clearly, the shapes and symmetries of
HOMOs (σ* orbitals) of Au2

- and AuAg- dimmers match the
LUMOs (π* orbitals) of O2 and CO, which can successfully
explain the binding orientations of O2 and CO on Au2

- and

AuAg-, i.e., the molecules must bind to the dimers in a tilted
manner to form the maximum favorable overlay between
their LUMOs and the HOMOs of the dimers.

For AuAg- dimer, O2 can bind to Ag or Au site, forming
complex AuAg--O2 or AgAu--O2. The calculated binding
energies are 30.24 and 17.15 kcal mol-1 for these two
complexes, respectively, indicating that O2 prefers to bind
to Ag-site of AuAg-, where O2 is activated in a larger
extent, as confirmed by calculated longer O-O distance
(1.324 Å) in AuAg--O2 than that in AgAu--O2 (1.307 Å).
Compared to the binding energy of O2 over Au2

- (22.43
kcal mol-1) and the O-O distance in Au2

--O2 (1.309Å), it is
clear that AuAg- is more efficient for activating the

Fig. 2 The HOMO and LUMO
isosurfaces for Au2

- and AuAg-

dimers and O2 and CO
molecules (isosurface
value=0.02)

Fig. 1 Optimized geometries for isolated O2 and CO molecules, and Au2
- and AuAg- dimers, as well as the complexes between the dimers and

molecules. The distances are in Å. The numbers in parentheses are calculated natural charges of atoms (in e)
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dissociation of O2 molecule than Au2
-. The amount of

electron transfer from the dimer to O2 in these three
complexes is 0.844 e in AuAg--O2, 0.793 e in Au2

--O2, and
0.708 e in AgAu--O2. The transferred electrons enter the π*

orbital of O2 to reduce O-O bond strength. While more
electrons are transferred, the larger the O-O distance.

Similarly, for the complexes of AuAg- with CO, our
calculations show that AuAg--CO is more stable than
AgAu--CO (the binding energies of CO over the Ag and
Au sites are 6.01 and 4.47 kcal mol-1, respectively), i.e., the
Ag-site of AuAg- is also more active toward CO binding
than the Au-site. Compared to Au2

-, however, AuAg- seems
to be slightly more inert for CO binding, as indicated by the
calculated larger binding energy (9.70 kcal mol-1) of CO
over Au2

-.
When we compare the relative stability of the complexes

of AuAg- with O2 to those with CO, we see that the
interaction of AuAg- with O2 is stronger than that with CO.
This is also confirmed by the geometrical parameters
shown in Fig. 1. For example, the O-O distance in
AuAg--O2 (1.324 Å) is increased by 9.8 % compared to
that in isolated O2, while the C-O distance in AuAg--CO
(1.171 Å) is only increased by 3.8 % compared to that in
isolated CO, indicating the interaction of AuAg- with O2 is
stronger than that with CO. Thus we conjecture that the CO
oxidation over AuAg- is initiated by activating O2 rather
than CO.

In the following sections, we discuss the detailed reaction
mechanism of the CO oxidation over Au2

- and AuAg-, from
which we expect to provide aid to some extent for
understanding the superior property of binary Au-Ag alloy
catalysts for CO oxidation compared to the corresponding
pure metal catalysts.

The CO oxidation over Au2
-

Early theoretical and experimental studies for the CO
oxidation promoted by Au2

- by Socaciu [5] and Hakkinen
[43] have provided useful information in elucidating micro-
scopic aspects of the CO oxidation mechanism. Our re-
examination for this model system shows comprehensive
potential energy surface details and some new results about
the elementary mechanism. Figures 3, 4, 5 show the
complete mechanism for CO oxidation over Au2

- along four
distinct reaction pathways, I-IV, where the crucial intermedi-
ates and transition states with selected geometrical parame-
ters are given to easily see the structural transition process.

Pathways I and II start from the adsorption of O2 on Au2
-

to form the common superoxo-like complex Au2
--O2. As

shown in Fig. 3, pathway I involves the direct oxygen
abstract by the CO molecule from the pre-adsorbed O2.
After the adsorption of O2 on Au2

-, the coming CO attacks
the adsorbed O2 to give a three-species metastable complex,
IM1Au�2 , which involves the weak binding of CO to the
adsorbed O2 and lies below the reactants by 24.63 kcal mol-
1. Then the CO abstracts an O atom to produce a CO2 via
transition state TS1Au�2 . This process is exothermic by
51.15 kcal mol-1 with a barrier of 17.46 kcal mol-1. Once
the resultant CO2 is released, the newly formed Au2O

- can
immediately trap a second CO molecule to lead to a very
stable complex IM2Au�2 with an energy release of 44.60 kcal
mol-1. In IM2Au�2 , a second CO2 has almost formed, as

shown by the geometry in Fig. 3. The subsequent process is
to release the second CO2 molecule via TS2Au�2 with a small

barrier (1.71 kcal mol-1) and hence complete the catalytic
cycle. The overall reaction is calculated to be exothermic by
137.11 kcal mol-1.

Fig. 3 Calculated energy profile
for the CO oxidation over Au2

-

along the direct oxygen abstract
pathway (pathway I). The total
energy of reactants (Au2

-+O2+
2CO) is taken as zero
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For low-temperature CO oxidation, it is generally agreed
that carbonate species are an important intermediate [58].
Several investigations have observed its formation on
supported and unsupported gold clusters [57–61]. However,
the relevant mechanism is still not fully understood. Here
we studied the CO oxidization pathway involving carbonate
intermediate in detail, as shown in Fig. 4 (pathway II). This
path also starts from the superoxo-like complex Au2

--O2.
By attaching the CO molecule to Au2

--O2, we locate
another metastable complex IM3Au�2 , which lies below the

reactants by 17.63 kcal mol-1. The transition state structure
involved isTS3Au�2 , and the barrier for this process is 14.18

kcal mol-1. In IM3Au�2 , the C atom of CO coordinates to two

O atoms, and the O-O distance in O2 subunit has been
elongated to 1.486 Å. Once this complex is formed, it can
further evolve into a highly stable carbonate species,
denoted as Au2

--CO3, via transition state TS4Au�2 . This

process involves the insertion of CO molecule into the O-O
bond in Au2

--O2, resulting in the breaking of the O-O bond
and the simultaneous formation of two C-O bonds. The
calculated barrier for the formation of the carbonate species
is 13.72 kcal mol-1. This process is similar to the early
report by Liana et al. [5], where the relevant geometries for
the intermediate and transition state were not presented.

Fig. 4 Calculated energy profile
for the CO oxidation over Au2

-

along the carbonate intermediate
path (path II). The total energy
of reactants (Au2

-+O2+ 2CO) is
taken as zero

Fig. 5 Calculated energy profile
for the CO oxidation over Au2

-

along the energetically most
favorable O-C-O-O-C-O group-
involved pathway (pathway III)
and the O-O-C-O group medi-
ated oxygen abstract pathway
(paths IV). The total energy of
reactants (Au2

-+O2+ 2CO) is
taken as zero
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Due to the exoergic nature of the carbonate formation
process, subsequent reaction barriers can be easily over-
come. From Fig. 4, we see that the attack of a second CO
molecule on the carbonate intermediate can result in the
formation of two CO2 molecules and hence completes the
catalytic cycle. This involves two elementary steps, as
indicated by TS5Au�2 and TS6Au�2 . In TS5Au�2 , the second

CO is abstracting an O atom in the carbonate to form
IM4Au�2 , where two CO2 subunits have emerged, while in

TS6Au�2 , the two forming CO2 subunits are being unbound

from the catalyst. From calculated relative energies, it seems
that pathway II is energetically comparable to pathway I.

Note that in a recent study [62] of ours, Au-carbonate
species was found to originate from the effective collision
between Au-oxides and newly formed CO2, where the carbon
atom of CO2 directly attacks the O atom in the oxides of Au.
In this sense, the AuO- fragment formed in path I could also
contribute to the formation of Au2

--CO3. Accordingly, in
Fig. 4, we show this possible way, which is confirmed to be a
barrierless process. In contrast, another way to from Au2

--CO3

from AuO- and CO2, where the O atom of CO2 approaching
AuO- (see TS7Au�2 in Fig. 4), is found to be energetically very

demanding with a barrier of 60.56 kcal mol-1 and thus is not
capable of competing with the barrierless process with the C
atom of CO2 approaching AuO-.

Figure 5 shows another two branches of CO oxidation,
pathways III and IV. The attack of a coming CO molecule
on Au2

--O2 with the C atom approaching the end O in Au2
--

O2 leads to intermediate IM5Au�2 . Such an intermediate can

be converted into intermediate IM6Au�2 via TS8Au�2 with

only a barrier of 2.39 kcal mol-1. IM6Au�2 , where the C atom

binds to Au2
- and associates one O of O2 to form a O-O-C-

O group, lies below the reactants by 33.76 kcal mol-1, from
which we located two reaction branches to form CO2,
denoted as paths III and IV in Fig. 5. Path III involves the
simultaneous formation of two CO2 molecules, where a
second CO is first attached to IM6Au�2 to get IM7Au�2 via

TS9Au�2 with a barrier of 11.12 kcal mol-1, this step is the

rate-determining step of pathway III. And then from
IM7Au�2 two CO2 molecules are removed via TS10Au�2 with

an energy demand of only 1.67 kcal mol-1. In contrast,
along path IV, immediate IM6Au�2 initially evolves into

IM8Au�2 via TS11Au�2 with a barrier of 13.81 kcal mol-1, and

then IM8Au�2 releases, via TS12Au�2 , the first CO2 molecule
and forms AuO- fragment, which further reacts with the
second CO molecule to release the second CO2 molecule.
So path IV follows the sequential formation of two CO2

molecules and actually crosses into path I after forming
AuO- fragment. From the calculated energy profiles
(Fig. 5), these two paths are expected to be slightly
favorable in energywith pathway III . According to
geometrical characteristics of intermediates and transition

states, pathways III and IV can be described as the O-C-O-
O-C-O group involved pathway and the O-O-C-O group
mediated oxygen abstract pathway, respectively.

The results above show that the CO oxidation over Au2
-

follows mono-center Eley–Rideal mechanism and that the
overall reaction is a highly exoergic process. The energy
released from a complete catalytic cycle (137.11 kcal mol-1)
is much more than that required during the reaction (the
calculated largest barrier along all four paths is smaller than
20 kcal mol-1). Furthermore, it is found that the potential
energy surface profile along every path lies below the
reactants throughout the whole reaction. Therefore, from an
energy point of view, all four paths located in the present
work are feasible for the CO oxidation. In other words, the
CO oxidation is characteristic of multi-channel and multi-
step. In Table 2, we list calculated energy barrier values for
each rate-determining step along each pathway. Clearly,
pathway III is the most favorable, and thus is proposed to
be the dominant pathway for the CO oxidation.

The CO oxidation over AuAg-

Similarly, the CO oxidation over AuAg- is also studied
along the four pathways discussed above: the direct oxygen
pathway (pathway I), the carbonate intermediate pathway
(pathway II), the energetically most favorable O-C-O-O-C-
O group-involved pathway (pathway III), and the O-O-C-O
group mediated oxygen abstract pathway (pathway IV). We
have considered three possible situations by assuming that
the catalytically active center is on (i) the Ag site, (ii) the
Au site, and (iii) both the Ag and Au sites, where O2 and
CO molecules approach to Ag and Au sites, respectively.
Our calculations show that the intermediates and transition
states designed initially according to the last assumption
always converge to those in either the first or second
situation. In other words, the catalytic reaction is always
found to proceed via a mono-atomic rather than double-
atomic active center mechanism.

Figures 6, 7, 8 show the calculated Ag-site catalytic
potential energy surfaces with geometries of intermediates
and transition states, and Figs. S1-S3 in the supplementary

Table 2 Energy barrier values for each rate-determining step of each
pathway studied. All values are given in kcal mol-1

Au2
- AuAg-

Ag site Au site

Pathway I 17.46 15.32 17.46

Pathway II 14.18 19.52 18.79

Pathway III 11.12 11.35 8.90

Pathway IV 13.81 13.94 10.32
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information are those for the Au-site catalytic reactions. It
should be noted that in the two situations the geometrical
characteristics for most species along pathway I-IV are
generally similar to those for the Au2

- catalytic reaction,
indicating the mechanistic details discussed above can also
be applied to the AuAg- catalytic reaction. Thus, we
conjecture that monometallic Au and bimetallic Au-Ag
nanoparticles could work via the similar mono-center Eley–
Rideal mechanism.

In the following sections we only summarize the
main conclusions obtained from the present calculations,
and the multi-channel and multi-step details of the
reaction are not discussed again for brevity. From the

potential energy surface profiles shown in Figs. 6–8 and
Figs. S1-S3, it is noted that for both the Ag- and Au-site
catalytic reactions, pathways III and IV are more favorable
than pathways I and II, which is similar to the Au2

-

catalytic reaction. Furthermore, we find that along path-
ways III and IV, the barriers of the rate-determining steps
for the Au-site catalytic reactions are smaller than those
for the Ag-site catalytic reactions. This fact indicates the
reaction prefers to proceed on Au site to Ag site.
Calculated energy barrier values of rate-determining steps
along four pathways are also given in Table 2. From these
data, it seems to be reasonable to draw out the following
conclusions: (i) Bimetallic AuAg- can catalyze CO

Fig. 6 Calculated energy profile
for the CO oxidation over
AuAg- along the direct oxygen
abstract pathway (pathway I).
The total energy of reactants
(AuAg-+O2+ 2CO) is
taken as zero

Fig. 7 Calculated energy profile
for the CO oxidation over
AuAg- along the carbonate
intermediate path (path II). The
total energy of reactants
(AuAg-+O2+ 2CO) is
taken as zero
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oxidation than mono-metallic Au2
- more effectively, which

explains the exceptionally high activity of Au-Ag bimet-
allic nanoparticles for low-temperature CO oxidation; and
(ii) For dimer AuAg-, the Au site is a catalytic active
center, which is not consistent with the generally supposed
mechanism picture of Au-Ag bimetallic catalysts, where
both Ag and Au sites are proposed to participate in the
reaction with Ag sites adsorbing and activating O2

molecules and Au sites interacting with the coming CO
molecules.

To clearly show the catalytic mechanism of dimer
AuAg-, in Fig. 9 we schematically depict the catalytic
cycle along the energetically most favorable channel,
pathway III. This cycle contains three elementary steps:

(i) The formation of the crucial intermediate IM5AgAu� ,
where the O2 molecule initially bound to the Au site is
pushed away by the coming CO molecule, which binds
now to the Au site and simultaneously interacts with the
O2 molecule to form the O-O-C-O group with a barrier
of 1.33 kcal mol-1. (ii) The second CO molecules
approaches IM5AgAu� with its C atom approaching the
Au and the end O of the O-O-C-O group to form
IM6AgAu� , where each CO molecule is ready to seize
one atom of O2 to form CO2 product. This process
requires surmounting the barrier of 8.90 kcal mol-1. (iii)
Two CO2 molecules dissociate simultaneously from
IM6AgAu� with the barrier of only 1.76 kcal mol-1 to
complete the catalytic cycle.

Fig. 8 Calculated energy profile
for the CO oxidation over
AuAg- along the energetically
most favorable O-C-O-O-C-O
group-involved pathway (path-
way IIII) and the O-O-C-O
group mediated oxygen abstract
pathway (paths IV). The total
energy of reactants (AuAg-+
O2+ 2CO) is taken as zero

Fig. 9 Schematic representation
of the catalytic cycle over
AgAu- along the energetically
most favorable channel

1816 J Mol Model (2012) 18:1809–1818



Conclusions

To better understand the higher activity of Au-Ag bimetallic
catalysts than pure metallic Au catalyst for low-temperature
CO oxidation, we here presented a comparative theoretical
study of the catalytic activity of Au2

- and AuAg- dimers,
which represents the simplest models for monometal Au
and bimetallic Au-Ag nanoparticles. By performing DFT
calculations, we have shown the mechanism details of CO
oxidation over Au2

- and Au-Ag- dimers, for which both the
mono- and double-center catalytic mechanisms have been
taken into account. It is found that Au2

- and AuAg- catalyze
CO oxidation according to the similar mono-center Eley–
Rideal mechanism, which is different from the generally
supposed mechanism picture of Au-Ag bimetallic catalysts,
where both Ag and Au sites are proposed to participate in
the reaction with Ag sites adsorbing and activating O2

molecules and Au sites interacting with the coming CO
molecules. The catalytic reaction is shown to be of the
multi-channel and multi-step characteristic, which can
proceed via two or three elementary steps along four
possible pathways, including the direct oxygen pathway, the
carbonate intermediate pathway, the energetically most
favorable O-C-O-O-C-O group involved pathway, and the
O-O-C-O group mediated oxygen abstract pathway. For
AuAg- dimer, the Au site is more active than the Ag
site, and the calculated energy barrier values for rate-
determining step for the Au-site catalytic reaction are
remarkably smaller than those for both the Ag-site catalytic
reaction and the Au2

- catalytic reaction. The present results
provide assistance to some extent for understanding the
experimentally observed exceptionally high catalytic activ-
ity of Au-Ag nanoparticles and nanoalloys for low-
temperature CO oxidation.
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Abstract Antioxidants are important defenders of the
human body against nocive free radicals, which are the
causative agents of most life-threatening diseases. The
immense biomedicinal utility of antioxidants necessitates
the development and design of new synthetic antioxidant
molecules. The present report deals with the modeling of a
series of chromone derivatives, which was done to provide
detailed insight into the main structural fragments that
impart antioxidant activity to these molecules. Four
different quantitative structure–property relationship
(QSAR) techniques, namely 3D pharmacophore mapping,
comparative molecular similarity indices analysis (CoMSIA
3D-QSAR), hologram QSAR (HQSAR), and group-based
QSAR (G-QSAR) techniques, were employed to obtain
statistically significant models with encouraging external
predictive potentials. Moreover, the visual contribution
maps obtained for the different models signify the impor-
tance of different structural features in specific regions of
the chromone nucleus. Additionally, the G-QSAR models
determine the composite influence of pairs of substituent

fragments on the overall antioxidant activity profiles of the
molecules. Multiple models with different strategies for
assessing structure–activity relationships were applied to
reach a unified conclusion regarding the antioxidant
mechanism and to provide consensus predictions, which
are more reliable than values derived from a single model.
The structural information obtained from the various QSAR
models developed in the present work can thus be
effectively utilized to design and predict the activities of
new molecules belonging to the class of chromone
derivatives.

Keyword Antioxidant . Hologram quantitative structure–
activity relationship . Group-based quantitative structure–
activity relationship . 3D pharmacophore . Comparative
molecular similarity indices

Introduction

Free radicals pose a fatal threat to the healthy living of
human beings. Evidence shows that free radicals and
excited-state species play a key role in both normal
biological function and the pathogeneses of certain human
diseases [1], such as atherosclerosis [2], Alzheimer’s
disease [3], DNA mutations [4], and so on. Free radicals
and other reactive oxygen species (ROS) are derived either
from normal, essential metabolic processes in the human
body or from external sources such as exposure to X-rays,
ozone, passive uptake of cigarette smoke, air pollutants,
and industrial chemicals [5]. The major source of ROS
production within the human system is the mitochondrial
respiratory chain [6]. These free radicals, which are highly
unstable molecules, attempt to attain stability by reacting
with reactive unsaturated molecules through four primary
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types of chemical reaction: (a) hydrogen abstraction, (b)
addition, (c) termination, and (d) disproportionation [7].
Proteins, phospholipids and polyunsaturated fatty acids are
the molecules most susceptible to the free radical attack.
Since the free radicals are produced naturally within the
human system, the body has its own mechanism to combat
these free radicals. Such detoxification processes employ a
series of chemical entities referred to as antioxidants.
Antioxidants primarily function by donating a hydrogen to
the reactive radical, thereby terminating the chain reaction
and affecting the rate of oxidation [8]. They may also
chelate with the metal ions that catalyze the free-radical
chain reactions.

The free radicals produced within the human system
under normal conditions are either used up by the body’s
immune system to detect foreign invaders or damaged
tissue, or they are detoxified by systemic antioxidant
enzymes like superoxide dismutase, catalase, etc. [9].
Antioxidant activity is chiefly based on three molecular
mechanisms: (a) hydrogen atom transfer (HAT), (b) single-
electron transfer followed by proton transfer (SET-PT), and
(c) sequential proton loss electron transfer (SPLET) [10–12].
However, under certain circumstances (such as acute or
chronic alcohol exposure, or improper diet, etc.), either ROS
production is enhanced or the level or activity of antioxidants
is reduced. Such a state results in an imbalance between the
production and the removal of the reactive radicals, which is
followed by impairment of the body’s ability to repair
damaged complex molecules like proteins or DNA, leading
to oxidative stress [13]. The normal defense mechanism of
the body fails to repair the additional excessive changes
caused by the ROS, leading to permanent changes or damage
to the DNA [14], thus having potentially detrimental effects
on the cell.

Free-radical production greatly outnumbers the systemic
antioxidant supply, necessitating external antioxidant supple-
mentation. Although fruits and vegetables serve as rich
sources of antioxidants, several drugs (like vitamin C pills,
probucol, etc.) that target the increased need for antioxidant
supplementation are now also being marketed. The enhanced
demand for antioxidants has led researchers to design and
develop new chemical entities with improved antioxidant
actions. The quantitative structure–activity relationship
(QSAR) technique plays a crucial role in the design and
screening of molecules with potent antioxidant activity. The
QSAR technique attempts to correlate structural features with
biological activity/toxicity/other physicochemical properties
through the utilization of several descriptors [15, 16]. The
descriptors are the numerical representations of the molecular
properties defining the electronic, topological, physicochem-
ical, and spatial features of the molecules. Similar molecules
can exhibit large differences in their biological activities due
to a minute difference in their structures. The QSAR

technique focuses on these variations in biological activity
with changes in molecular structure in a quantitative fashion.
Initially developed by Hansch [17], and then advanced by
several other researchers, the QSAR technique contributes
efficiently to the screening of new chemical entities, thereby
making the drug discovery pathway more cost-effective and
concise.

In an attempt to design new chemical entities with
efficient antioxidant activities, several researchers have
performed QSAR analyses for different chemical classes
of compounds with antioxidant activities. Multiple mecha-
nisms underlying the reaction between hydroxyl radical and
phenolic compounds have been studied by Cheng et al. [18]
using the QSAR technique. Singh et al. [19] developed
QSAR models using the quantitative topological molecular
similarity (QTMS) method to compute the effects of
substituents on the bond dissociation enthalpies (ΔBDEs)
for a set of 39 phenolic derivatives that show antioxidant
activity. Reis et al. [20] performed a theoretical study with
41 phenolic compounds that exhibit antioxidant properties,
based on quantum chemical descriptors calculated at
different levels of theory. Mitra et al. [21, 22] performed
QSAR analyses for a variety of chemical classes (hydrox-
ybenzalacetone [21], benzodioxoles [22], etc.) with efficient
antioxidant activities using different categories of descrip-
tors. Predictive pharmacophore models have also been
developed by Mitra et al. [23] for a series of arylamino-
substituted benzo[b]thiophenes that exhibit free-radical
scavenging activity. Besides these, a variety of other QSAR
models developed by different authors have been reviewed
by Roy et al. [24]. In the present paper, a series of
chromone derivatives reported by Samee et al. [25, 26]
were modeled to determine their antioxidant activities using
different QSAR techniques. The present work aimed at the
development of QSAR models that can be used as query
tools to search and screen large molecule databases for
potent antioxidant molecules. The objective of this work
was to reach a unified conclusion regarding the structure–
activity relationship of antioxidant chromone derivatives,
starting from multiple QSAR approaches and the consensus
prediction of target response using robust statistical models.
We also compared the statistical quality and observations of
our models to the results achieved with the model
developed by Samee et al. [25].

Methods and materials

The dataset

The model dataset used for the present work comprised of
36 synthetic chromone derivatives with antioxidant activity,
as reported by Samee et al. [25, 26]. The antioxidant
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activities of the molecules were assessed [25, 26] based on
their ability to scavenge 1,1-diphenyl-2-picryl hydrazyl
(DPPH) free radicals. The 50% effective concentration
(EC50) of the molecules thus reported was converted to the
nanomolar scale (nM) for the development of the 3D
pharmacophore model. However, for the development of the
CoMSIA and HQSAR models, EC50 values in millimolar
units were converted to the negative logarithmic scale.

Splitting of the dataset into training and test sets

Training set selection plays an important role in the
development of a statistically significant QSAR model. A
QSAR model exhibits poor predictivity for test set
molecules which are quite dissimilar from the training set
ones, while good prediction results are obtained for
molecules that are very similar to the training set molecules
[27, 28]. Thus, the selection should be such that the test set
molecules lie within the chemical space occupied by the
training set molecules. In this study, the entire dataset was
divided into training and test sets after activity ranking of
the molecules under study. In this technique, all of the
molecules were first ranked in ascending order of activity,
and 25% of the compounds were then selected as the test
set (ntest=9), while the remaining 75% (ntraining=27) were
used as the training set. The training set molecules were
then utilized to develop the different QSAR models, while
the predictive abilities of the models were assessed using
the test set. In order to obtain a training set that captures the
chemical features and range of activities of the entire
dataset, the most active and least active compounds were
placed in the training set. The training set thus selected

spans the activity range of the entire dataset and hence
yields unbiased results. In order to further ascertain the
acceptability of the activity-based classification method for
uniformly distributing the training and test set compounds,
a principal component analysis (PCA) [29] of the descriptor
matrix was performed using SPSS software [29]. The PCA
score plot thus obtained shows the distribution of the
training and test set compounds in the 3D space with
respect to the first three principal components of the group-
based QSAR (G-QSAR) descriptor matrix. The plot
obtained (see Fig. S1 of the “Electronic supplementary
material,” ESM) shows that each of the test set compounds
lies in close vicinity to at least one training set compound,
indicating that the training set thus selected captures all of
the essential features of the entire dataset of molecules.

Different methods employed for the development of QSAR
models

The present work deals with the development of QSAR
models for a set of chromone derivatives using four
different techniques (Figs. 1, 2): (a) 3D pharmacophore
generation, (b) a 3D-QSAR model developed using
comparative molecular similarity indices analysis (CoMSIA),
(c) fragment-based QSAR model developed using the
hologram QSAR (HQSAR) technique, and (d) a group-
based QSAR model (G-QSAR) based on fragment contribu-
tions. A 3D pharmacophore model quantitatively determines
the features that are required to obtain the optimum activity of
the molecules under study [30, 31]. For the present work, a
3D pharmacophore model was developed using conformers
obtained from the BEST method of conformer generation,

Fig. 1 Schematic representation
of the QSAR methodology
employed in the present work
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based on conformational analysis of the molecules using the
poling algorithm [30]. To develop the model, the HypoGen
module (see the ESM), implemented in Discovery Studio 2.1
[31], was employed. To assess the quality of the generated
pharmacophore hypotheses, cost functions [32] (represented
in bit units) were calculated during hypothesis generation.
The statistical significance of the pharmacophore model was
determined using a randomization test and external valida-

tion techniques. A pharmacophore model was considered to
be generated by chance if the randomized dataset yielded
better results than the original one. Calculation of the
corrected R2

p value (
cR2

p statistic) [33] provides a quantitative
approach to ascertain the existence of a chance correlation.
Additionally, external validation of the model was performed
using the test set compounds. The 3D pharmacophore
developed using the training set compounds was used to

Fig. 2 Steps associated with the different QSAR techniques performed in the present study
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map the test set compounds, and the activity of the test
molecules was estimated based on the degree of mapping
and the calculated value of the external predictive parameter
(R2

pred; with a threshold value of 0.5) [34]. Furthermore, to
better determine the external predictive potential of the
developed 3D pharmacophore model, the value of modified
r2 for the test set r2m testð Þ

h i
was also calculated [35–38].

Another method employed to determine the essential
structural features of the chromone derivatives include the
CoMSIA technique [39]. This technique provides a
correlation between the differences in the biological
activities of molecules and changes in molecular properties
represented by differences in the shapes of the noncovalent
fields surrounding the molecules. In the present work,
CoMSIA models were developed based on the training set
molecules and were subsequently validated using the
external validation technique. Based on the favorable or
unfavorable environments of the five fields (steric, electro-
static, hydrophobic, hydrogen-bond donor, and hydrogen-
bond acceptor), molecular fragments and functional groups
that make major contributions to the activity profiles of the
molecules are determined [40]. Partial atomic charges of the
molecules were calculated by the Gasteiger–Huckel method
[41], and energy minimization was performed using the
Tripos force field [42] method. The conformers were
generated using the simulated annealing technique [43].
The training set molecules were then aligned based on the
points of alignment of the most active compound (com-
pound no. 29), which was used as the template molecule
(Fig. 3). The alignment of the molecules was performed
using the database alignment technique (Fig. 4) imple-
mented in the Sybyl software package [44]. Subsequently,
the partial least squares (PLS) approach [45, 46] was used
to derive the 3D-QSAR models using the similarity
(CoMSIA) factors as independent variables and the antiox-
idant activity (pEC50) as the dependent variable. The
optimized CoMSIA model was evaluated based on pro-
gressive scrambling analyses [47]. The final model, derived
with an optimum number of components, was subjected to
external validation (calculation of the R2

pred parameter)
using the test set compounds.

The next approach employed to correlate the biological
activity data of the chromone derivatives to structural
fragments of molecules was the HQSAR methodology

[48]. Molecular hologram is an extended form of the
fingerprint encoding of all possible molecular fragments,
including linear, branched, cyclic, and overlapping features
of the molecules. In the present work, the HQSAR model
was derived based on various combinations of fragment
distinction and fragment generation parameters for each
hologram length using the Sybyl software [44]. The
selection of the statistically significant model at an
optimum component number was performed based on the
maximum value of Q2 and the minimum value of the cross-
validated standard error (SEcv). The optimum number of
components was also further checked based on the “5%
rule,” which permitted the addition of a latent variable only
when the addition resulted in an increase in the value of Q2

by 5% or more. However, the chances of overfitting the
developed model were reduced by limiting the maximum
number of components to R/5 (R is the number of training
set compounds) [49]. The QSAR analysis was redone and
the component number was selected. The final PLS model
was obtained with the optimum component number based on
the specific fragment distinction parameters, fragment size
and bin length. The accuracy of prediction of the test set
activity data using the developed HQSAR model was judged
based on the value of the R2

pred parameter. To penalize the
overfitting nature of the external R2

pred

� �
predictive param-

eter, the values of the r2m metric were also calculated.
Finally, the G-QSAR technique [50] was employed to

derive a quantitative relationship between the activity and
descriptors calculated for various molecular fragments of
interest. The G-QSAR technique available within the VLife
MDS 3.5 software package [51] begins with the fragmen-
tation of the molecules under study, followed by the
calculation of fragment-specific descriptors. Among the
different variable selection techniques available within the
program, the stepwise multiple linear regression (stepwise
MLR) method based on forward selection and backward
elimination techniques according to the “stepping criteria”
[52, 53] (F=4 for inclusion and F=3.9 for exclusion) was
employed for the present work. Finally, two different group-

Fig. 3 Template molecule used
for CoMSIA (atoms used for
alignment are marked with an
asterisk) and G-QSAR model
development

Fig. 4 Aligned geometries of the 36 chromone derivatives
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based QSAR models were developed, one with the
fragment contribution descriptors only, and the other based
on both the 2D descriptors and the cross-interaction terms.
The models were subsequently validated externally using
the R2

pred and r2m ðtestÞ parameters. Since the G-QSAR-
derived models could specifically determine the physico-
chemical and topological requirements of the different
substituents, these emerged as the most acceptable ones in
terms of both interpretability and statistical significance.
Thus, the G-QSAR fragment contribution model was
utilized to determine the normality of the distribution [54–
56] of the residuals of the training set data and the
corresponding applicability domain [57, 58] of the mole-
cules. The applicability domain of a molecule determines
its chemical space in terms of model descriptors and
modeled response. In this work, the applicability domain
of the molecules was checked using the leverage approach
[57]. Predictions are considered unreliable for compounds
with leverage values greater than the critical one (h > h*,
the critical value being h=3p//n, where p/ is the number of
model variables plus one, and n is the number of the
compounds used to calculate the model). Compounds with
cross-validated standardized residuals that are greater than
three standard deviation units (>3σ) are response outliers.

Results and discussion

The four types of QSAR models thus developed were
analyzed to determine their statistical significances and to
ascertain the prime structural requirements for improved
antioxidant activities of the chromone derivatives, with the
aim being to reach a unified conclusion about the mechanism
of antioxidant activity. The structures of all the dataset
molecules, together with their observed and predicted/
calculated activity data, are listed in Table 1. An overview
of the results obtained from the four different methods
employed in the present work for QSAR model development
are detailed in Table 2. The observed vs. calculated/predicted
activity data were plotted graphically, and the points obtained
were minimally scattered about the diagonal of the scatter
plot. This indicated that the models developed could
calculate/predict the activity data of the molecules satisfac-
torily, and the calculated/predicted and observed activity data
of the molecules lie in close proximity to each other.

Analysis of the 3D pharmacophore model

A set of ten pharmacophore hypotheses were developed using
27 training set compounds based on the conformers obtained
using the BEST method of conformer generation. All the
hypotheses are summarized in Table 3 together with their
statistical parameters, such as cost functions, rms deviations,

and correlation coefficients. Further, the fitnesses of the
developed pharmacophore models were checked using the
Fischer validation technique at the 95% confidence level. As
the value of Rr for hypothesis 10 was much lower than the
corresponding correlation coefficient (R) of the unrandom-
ized matrix, model 10 (Rr=0.491, R=0.912) was selected for
further analysis. Based on the results of the randomized data,
the value of cR2

p was also calculated. Since the parameter
penalizes the model R2 for small differences in the values of
R2 and R2

r , it provides a precise approach for selecting
models that did not develop by chance. For hypothesis 10,
the value of cR2

p (0.821) thus calculated was much higher
than its stipulated threshold value of 0.5, implying that the
model represents a true correlation and is not the outcome of
mere chance. Moreover, the randomization results obtained
for the cost functions showed that the total cost for
hypothesis 10 was much closer to that of the null cost
compared to the fixed cost, as calculated based on the
scrambled activity data. Thus, the existence of true correla-
tion for hypothesis 10 is reflected in the values of cost
functions, the correlation coefficient, and the rms deviation for
the model. Subsequently, hypothesis 10 (Fig. 5) was selected
as the best-ranking pharmacophore and was analyzed further.

Four different chemical features are displayed in hy-
pothesis 10: HBA, HBA, HY and RA. The vectors for the
HBA features indicate the direction of formation of the
hydrogen bond between the electronegative atom and the
electropositive hydrogen atom of the free radical. Similarly,
the vector for the ring aromatic feature indicates the
direction of the π–π interaction between an electron rich
and an electron deficient aromatic centers. The most active
compound (compound no. 29) was mapped using hypoth-
esis 10 (Fig. 5b), which revealed that the ketonic oxygen of
the parent choromone nucleus and the hydroxy substituent
at the R10 position of the chromone moiety behave as
hydrogen-bond acceptor groups. The presence of such
hydrogen-bond acceptor groups means that a nucleophilic
center is needed within the antioxidant molecules to obtain
their activity profile. The hydrogen-bond acceptor groups
contribute to the antioxidant’s mechanism of action by
transferring a single electron and then deprotonating [10].
Again, the presence of ring aromatic and hydrophobic
features indicates that molecules bearing hydrophobic
substituents develop an area of transient electron deficiency
[59], which may in turn interact with nearby free radicals
that have transient electron-rich areas. Thus the presence of a
phenyl substituent at the R2 position of the chromone nucleus
favors the antioxidant activity profiles of the molecules. In
addition, the hydrophobic feature covering the substituent at
the R3 position of the chromone moiety indicates that
aliphatic or aromatic fragments with hydrophobic functions
add to the activity profiles of the molecules. The pharmaco-
phore obtained in hypothesis 10 was found to efficiently map
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Table 1 Molecular structures of the 36 dataset compounds along with their observed and predicted activity data
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Table 1 (continued)

Table 2 Comparison of the statistical parameters of the three types of QSAR models developed in the present work

3D pharmacophore model 3D-QSAR model
(COMSIA analysis)

HQSAR analysis G-QSAR analysis

G-QSAR G-QSAR_IT

Leave-one-out cross-validation

R2 0.832 0.957 0.970 0.980 0.937

Q2 - 0.834 0.932 0.851 0.963

Components/ descriptors - 5 3 4 3

Progressive scrambling statistics at critical r2yy0 of 0.85

Q2 - 0.597 - - -

dQ2=dr2yy0 - 0.944 - - -

Randomization test

R2
r 0.491 - - - -

cR2
p 0.821 - - - -

Predictions of the test set

R2
pred 0.883 0.852 0.961 0.923 0.980

r2m ðtestÞ 0.826 0.845 0.957 0.910 0.925

1826 J Mol Model (2012) 18:1819–1840



to the active compounds (compound nos. 29, 30, 12, 13 and
15) of the dataset employed. On the contrary, compounds
that were unable to map to all of the features revealed a lack
of the necessary substitutions, and hence exhibited reduced
activity profiles.

Further, the pharmacophore was validated to assess
its external predictive ability. The test set molecules
were thus mapped using the pharmacophore obtained in

hypothesis 10, and their activities were estimated based
on their ability to capture the pharmacophoric features.
The external predictive potential of the developed model
was measured based on the value of the predictive R2

R2
pred

� �
. A good overall correlation between the observed

and predicted activity data was reflected in the value of the
R2
pred 0:883ð Þ parameter, which was much higher than the

threshold value of 0.5. Thus, the compound that matched

Fig. 5 a–b Pharmacophore obtained from hypothesis 10 by monitor-
ing the positions of the different features (a), and the mapping of the
most active compound (compound no. 29) to the developed

pharmacophore (b). Shown are ring aromatic sphere (orange),
hydrophobic group (cyan) and hydrogen bond acceptor (green)
features with vectors in the direction of the putative hydrogen bonds

Table 3 Results for ten pharmacophore hypotheses generated using conformers developed based on the BEST method of conformer search

Hypothesis no. Total cost Error cost rms Correlation (R) Configuration cost Features a R2
pred r2m ðtestÞ

cR2
p

1 84.596 67.732 0.532 0.973 14.950 HBA, HBD, RA 0.283 - -

2 85.510 68.753 0.599 0.966 14.950 HBA, HBD, RA 0.182 - -

3 86.102 69.190 0.626 0.963 14.950 HBA, HBD, RA 0.609 0.635 0.768

4 86.141 69.242 0.629 0.962 14.950 HBA, HBD, RA 0.648 0.645 0.784

5 91.771 73.395 0.838 0.933 14.950 HBA, HBD, RA 0.487 - -

6 93.997 75.490 0.926 0.917 14.950 HBA, HBD, RA 0.625 0.584 0.699

7 94.329 76.938 0.983 0.906 14.950 HBD, HY, RA 0.439 - -

8 95.088 77.055 0.987 0.905 14.950 HBD, HY, RA 0.843 0.857 0.671

9 96.805 78.391 1.036 0.895 14.950 HBD, HY, RA 0.500 0.429 0.680

10 97.133 76.903 0.981 0.907 14.950 HBA, HBA, HY, RA 0.883 0.826 0.821

Fixed cost: 79.979

Null cost: 136.211
a HBD hydrogen-bond donor, HBA hydrogen-bond acceptor, HY hydrophobic, RA ring aromatic
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all four features (compound no. 36) exhibited a better
activity profile than those of compounds (least active
compounds, like compound nos. 6, 10, 18 and 32) that are
unable to map all of the essential features. This indicated that
the lack of all of the necessary structural attributes by the
poorly mapped compounds is responsible for their reduced
activity profiles. Further, the proximity between the observed
and the predicted activity data was checked based on the value
of the r2m metric. A value of this parameter that is higher than
0.5 ensures closeness between the observed and predicted
data more precisely than the traditional parameter, R2

pred. A
high value of r2m ðtestÞ parameter ð0:826Þ for the selected
hypothesis indicates that the pharmacophore obtained
reflects the statistical significance and has enhanced external
predictive potential. Figure 6 shows scatter plots for the
observed vs. calculated/predicted values of different models.
A good correlation between the observed and calculated/
predicted activity data is revealed for the pharmacophore
model by the scatter plot shown in Fig. 6a.

Results obtained for the 3D-QSAR study performed
using the CoMSIA technique

The results of the CoMSIA study are summarized in
Table 4. Various combinations of the five different intrinsic
properties available in the CoMSIA technique were
analyzed by mapping the training set compounds using
the PLS method of regression and assessing the various
statistical parameters. Based on the values of R2 and Q2,
and the standard error of estimation (s), the best map
(Fig. 7a and b) for the CoMSIA study was generated from
four types of interactions (hydrogen bond acceptor, hydro-
gen bond donor, hydrophobic and steric) of the training set
molecules with the probe atom. Combining these properties
with the electrostatic interaction did not result in any further
improvement in the result, and hence the model with these
four intrinsic properties (a, d, p and s) was analyzed further.
The contributions of these four properties to the best map
were 15.5%, 40.6%, 32%, and 11.9%, respectively. The
model yielded statistically significant values of the R2

(0.957) and Q2 (0.834) parameters at a component number
of 5, signifying acceptable internal predictive ability and
self-consistency of the developed model. Among the other
parameters calculated, a high value of boot-strapped R2

R2
bs ¼ 0:963

� �
and a low standard error of estimation

(s=0.096) further support the acceptability of the developed
model. In order to optimize the number of components used
to develop the CoMSIA model, and to assess the sensitivity
of the model to chance correlations, random progressive
scrambling was performed for the best PLS analysis. The
results further confirmed the consistency of the models as
defined by the slope dQ2=dr2yy0

� �
and the optimum value of

the Q2 statistic obtained at the ends of different runs. At a

critical r2yy0 (correlation of original and scrambled data) of
0.85, progressive scrambling resulted in derivatives of Q2

(leave-one-out) with respect to r2yy0 that were close to 1
(0.944), and the maximum value of Q2 was obtained for a
five-component PLS model. Thus, it can be inferred that the
degree of redundancy within the training set molecules is
sufficiently low for five components. The model was
additionally analyzed for its external predictive potential
by mapping the test set molecules to the four essential
features obtained using the training set molecules. A value
of the R2

pred 0:852ð Þ parameter that was much higher than the
stipulated value of 0.5 indicated that the CoMSIA model
was reproducible in terms of activity predictions for the test
set molecules. Again, the r2m metric r2m testð Þ ¼ 0:845

� �
was

calculated to ensure that the predicted activity data lies in
close vicinity to the corresponding observed activity data.
The contour map thus obtained was analyzed further, and
the scatter plot (Fig. 6b) obtained for the observed and
predicted/calculated activity data revealed the existence of a
significant correlation between them.

Figure 7 shows the contour map for the best PLS model
obtained using the CoMSIA analysis, with the most active
compound (compound no. 29) mapped to the essential
intrinsic features. The presence of hydrogen-bond acceptor
groups is favored at regions indicated by the magenta
contour, and disfavored at regions bearing the red contour.
The presence of the magenta contour over the ketonic
fragment of the benzoyl substituent at the R3 position and
the hydroxyl fragment (−OH) at the R10 position of the
chromone moiety indicates that these substituents are
required for the activity profiles of the chromone deriva-
tives. Although they all bear the benzoyl substituent,
compound nos. 12, 13, 14, 15, 16, 26 and 35 exhibit
moderate activity profiles due to the absence of the
hydroxyl group at the R10 position. Again, compound
nos. 27 and 28, despite having the –OH substitution at the
R10 position, lie in the moderate activity range due to the
absence of the other hydrogen-bond acceptor feature (i.e.,
the ketonic fragment). Thus, compound nos. 29, 30 and 36,
which bear both of the hydrogen-bond acceptor features,
exhibit the maximum activity profile. The cyan and purple
contours reflect the favored and disfavored regions for the
presence of hydrogen-bond donor groups, respectively. The
presence of a purple contour over the ketonic fragment of
the chromone nucleus signifies that hydrogen-bond donor
groups are disfavored at the C4 position. The favored and
disfavored regions for the hydrophobic feature are indicated
by the yellow and white contours, respectively. The position
of the yellow contour indicates that the presence of a
hydrophobic substituent at the meta or para position of the
aromatic substituent at the R2 position of the parent moiety
is hydrophobically favored. Such a similar yellow contour
is also present over the carbon fragment substituted onto the
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Fig. 6 a–e Scatter plots of the observed vs calculated/predicted activity values for the a 3D pharmacophore model, b 3D-QSAR model developed
using the CoMSIA technique, c HQSAR model, d G-QSAR model, and e G-QSAR_IT model
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aromatic ring constituting the R3 position of the chromone
nucleus. This indicates that these positions are hydrophobi-
cally favored, and the presence of substituents with
transient electron density at these positions enhances the
antioxidant activity profiles of these molecules, as seen for
compound nos. 29, 30 and 36. Again, compound no. 25,
despite bearing the necessary substituent on the aromatic
ring at the R2 position, has only a moderate activity profile
due to its lack of a suitable substituent at the R3 position.

Finally, the green and blue contours refer to the sterically
favored and disfavored regions, respectively. The presence
of the green contour over the benzoyl moiety indicates that
the presence of such a substituent adds to the activity
profiles of these molecules. Compared to other aromatic
substituents, the benzoyl fragment increases the length of
the molecule, enabling it to reach the sterically favored
pocket, which in turn signifies an increase in the antioxi-
dant activity profiles of the molecules. Again, since a bulky

Fig. 7 a–b Space-mapped features from the CoMSIA study fitted to
compound no. 29. a Hydrogen-bond acceptor (magenta: favorable,
red: unfavorable) and hydrogen-bond donor (cyan: favorable, purple:

unfavorable) features. b Hydrophobic (yellow: favorable, white:
unfavorable) and steric (green: favorable, blue: unfavorable) features

Table 4 Summary of the CoMSIA study

Interactions a* d* p* s* a+d+p a+d+p+s

Components 4 5 5 5 5 5

ntraining 27 27 27 27 27 27

R2 0.886 0.711 0.900 0.853 0.953 0.957

s 0.156 0.249 0.147 0.178 0.101 0.096

F (df) 32.604 (4, 22) 10.356 (5, 21) 37.718 (5, 21) 24.320 (5, 21) 84.927 (5, 21) 93.398 (5, 21)

Q2 0.670 0.472 0.420 0.494 0.818 0.834

Standard error of prediction (SEP) 0.260 0.337 0.353 0.329 0.198 0.188

R2
bs 0.900 0.795 0.945 0.901 0.963 0.963

Standard deviation (sbs) 0.125 0.219 0.096 0.145 0.072 0.077

Contribution a d p s a+d+p a+d+p+s

a 1.000 - - - 0.186 0.155

d - 1.000 - - 0.422 0.406

p - - 1.000 - 0.392 0.320

s - - - 1.000 - 0.119

* a hydrogen-bond acceptor feature, d hydrogen-bond donor feature, p hydrophobic feature, s steric feature

1830 J Mol Model (2012) 18:1819–1840



substituent is disfavored at the R2 position of the chromone
nucleus (it has a blue contour), compound nos. 2, 3, 6, 8, 10
and 11, which bear phenyl substituents at the R2 position,
exhibit the lowest activity profiles. Compound no. 31,
which lacks all of the essential features, exhibits the lowest
antioxidant activity. While compound nos. 12, 13, 14, 15
and 35 have most of the intrinsic features of the CoMSIA
contour map, these compounds exhibit moderate activity
profiles due to a lack of the hydroxyl group at the R10
position. On the other hand, compound no. 27, which bears
the necessary hydrogen-bond acceptor substituent, has a
reduced activity profile due to a lack of the hydrophobic
substitution at the necessary position.

HQSAR method employed for model development

The results of the HQSAR analysis are reported in Tables 5, 6
and 7. The analyses were first performed based on the
training set molecules using the default fragment length with
different combinations of the six fragment distinction
features. Based on the values of maximum Q2 and minimum
cross-validated standard error (SEcv), the best combination of
the fragment features was selected [A (atom type), C
(connectivity) and D&A (donor and acceptor)]. The best
fragment combination was then used to select the most
suitable fragment size. The fragment size and the fragment
combination thus optimized were utilized to select the
significant hologram length. The fragment size, hologram
length, and the optimum component number were selected
based on the PLS analyses that yielded the lowest SEcv and
the highest Q2. The final model was obtained by repeating the
analysis using the specific fragment contribution, fragment
size (5–10), hologram length (97), and optimum component
number (5). Thereafter, the “5% rule” was employed to
reduce the noise and obtain a more robust model. Thus, the
model with the lowest component number (3) and highest Q2

value (0.932) was selected as the best one according to the
5% rule. The model thus obtained was validated externally

using the test set molecules. The activity predicted for the test
set molecules was highly correlated with the observed activity
data, and yielded a significantly high value for the R2

pred

parameter (0.961). A statistically significant value for the
r2m ðtestÞ 0:960ð Þ parameter further confirmed the close prox-
imity of the observed and predicted activity data. Thus, the
acceptable values for all internal and external predictive
parameters imply that the model is robust and exhibits a high
degree of external predictive potential. A significant correla-
tion between the observed and predicted activity data was
also revealed by the scatter plot, as shown in Fig. 6c.

The results of the HQSAR analysis are represented
graphically in the form of a contribution map (Fig. 8), where
the color of the atom or fragment determines its overall
contribution to the activity profiles of the molecules under
study. The maximum common substructure is colored cyan,
and the contributions of the other colors are listed as follows:
(i) a white color indicates an average contribution ranging
from −0.097 to 0.102, (ii) a yellow color indicates a good
contribution of 0.102 to 0.153, and (iii) a green color signifies
the maximum contribution of 0.254 or above. For the purpose
of discussion, the contributions of the different fragments
with respect to the most active compound (compound no. 29)
are shown here. The chromone nucleus is present in all of the
molecules—it is the common substructure—and is colored
cyan. The fragments colored green, indicating maximum
contributions, include: (i) the hydroxyl groups at the R9 and
R10 positions of the chromone nucleus; (ii) the ketonic
fragment of the benzoyl substituent at the R3 position of the
parent moiety, and; (iii) the primary carbon fragment attached
at the 3/ position of the aromatic substituent at R3. The
fragments that contribute moderately (yellow colored) to the
activity profile constitute the substituted aromatic carbon at
the 3/ position of the benzoyl ring at R3, and the fluorine
atom comprising the CF3 fragment substituted at the same
position on the benzoyl ring. The white coloration of the
substituent at the R2 position indicates that it has minimal
impact on the antioxidant activity profiles of the molecules.

Fragment distinction Q2 SEcv R2 SE LV Hologram length

A/B* 0.736 0.238 0.926 0.126 5 199

A/B/C* 0.735 0.238 0.928 0.124 5 83

A/B/H* 0.664 0.269 0.915 0.135 5 83

A/B/C/H* 0.698 0.254 0.923 0.128 5 307

A/C/D & A* 0.842 0.180 0.948 0.103 4 53

A/C/Ch* 0.722 0.244 0.914 0.136 5 97

A/B/Ch* 0.723 0.244 0.926 0.126 5 307

A/B/C/H/Ch* 0.702 0.253 0.924 0.127 5 307

A/B/C/ D & A* 0.833 0.185 0.952 0.100 4 401

A/B/C/H/Ch/ D & A* 0.756 0.224 0.924 0.125 4 353

Table 5 HQSAR analysis for
various fragment distinctions
using the default fragment size
(4–7); LVmax=5

SE non-cross-validated standard
error

LV latent variable

* Fragment distinction: A atom
type, B bond type, C connectiv-
ity, H hydrogens, D & A donor
and acceptor, Ch chirality
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Compound nos. 29, 30 and 36, which bear all of the required
substitutions, exhibit maximum antioxidant activity. Com-
pound nos. 12, 13, 14, 15, and 16 (which bear all of the
essential fragments except for the hydroxyl group at R10) as
well as 27 and 28 (which lack the benzoyl fragment at R3)
reveal moderate antioxidant activity profiles.

Models developed using the G-QSAR

In the G-QSAR method, every molecule of the data set is
considered to bear a set of fragments based on the pattern of
substitution. The descriptors are calculated for each fragment,
and a relationship between these fragment descriptors and the
activity of the whole molecule is developed. Thus, with the
GQSAR method, it is possible to get important site-specific
clues about where a particular descriptor (and hence a
structural fragment) needs to be modified within a molecule.

The results obtained using the G-QSAR technique are
summarized in Table 2. The two different models based on
two different sets of descriptor matrices are reported in
Table 8. The two models were developed based on: (a) the
fragment descriptors only (G-QSAR), and (b) by consider-
ing the interaction terms for each pair of different fragments
(G-QSAR_IT). The interaction terms take into consider-
ation the impact of two consecutive fragment patterns on
the overall activity profiles of the molecules. The scatter
plots obtained for both the G-QSAR (Fig. 6d) and the
G-QSAR_IT (Fig. 6e) models indicate that the activity
data predicted based on the developed models closely
match with the corresponding observed activity data.

The G-QSAR model (Eq. 1) was initially developed
using only the fragment descriptors in order to determine
their contribution to the overall antioxidant activity profiles
of the molecules.

pC ¼ �0:4051þ 0:0070 �0:0000ð Þ � R10MomInertiaXþ 0:1685 �0:0171ð Þ � R3X logP
þ0:7663 �0:1250ð Þ � R9MomInertiaXþ 0:0032 �0:0000ð Þ � R2Mol:Wt:

ntraining ¼ 27;F dfð Þ ¼ 81:774 4; 22ð Þ;R2 ¼ 0:937;Q2 ¼ 0:851; ntest ¼ 9;
R2
pred ¼ 0:923; r2m testð Þ ¼ 0:910

ð1Þ

Based on the contributions of the different descriptors
appearing in Eq. 1, they can be ranked as follows: (i) R10-
MomInertiaX (48.18%), (ii) R3-XlogP (18.94%), (iii) R9-
MomInertiaX (17.69%), and (iv) R2-Mol.Wt. (15.20%). The
R10-MomInertiaX and the R9-MomInertiaX descriptors
refer to the moment of inertia along the x-axis for the
substituents at the R9 and R10 positions of the parent
nucleus. The positive coefficients of these descriptors signify
that they have a direct influence on the antioxidant activity
profiles of the chromone derivatives. This observation aptly
matches with the above models (3D pharmacophore and
CoMSIA models), suggesting that proper orientation of the

necessary substituent (−OH) at the R10 position enables the
fragment to grab the position that favors the presence of a
hydrogen-bond acceptor feature. Thus, the presence of a
hydroxyl group at the R10 position is essential for increased
antioxidant activity, as seen for compound nos. 27, 29, 30,
and 34 (all of these have maximum values for the R10-
MomInertiaX descriptor). On the contrary, the required
orientation of the hydroxyl substituent at the R9 position
ensures that the fragment does not reach the area unfavorable
to the activity profiles of the molecules. The XlogP
descriptor is an atom-based evaluation of the partition
coefficient (logP) [60], and it signifies the ratio of solute

Fragment size Q2 SEcv R2 SE LV Hologram length

2–5 0.802 0.201 0.929 0.120 4 353

3–6 0.793 0.206 0.930 0.120 4 401

4–7 0.842 0.180 0.948 0.103 4 53

5–10 0.981 0.064 0.996 0.028 5 97

6–10 0.979 0.068 0.996 0.030 5 97

7–10 0.978 0.069 0.994 0.037 5 83

Table 6 HQSAR analysis of the
influence of fragment size when
using the best fragment distinc-
tion (A/C/D & A)

LVs Q2 SEcv R2 SE Hologram length Percentage increase in Q2

5 0.981 0.064 0.996 0.028 97 2.08

4 0.961 0.089 0.989 0.047 97 3.11

3 0.932 0.116 0.970 0.076 97 -

Table 7 Selection of the best
model with the least number of
LVs using the 5% rule
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concentrations in octanol and water. The R3-XlogP descrip-
tor refers to the partition coefficient of the fragment at the R3
position. Since the value of the partition coefficient depends
on the lipophilic character of the molecule, a positive
coefficient for this descriptor refers to the fact that an
increase in the hydrophobicity of the fragment at the R3
position adds to the antioxidant activity profiles of the
molecules. This observation is strongly correlated with the

3D pharmacophore and the CoMSIA models, which also
indicates the importance of having a hydrophobic feature at
the R3 position of the molecules (Figs. 6 and 8), as observed
for compound nos. 12, 13, 14, 15, 29, 30, and 35 (all these
have a substituted benzoyl fragment at the R3 position). The
R2-Mol.Wt descriptor refers to the molecular weight of the
substituent at the R2 position of the chromone moiety, and a
positive coefficient for this descriptor signifies that increas-
ing the molecular weight of the substituent is conducive to
the antioxidant activity profiles of the molecules. Compound
no. 31, which bears a low molecular weight group (methyl)
at the R2 position, exhibits the lowest activity profile. On the
contrary, although compound no. 34 lacks the necessary
substitutions at the R2 and R3 positions, it shows a moderate
activity profile due to the presence of the hydroxyl groups at
the R9 and R10 positions. This implies that the moment of
inertia descriptors are ranked higher than the R2-Mol.Wt
descriptor, so the former exert a greater impact on the activity
profiles of the molecules.

Further, the G-QSAR model was developed based on both
the fragment descriptors and the interaction terms for two
subsequent fragments, and this model was referred to as the
“interaction-based G-QSAR model” (G-QSAR_IT). Thus,
Eq. 2 was obtained, which takes into consideration both the
group-based descriptors and their interaction terms.

pC ¼ 0:350þ 0:0004 �0:0000ð Þ �Mult R10�Mol:Wt:;R3� Volumeð Þ
þ0:473 �0:040ð Þ �Mult R9�MomInertiaX; R10� polarizabilityAHPð Þ
þ0:029 �0:002ð Þ �Mult R10� polarizabilityAHP; R2� 0PathCountð Þ

ntraining ¼ 27;F dfð Þ ¼ 387:591 3; 23ð Þ;R2 ¼ 0:980;Q2 ¼ 0:963; ntest ¼ 9;
R2
pred ¼ 0:980; r2m testð Þ ¼ 0:925

ð2Þ

Fig. 8 Contribution map obtained using the HQSAR technique and
based on compound no. 29 (see text for details)

G-QSAR G-QSAR_IT

Descriptors 4 5

n (train/test) 27/9 27/9

F (df) 81.774 (5,22) 946.849 (5,22)

R2 0.937 0.996

Q2 0.851 0.990

R2
pred 0.923 0.990

R2_se 0.113 0.031

Q2_se 0.174 0.047

R2
pred se 0.138 0.070

r2m ðtestÞ 0.910 0.925

Descriptor_1 R10-MomInertiaX R10-Mol.Wt.′ R3-Volume

Descriptor_2 R3-XlogP R9-MomInertiaX′R10-polarizabilityAHP

Descriptor_3 R9-MomInertiaX R10-polarizabilityAHP′ R2-0PathCount

Descriptor_4 R2-Mol.Wt. -

Table 8 Summary of the mod-
els developed using the group-
based QSAR technique
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All the cross-interaction terms in the above model refer to
the products of the respective fragment descriptors, and signify
the importance of each. The importance of the different
interaction terms appearing in Eq. 2 is evaluated based on
their contributions to the overall activity profiles of the
molecules: (i) Mult(R10-Mol.Wt., R3-Volume) (54.09%), (ii)
Mult(R9-MomInertiaX, R10-polarizabilityAHP) (30.51%),
and (iii) Mult(R10-polarizabilityAHP, R2-0PathCount)
(15.40%). The positive contributions of all of the descriptors
indicate that increasing the values of these descriptors is
conducive to the antioxidant activity profiles of the chromone
derivatives. The interaction descriptor Mult(R10-Mol.Wt., R3-
Volume) refers to the product of the R10-Mol.Wt. and R3-
Volume descriptors, and indicates that increasing themolecular
weight and volume for the substituents at the R10 and R3
positions, respectively, has a direct influence on the activity
profiles of the molecules. Thus, as indicated by the previous
models, molecules bearing hydroxyl substituents at the R10
position of the chromone nucleus exhibit enhanced antioxi-
dant activity profiles compared to those lacking the necessary
hydroxyl group. Similarly, as the R3 position is hydrophobi-
cally favored (as inferred from the CoMSIA and the 3D
pharmacophore models), substituents with a larger volume
(benzoyl group) are favored at this position. Compound nos.
27, 29, 30, and 34 with hydroxyl substituents show higher
values of the R10-Mol.Wt. descriptor and hence exhibit
improved activity profiles. Compound nos. 12, 13, 14, 15, 29,
30, and 35, which have large fragments at the R3 position,
exhibit improved activities. The moderately contributing
interaction variable Mult(R9-MomInertiaX, R10-
polarizabilityAHP) signifies the positive influences of the
R9-MomInertiaX and the R10-polarizabilityAHP descriptors
on the activity profiles of the chromone derivatives. As
mentioned earlier, in the G-QSAR-based model, the R9-
MomInertiaX descriptor (referring to the moment of inertia of
the R9 fragment along the x-axis) signifies that an increase in
the value of this descriptor (as seen in the case of hydroxyl
substitution) adds to the activity profiles of the molecules.
This observation matches with the results obtained for the
CoMSIA model, which shows that proper orientation of the
R9 hydroxyl fragment enables it to escape from the
unfavorable zone (Fig. 7a) and to exert a positive effect on
the activity profile. Moreover, the model developed using the
HQSAR technique shows green coloration of the R9 fragment
(−OH) (Fig. 8), denoting that it provides the maximum
contribution to the antioxidant activity profiles of the
molecules. Again, the R10-polarizabilityAHP descriptor
refers to the polarizability of the substituent at the R10
position using atom hybrid polarizability, and this indi-
cates that easily polarizable fragments (−OH) are essential
for substitution at the R10 position. This observation is in
accordance with those obtained from the CoMSIA and the

3D pharmacophore models (which show hydrogen-bond
acceptor features near the R10 fragment), as well as those
obtained for the HQSAR model (the positive contribution
of the hydroxyl substituent at the R10 position is indicated
by its green color). Again, the hydroxyl group at the R10
position for compound nos. 27, 29, 30, and 34 accounts
for the polarizability of the R10 fragment and in turn adds
to the activity profiles of the molecules. Finally, the interaction
term Mult(R10-polarizabilityAHP, R2-0PathCount) once
again imparts the significance of the R10-polarizabilityAHP
descriptor in addition to the positive contribution of the R2-
0PathCount descriptor. Zero path count simply refers to the
number of skeletal atoms or vertices in the molecular graph,
and the positive coefficient of the interaction term bearing the
R2-0PathCount descriptor signifies that increasing the number
of vertices for the substituent at the R2 position leads to an
increase in the antioxidant activity profiles of the molecules.
Thus, substituted aromatic fragments that fulfill the require-
ments of all of the developed QSAR models are the most
suitable substituents for the R2 position. All of the compounds
(compound nos. 27, 29, 30, and 34) in the higher activity
range have aromatic substituents at the R2 position of the
chromone nucleus.

Additional validation for the G-QSAR model

Amongst the different models developed in the present
work, the G-QSAR models provide essential structural
information regarding the substituent requirements in a
more precise and quantitative manner. At the same time, the
G-QSAR models show high predictive potential. Thus,
because the G-QSAR model is the most acceptable one in
terms of interpretability and statistical significance, it was
analyzed further to ensure the statistical reliability of the
developed model. The normality of the distribution of the
residuals obtained from the training set data was checked
using different statistical tests for normality. The Shapiro–
Wilk test [54] for normality yielded a value of W=0.971
and p=0.639, while the Kolmororov–Smirnov test [55]
yielded a value of d=0.113 at p>0.20. Besides these, the
Lilliefors significance correction [56] performed for the
residual data resulted in p>0.20. All of the above tests are
performed in order to determine whether a population of
data is normally distributed, and if the p value is greater
than 0.05, the null hypothesis (that the population is
normally distributed) is accepted. Thus, for the G-QSAR
model, the computed values for the normality tests are
much higher than the threshold value, so we can conclude
that the residual values for the training set data are normally
distributed. Additionally, the QUIK rule was performed in
order to determine the predictor collinearity. The QUIK rule
[61] allows models with high predictor collinearity, which
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often leads to chance correlation, to be rejected. The QUIK
rule is based on the K multivariate correlation index [62],
which measures the total correlation of a set of variables.
According to this rule, for an acceptable model, the total
correlation in the set given by the model predictors X plus
the response Y (KXY) should always be greater than that
measured only with the set of predictors. For the present
work, the value of KXY (0.432) obtained for the G-QSAR

model was higher than that of the KX (0.285) parameter,
and indicated that the developed G-QSAR model is
statistically acceptable [KXY (0.432)>KX (0.285)]. Besides
these, the model also satisfied all of the statistical validation
parameters set forth by Golbraikh and Tropsha [34]. For the
G-QSAR model, these statistical parameters yielded the
following results (the threshold values are given inside
parentheses):

ið Þ Q2 ¼ 0:851 Q2 > 0:5
� �

; r2 ¼ 0:925 r2 > 0:6½ �
iið Þ r2 � r20

� �
=r2 ¼ 0:0002 r2 � r20

� �
=r2 < 0:1

� �
; r2 � r=0

2� �
=r2 ¼ 0:009 r2 � r=0

2� �
=r2 < 0:1

h i

iiið Þ k ¼ 1:017 0:85 � k � 1:15½ �; k= ¼ 0:974 0:85 � k � 1:15½ �

Model randomization was also performed for the G-
QSAR model at the 99% confidence level. The lack of
chance correlation in the G-QSAR model is well reflected
in the value of cR2

p (0.871) [33], which is much higher than
the threshold value of 0.5.

Further, the applicability domain for the G-QSAR model
was checked using the leverage approach [57, 58]. Figure 9
shows a plot of standardized residuals (y-axis) vs. leverage
values (x-axis), which is referred to as the Williams plot.
The Williams plot thus obtained for the G-QSAR model
helps us to determine the domain of applicability of the
developed model for a diverse set of untested molecules.
The plot enables us to determine the poorly predicted
molecules, as well those that have atypical characteristics.
All the training set compounds (ntraining=27) have stan-

dardized residual values within the limit of ±3σ, indicating
that none of the compounds are prediction outliers.
However, compound no. 1, with a leverage value greater
than the critical value (h>h*), although not a response
outlier, behaves as an influential observation. The critical
leverage value of the model is 0.556, and all of the test set
(ntest=9) compounds were found to be within the applica-
bility domain of the model (i.e., there were no structurally
different chemicals).

Further studies of the GQSAR model

In order to check the intercorrelation among the four
different variables appearing in the G-QSAR model, the
Pearson correlation matrix (Table 9) was developed. A
maximum correlation (R) of −0.419 between the descriptors
R10-MomInertiaX and R9-MomInertiaX indicated that the
descriptors did not show significant intercorrelation. More-
over, the G-QSAR model was developed using four
descriptors for 27 molecules, which satisfied the 1:5 rule
(one descriptor for every five compounds) for QSAR
analysis. However, to further reduce the descriptor set,
MLR analysis was performed, and the least significant (R2-
Mol.Wt) of the four descriptors in Eq. 1 was eliminated.
Although the model obtained was acceptable in terms of
both internal (Q2=0.713) and external (R2

pred ¼ 0:893 and
r2m testð Þ ¼ 0:829) predictive parameters, the quality of the
model deteriorated in terms of its prediction ability. Thus,
partial least squares (PLS) analysis was performed to retain
all four descriptors in Eq. 1 by generating fewer latent
variables or components. Since the latent variables are
functions of the input descriptors, they encode all of the
information available within the descriptors, thus resulting
in fewer variables. A three-component model was obtained
based on the PLS technique, with significantly acceptableFig. 9 Williams plot for the G-QSAR model
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values attained for all the internal and external predictive
parameters.

pC ¼ �0:415þ 0:007� R10�MomInertiaX

þ 0:169� R3� XlogPþ 0:785

� R9�MomInertiaXþ 0:003

� R2Mol:Wt:

ntraining ¼ 27; LVs ¼ 3;Fðdf Þ ¼ 113:74ð3; 23Þ;

R2 ¼ 0:937;Q2 ¼ 0:837; ntest ¼ 9;

R2
pred ¼ 0:923; r2m ðtestÞ ¼ 0:909:

ð3Þ

The PLS model thus obtained was further validated based
on the randomization technique using the Simca-P software
package [63]. Each permutation of the data generated a new
set of R2 and Q2 values, which were plotted against the
correlation coefficient between the original Y values and the
permuted Y values. A model is considered valid if the
intercepts of R2 and Q2 are less than 0.4 and 0.05,
respectively. The intercepts for the R2 and Q2 lines in the
plot (Fig. S2 in the “Electronic supplementary material”) are
used to determine if the data are overfitted. The intercepts of
R2 and Q2 for the plot obtained based on Eq. 3 are 0.040 for
and −0.340, respectively. The values, which are much lower
than the threshold limit, indicate that the model is robust.

Additionally, due to the uneven distribution of the activity
data, there is a large gap in the activity range between 1.7 and
2.5, and most of the compounds lie in the range between 0.7
and 1.6. Thus, additional analysis was performed with the
fragment-based descriptors after removing compounds with
pIC50 values that are greater than 2.0. The PLS model thus
developed with the reduced set of compounds also yielded a
robust QSAR model with acceptable values for all of the
statistical parameters (Q2=0.881, R2

pred ¼ 0:956 and
r2m testð Þ ¼ 0:897).

Consensus model

Using input data from different sources and a variety of
algorithms in the development of QSAR models increases

the risk of model uncertainty. For QSAR models, such
uncertainty increases for data relating to different chemical
classes and end-points. This is where consensus modeling
is found to be useful, as it helps to reduce the model
uncertainty by averaging the model outputs. Consensus
predictions are made based on the results generated by the
multiple QSAR models. Each of the individual models may
contain some noisy data. Consensus QSAR modeling
diminishes the effects of these noisy data and hence
provides more reliable predictions than the individual
QSAR models. Since the consensus prediction is made
based on the average of the results obtained using the
different but comparable QSAR models, it is capable of
capturing the relationship between the chemical structures
of the molecules and the end-point more efficiently than a
single model [64, 65]. In the present work, the consensus
model was developed by averaging the predicted activity
data for the test set molecules obtained using the five
different QSAR models, with equal weights assigned to
each of the models. Further, the external predictive potential
of the consensus model was checked based on the R2

pred and
r2m testð Þ parameters. Moreover, the values of R2

pred 0:969ð Þ
and r2m testð Þ 0:957ð Þ obtained for the consensus model were
higher than those obtained for all of the individual QSAR
models. Thus, we can infer that the consensus model
captures the features of all of the developed QSAR models,
and so can predict the test set molecules more efficiently
than the individual models.

Comparison with previous work

Samee et al. [25] reported a 3D-QSAR model based on the
same dataset of chromone derivatives, which was obtained
using the molecular field analysis (MFA) technique along
with the genetic partial least squares method (G/PLS) as the
chemometric tool. After deleting one compound as an
outlier, they utilized a test set of five compounds to
determine the external predictive ability of the developed
model. However, in the present work, none of the
molecules were removed as outliers, and a test set of nine
compounds was used to assess the predictive potential of
the developed model. A detailed comparison of the model
developed by Samee et al. [25] with those developed in this
study is shown in Table 10.

Descriptors R10-MomInertiaX R3-XlogP R9-MomInertiaX R2-Mol.Wt.

R10-MomInertiaX 1.000 0.210 −0.419 −0.371
R3-XlogP 0.210 1.00 0.151 0.180

R9-MomInertiaX −0.419 0.151 1.000 0.244

R2-Mol.Wt. −0.371 0.180 0.244 1.000

Table 9 Pearson correlation
matrix for the descriptors
occurring in Eq. 5
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The HQSAR and G-QSAR methodologies utilized in the
present work are comparatively new approaches that
estimate the structural requirements of the molecules in a
more precise manner than conventional methods. Moreover,
the 3D-QSAR models developed using the traditional
(more commonly used) techniques determine the pharma-
cophoric features that are required for the antioxidant
activity profiles of the chromone derivatives. The values
obtained for all of the statistical parameters of our best
models (G-QSAR models) are better than those reported by
Samee et al. [25] (Table 10), indicating that the new models
provide more reliable structural information on the features
that are essential for improved antioxidant activity in this
series of chromone derivatives. More specifically, the Q2

value of the MFA model reported by Samee et al. [25] is
0.771, while those for the G-QSAR and G-QSAR_IT
models reported by us are 0.851 and 0.963, respectively.
Similarly, the R2

pred value for the MFA model reported by
Samee et al. [25] is 0.924 (for five test set compounds),
while that for the G-QSAR_IT model reported by us (for
nine test set compounds) is 0.980. Moreover, Samee et al.

[25] deleted one of the active compounds, reporting it as an
outlier. On the contrary, in the present work, all of the
molecules were included in the QSAR analysis, since
removing a molecule may result in the loss of essential
chemical information, especially in the case of a small
dataset. In the present work, we have used multiple
strategies of model development. All of the developed
models pointed to a similar type of structure-property
relationship, suggesting the validity of the hypotheses.
Samee et al. [25] reported the importance of steric and
electrostatic features to the overall antioxidant activity
profiles of the molecules, based on interactions with
different probe atoms at specific points in the 3D MFA
grid. The present work determines the importance of similar
features based on the mapping of molecules to 3D contour
maps. In addition to the steric and electrostatic interactions,
the CoMSIA contour map analyses the importance of
hydrogen-bond donor, hydrogen-bond acceptor and hydro-
phobic features in the antioxidant activity profiles of the
chromone derivatives. Again, the HQSAR technique
employed for the present work is a unique branch of the

Source Model development technique ntraining R2 Q2 ntest R2
pred r2m ðtestÞ

Samee et al. [25] MFA QSAR 30 0.868 0.771 5 0.924 -

Present work 3D pharmacophore 27 0.832 - 9 0.883 0.826

3D-QSAR (CoMSIA) 27 0.957 0.834 9 0.852 0.845

HQSAR 27 0.970 0.932 9 0.961 0.957

G-QSAR 27 0.937 0.851 9 0.923 0.910

G-QSAR_IT 27 0.980 0.963 9 0.980 0.925

Consensus model - - - 9 0.969 0.957

Table 10 Comparison of the
present work with that reported
by Samee et al. [25]

Fig. 10 Schematic diagram
showing different features at
various positions favoring the
antioxidant activity profiles of
the chromone derivatives, as
well as the different QSAR
techniques adopted to reach
these conclusions
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traditional QSAR methodology, and deals with the contribu-
tions of different molecular fragments to the antioxidant
activity profiles of the molecules. Additionally, the G-QSAR
technique employed in the present work quantitatively
determines the contributions of the different substituents to
the overall antioxidant activity profiles of the chromone
derivatives. Moreover, in the present work, besides the
calculation of the R2

pred parameter, the r2m testð Þ parameter was
also determined, which means that the developed QSAR
models are more reliable.

Overview and conclusions

In the present work, 36 chromone derivatives were modeled
for their antioxidant activity profiles. The similarity of the
features that occurred in all four types of model developed
further supports the reliability and reproducibility of the
developed models. Figure 10 shows a schematic representa-
tion of the various structural features that are crucial to the
improved antioxidant activity profiles of the chromone
derivatives, together with a note about the QSAR method-
ologies with which the corresponding results are obtained.
The fact that the various QSAR methodologies point to
similar structural requisites proves their unified mechanistic
approach for modeling the antioxidant activity profiles of the
chromone derivatives. The importance of the hydrogen-bond
acceptor feature is revealed by all four models. Thus, the
hydroxyl substituent at the R10 position and the benzoyl
substituent at the R3 position of the chromone nucleus are
essential fragments for improved antioxidant activity. Addi-
tionally, the ketonic group at C4 further enhances the abilities
of the molecules to interact with the toxic free radicals
through a mechanism of electron transfer followed by
deprotonation [10]. The presence of the blue contour near
the R2 position of the chromone moiety in the CoMSIA
analysis indicates that bulky substituents are disfavored at
this position. This observation matches with that reported by
Samee et al. [25], since a bulky substituent may interfere
with the radical delocalization of the chromone nucleus,
affecting the electron density over the =O fragment. This in
turn impairs the hydrogen abstraction mechanism [10]
utilized by the hydrogen-bond acceptor fragments present
in the antioxidant molecules. For the 3D pharmacophore
model, the presence of the ring aromatic and the hydropho-
bic features over the substituents at the R2 and R3 positions,
respectively, indicates that such groups separated by the
specific distance of 5.890Å are essential for the enhanced
activities of the molecules. Similar results were also obtained
from the CoMSIA study, where these substituents map to the
hydrophobically favored yellow contours. Moreover, the
HQSAR contour study also revealed the importance of such
fragments, with the green color for the substituent at R3

indicating its maximum contribution. The models developed
here provide detailed information on the structural attributes
required for optimum antioxidant activity of the chromone
derivatives. Finally, the G-QSAR models developed for the
present dataset provide a precise outline of the essential
structural fragments based on the fragment-specific descrip-
tors and the interaction terms. The inferences obtained from
the G-QSAR models closely match with those of the
remaining models, indicating the important impact of the
hydroxyl substitution at the R10 position on the antioxidant
activity profiles of the chromone derivatives, in addition to
the remaining essential features, such as the presence of the
substituted benzoyl fragment at the R3 position and the
substituted aromatic fragment at the R2 position. Although
all of the models developed here yield statistically significant
results, the HQSAR model can be ranked as the best, based
on the values of the external validation parameters
R2
pred ¼ 0:961; r2m testð Þ ¼ 0:957

� �
. All of the models devel-

oped here are statistically significant, and the observations
made in each case are identical to those made using the other
models. Thus, these models are reproducible in terms of both
the results obtained for the essential structural attributes of the
molecules as well as the statistical parameters. The results thus
reflect the mechanistic interpretation of the free-radical
scavenging activities of the chromone derivatives. Although
the models were developed using different chemometric tools,
the similar conclusions about the structure–activity relation-
ship obtained from the models infer that these models are
robust and highly predictive. Moreover, the consensus model
developed here based on the five different QSAR models
further highlights the potential predictive abilities of the
models. All of the 2D- and 3D-QSAR approaches employed
in the present work can be used as efficient query tools for
designing as well as searching databases for chromone
molecules with potent antioxidant activities. Thus, the models
can be utilized to estimate the activity profiles of virtual
libraries of newly designed antioxidant chromone molecules
of this class prior to synthesis or biological testing.
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Abstract The binding properties of the protein–inhibitor
complex of human immunodeficiency virus type 1 (HIV-1)
protease with the inhibitor TMC-126 are investigated by
combining computational alanine scanning (CAS) muta-
genesis with binding free-energy decomposition (BFED).
The calculated results demonstrate that the flap region
(residues 38–58) and the active site region (residues 23–32)
in HIV-1 protease contribute 63.72% of the protease to the
binding of the inhibitor. In particular, the mechanisms for
the interactions of key residues of these species are fully
explored and analyzed. Interestingly, the regression analy-
ses show that both CAS and BFED based on the
generalized Born model yield similar results, with a
correlation coefficient of 0.94. However, compared to
CAS, BFED is faster and can decompose the per-residue
binding free-energy contributions into backbone and side-
chain contributions. The results obtained in this study are
useful for studying the binding mechanism between
receptor and ligand and for designing potent inhibitors that
can combat diseases.

Keywords HIV-1 protease . TMC-126 .MM-PBSA/MM-
GBSA . Free-energy decomposition . Computational alanine
scanning

Abbreviations
PR Protease
PI Protease inhibitors
MD Molecular dynamics
PME Particle mesh Ewald
MM Molecular mechanics
GB Generalized Born
PB Poisson–Boltzmann
SA Surface area
rmsd Root-mean-square deviation

Introduction

Acquired immune deficiency syndrome (AIDS), which is
induced by human immunodeficiency virus (HIV) infec-
tion, has become one of the major medical and humanitarian
challenges. HIV-1 protease (PR), a member of the aspartyl
protease family, is one of the most important enzymes targeted
in research aimed at discovering new drugs to counter AIDS.
It cleaves the nonfunctional polypeptide into viral structural
(gag) and functional (pol) proteins, a process that is essential
for the maturation of the infectious HIV particles [1, 2].
Repression of HIV-1 PR activity could prevent the produc-
tion of mature and infectious HIV particles, blocking further
HIV infection. HIV protease is a centrally symmetric
homodimer containing two identical 99 amino acid mono-
mers; the active residues Asp25 and Asp25′ are located at the
interface between the two monomers [3–5]. The binding on
an inhibitor to PR can lead to the inactivation of the enzyme
and prevent the infection of the host cell. Thus, the dimeric
HIV-1 protease is one of the most attractive targets in the
development of antiviral therapeutics. Therefore, in order to
design efficient inhibitors, it is critically important to
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investigate the mechanism of the interaction between PR and
protease inhibitor (PI) in detail.

Currently, nine antiviral agents that can inhibit HIV-1
protease have been approved by the US Food and Drug
Administration (FDA)—including saquinavir, ritonavir,
lopinavir, atazanavir, indinavir, amprenavir, and tiprana-
vir—with several others under clinical trial [6]. Due to
the short-lived therapeutic benefits of these drugs and the
rapid evolution of drug-resistant variants, there is an
urgent need to develop antiretroviral drugs with minimal
side effects and broad-spectrum activities for current and
future wild-type and mutant strains of HIV protease [7, 8].
TMC-126 is an effective nonpeptide inhibitor of HIV-1
protease that is extremely potent against a wide spectrum
of HIV protease variants (Fig. 1). Its structure is largely
based on that of darunavir (TMC-114) [9], which contains
a bistetrahydrofuranyl (bis-THF) urethane and an isostere
of sulfonamide [10].

Since it is inconvenient to measure the binding affinities
of different PR and inhibitors experimentally, molecular
dynamics (MD) simulation can play an important role in
investigations of the structural and functional characteristics
of biological systems. Using MD simulations, kinetic and
thermodynamic data on the simulated system can be
obtained. The binding free energy—a very important
thermodynamic quantity—can be used to evaluate the
stability of a complex. Hence, accurately calculating the
binding free energy is crucial when exploring the inter-
actions between proteins and ligands [11]. In order to
rapidly evaluate binding free energies, several semi-
empirical methods such as the molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA) and the
molecular mechanics generalized Born surface area (MM-
GBSA) methods have been developed [12]. The MM-
PBSA approach [13–16], which is based on the MD
simulation of the protein–ligand complex of interest in
explicit solvent, has been successfully used to describe the
protein–ligand binding free energy in rational drug design
[17–23]. In this method, the binding free energy is
decomposed into the molecular mechanical free energy,
the solvation free energy, and entropic contributions. The
polar contribution to the solvation energy is evaluated using

the Poisson–Boltzmann (PB) model, or calculated by the
generalized Born (GB) model using the MM-GBSA
method. The free-energy decomposition involved in the
MM-GBSA method can elucidate the contribution of each
protease residue to the overall protein–ligand binding free
energy at the atomic level [24, 25]. Both MM-PBSA and
MM-GBSA have been used to investigate the mechanisms
of interaction between different protease inhibitors and
different variants of the HIV-1 protease [17]. Previous
studies of HIV-1 protease and inhibitors have mostly
utilized the MM-PBSA method to obtain the binding free
energy, whereas free-energy decomposition methods based
on the GB model were selected to analyze the interaction
mechanisms [17, 26]. The GB model is an attractive
alternative to the PB model since it is significantly faster
and can decompose the binding free energies on a per-
residue basis. However, a comparison analysis of the PB
and GB models was implemented on the same system that
we study in this article. The results showed that the free-
energy changes upon alanine mutation determined by the
PB model are smaller and more accurate than those
obtained by the GB model [27, 28]. Moreover, when the
free-energy decomposition method was performed to
investigate the per-residue contributions to the HIV-1
protease by the PB method, the dimerization between the
two monomers was barely taken into account.

An extension of the MM-PBSA/MM-GBSA approach
based on both the GB and the PB models, computational
alanine scanning (CAS) can estimate the free-energy con-
sequences of PR mutations located at the active site, the flap
region, and the binding interface from a single MD trajectory.
Furthermore, the CAS method allows pairs of residues in the
two monomers of PR to be mutated to alanine. Thus, it is a
powerful tool for discovering hotspot residues [28–32].

In this work, the relative binding free energies in the
complex of PR and TM-126 were obtained using 3 ns MD
simulations. The per-residue interactions of the HIV-1
protease and TMC-126 were analyzed by the binding free
energy decomposition methods mentioned above. Then the
CAS method was implemented to discern 15 important
residues of the HIV-1 protease. The results obtained by the
CAS method based on the GB model and the PB model
were compared and discussed. A full comparison of the
decomposition method with the CAS method was also
performed in this study.

Theoretical methods

Initial structure of the complex

The crystal structure of the HIV protease bound to the
mutant resistant inhibitor UIC-98038 was obtained from theFig. 1 Structure of TMC-126
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Protein Data Bank (PDB; entry: 3I7E) [10]. The starting
structures and force field parameters for the inhibitor were
obtained as follows. Special attention was given to the
protonation states of Asp25 and Asp25′ in the active site. In
this work, monoprotonation was adopted, and a proton was
added to the oxygen atom OD2 of Asp25 [33]. Considering
the importance of water in the binding between PR and the
inhibitor, water207 was included in the starting structure
[34, 35]. Partial charges and force field parameters for the
inhibitor were generated automatically using the Antecham-
ber program in Amber10 [36, 37]. The atomic charges were
derived with the AM1-BCC charge method [38]. The
general force field (GAFF) [37] and the standard Amber
force field (FF03) [39] were used to obtain parameters such
as the Lennard–Jones, torsion, bond, and angle terms for
small organic molecules and to describe the parameters of
the protein, respectively. All missing hydrogens were added
using tleap in Amber10 [36]. To neutralize the charge of the
system, Cl− counterions were placed in the grid regions
with the largest positive Coulombic potentials around the
protease, and then the whole system was soaked in an
octahedral periodic box of TIP3P [40] waters. All solute
atoms were 10 Å from the edge of the water box.

Molecular dynamics simulations

All molecular simulations presented in this work were
carried out using the Amber10 simulation package and the
force field parameters of Cornell et al. [41]. Periodic
boundary conditions and a 10 Å cutoff for nonbonded van
der Waals (VDW) interactions were applied in our
simulations. The particle mesh Ewald (PME) [41] method
was employed to account for the long-range electrostatic
interactions under periodic boundary conditions. The
SHAKE procedure [42] was applied to all atoms covalently
bonded to a hydrogen atom. A time step of 2 fs was used to
integrate the equations of motion.

In order to remove steric overlap, which produces bad
effects between the complex and solvent, two stages of
energy minimization were performed: 500 cycles of
steepest descent and 2500 cycles of conjugate gradient
minimization. First, the water molecules were minimized
by keeping the solute fixed with a harmonic constraint of
strength 100 kcal mol−1 Å−2. Second, the entire system was
minimized without restriction. Subsequently, before the
actual MD simulations, the temperature of the system was
gradually raised from 0 K to 300 K over 100 ps, followed
by 100 ps of equilibration at 300 K. The initial velocities of
atoms were assigned based on a Maxwellian distribution at
the starting temperature. Finally, a 3 ns MD simulation was
performed at a constant pressure of 1 atm and constant
temperature, and controlled by Langevin dynamics with a
collision frequency of 1.0 ps−1. The resulting trajectories

were analyzed using the ptraj module of Amber10. One
snapshot was saved every 5 ps; 200 snapshots were
collected from the previous 1000 ps of simulations for
post-processing analysis.

MM-PBSA/MM-GBSA approach

The binding free energy between PR and PI was calculated
by the MM-PBSA method according to the following
equation:

ΔGbind ¼ Gcomplex � ðGreceptor þ GligandÞ; ð1Þ

where Gcomplex,Greceptor, and Gligand represent the free
energies of the complex, receptor, and ligand averaged over
snapshots taken from MD trajectories. The free energy of
each reactant was estimated as the sum of the molecular
mechanical free energy, the solvation free energy, and the
contributions from the vibrational, rotational, and transla-
tional entropies:

G ¼ EMM þ Gsolvation � TS: ð2Þ
The molecular mechanical energy EMM in Eq. 2 was

determined with the Sander program from Amber10
software suite according to molecular mechanics with an
empirical force field. The topology files thus obtained were
further divided into the internal energy of the molecule
(Eint), the electrostatic interactions (Eele), and the van der
Waals interactions (EvdW):

EMM ¼ Eint þ Eele þ EvdW ð3Þ

Eint ¼ Ebond þ Eangle � Etorsion: ð4Þ
The internal energy Eint has three contributions: Ebond,

Eangle and Etorsion, which represent the strain energies in
bonds, angles, and torsion angles caused by deviations from
their equilibrium values. The electrostatic and van der
Waals energies were calculated using the Sander module.
The solvation free energy contribution includes polar and
nonpolar contributions:

ΔGsol ¼ ΔGpolar þΔGnonpolar: ð5Þ
With the PB model, the polar portion (ΔGpolar in Eq. 5)

was estimated by the pbsa program of Ambertools under
the MM-PBSA approach.

In MM-PBSA calculations, the grid spacing was set to
0.5 Å, and the radii of the atoms were taken from the
PARSE parameter set [42]. The values of the interior
dielectric constant and the exterior dielectric constant were
set to 1.0 and 80.0, respectively. The nonpolar contribution
to the solvation free energy, ΔGnonpolar in Eq. 5, was
calculated from the solvent-accessible surface area (SASA)
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using the LCPO method [43] implemented within Sander,
with a probe radius of 1.4 Å, according to the equation

ΔGnonpolar ¼ gSAþ b; ð6Þ
where the surface tension γ and the offset β were set to the
default values of 0.00542 kcal/(mol Å2) and 0.92 kcal mol−1,
respectively.

Unlike the MM-PBSA method, in the MM-GBSA calcu-
lation, the polar contribution to the solvation free energy
(ΔGpolar in Eq. 5) was calculated with the generalized Born
(GB) model implemented in Sander, and the nonpolar
contribution (ΔGnonpolar in Eq. 5) was determined with the
LCPO method based on the solvent-accessible surface area,
as described in Eq. 6, in which the surface tension γ and the
offset β were set to the default values of 0.0072 kcal/
(mol Å2) and 0.00 kcal mol−1, respectively. Similar to MM-
PBSA, the values of the interior dielectric constant and the
exterior dielectric constant were set to 1.0 and 80.0,
respectively [44].

For the calculations of EMM, ΔGELE, and ΔGnonpolar, 200
snapshots from 2 ns to 3 ns were extracted from a single
trajectory of the complex at time intervals of about 5 ps. In
this study, we assumed that the entropy contributions were
similar for different HIV protease variants and the ligand.
When we calculated the relative binding free energies
between them, the entropy contribution was neglected [29].

Binding free-energy decomposition (BFED)

Due to the time-consuming nature and the high
computational demands of the PB calculation, the
interactions between the inhibitor and each residue of
HIV-1 protease were calculated with a decomposition
process based GB model using the mm_pbsa program in
Amber10. The per-residue contribution was further
decomposed into two parts: one from side chains and
the other from the backbone. The binding interactions
of each inhibitor–residue pair (ΔGinhibitor-residue) were
evaluated using the following equation:

ΔGinhibitor�residue ¼ ΔEvdW þΔEele þΔGpolar

þΔGnonpolar ð7Þ
We did not take ΔEint into account in Eq. 7 for per-atom

decomposition because Eint is zero in a single trajectory and
the entropy terms are neglected.

The van der Waals contribution (ΔEvdW) and the electro-
static contribution (ΔEele) in Eq. 7 were computed by the
Sander module in Amber10 [36]. In Eq. 7, ΔGpolar represents
the polar interactions between the inhibitor and each protease
residue during solvation, and was calculated using the GB
model, with the charges taken from the Amber parameter set.
The nonpolar solvation contribution (ΔGnonpolar in Eq. 7) was

obtained based on the corresponding SASA, as described in
Eq. 6 [24].

By summing the atomic energy terms in Eq. 7 over each
atom of a given residue, we obtained the contribution of
this residue to the total binding free energy. The same
snapshots were used to calculate all energy components as
well as the total binding free energy.

Computational alanine scanning approach

The relative binding free-energy changes ΔΔGbind of
different HIV-1 protease variants and the inhibitor were
calculated by CAS with the mm_pbsa.pl module in
Amber10. ΔΔGbind was estimated by comparing ΔGbind of
the alanine mutant to ΔGbind of the wild type according to
the following equation [29]:

ΔΔGbind ¼ ΔGwildtype �ΔGmutant: ð8Þ

The key residues of HIV protease were chosen from
the binding interface based upon the smallest ligand
interaction distances. Since alanine scanning is not
suitable for very small (such as glycine) or large
residues (the backbone conformations of which differ
significantly from that of alanine), prolines and glycines
were not selected. The starting atomic coordinates in the
alanine mutant structure were obtained by altering the
coordinates of the last 1 ns trajectory. In this calcula-
tion, we assumed that the contribution to the change in
the entropy of the mutant was not significant, so ΔGbind

derives from the changes in ΔEMM and ΔGsolvate. In
computational alanine scanning, the entropy term can be
removed because the entropies of the wild type and its
mutants are similar for the same ligand and for similar
receptors [29]. Here, the same set of snapshots obtained
with the wild-type complex was used to calculate ΔGbind

for the mutants. The ΔΔGbind values of the different HIV-1
protease variants and the inhibitor were obtained with the
same snapshots of binding free-energy decomposition,
according to Eq. 8.

Results and discussion

Stability and flexibility of the complex

For the complex of HIV-1 protease with inhibitor (TMC-
126), MD simulations with the particle mesh Ewald (PME)
method were performed in explicit water for 3 ns. In order
to assess the dynamic stability of the protease complex,
Fig. 2 shows the calculated root-mean-square displacement
(RMSD) of the backbone atoms from the starting structure
of the complex.
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It is clear from Fig. 2 that a sharp rise is observed during
the first 1200 ps. After that, the RMSD values fluctuate
between 0.7 Å and 1.5 Å. After about 1.8 ns, the RMSD
stabilizes and converges to a lower value of 1.1 Å, which
indicates that the conformation of the complex has reached
its equilibrium.

The initial structure and the superimposition of the
average structure from the last 1 ns of snapshots of the
complex are shown in Fig. 3. Our results showed that the
average backbone RMSD value during the last 1 ns of MD
trajectories was 0.92 Å, which indicates that the simulated
structure is in good agreement with the experimental
results. The last 1 ns of snapshots were used to calculate
the binding free energy, free-energy decomposition, and
computational alanine scanning, as described in the
following subsections.

A detailed analysis of the root-mean-square fluctuation
(RMSF) versus the residue number in the complex is
illustrated in Fig. 4. As seen from Fig. 4, the regions around
Asp25 and Asp25′ show analogous RMSF behavior, with a
minimum value of 0.3 Å. These results are in good
agreement with experimental measurements [45], as well
as other theoretical reports [46]. In addition to the N- and
C-terminal residues, the regions around 17(17′), 41(41′), 52
(53′), 67(67′), and 81(81′) show the biggest dynamic
fluctuations. Residues 1–37 and 59–99 in each monomer
are defined as the core region, while residues 38–58
comprise the flap region. The flexibility of the flap region
is crucial to the activity of the protease. As seen from
Fig. 4, the flap region, especially the flap elbow region
(residues 37–42), shows significant flexibility, which was
also observed by Zhu et al. [47]. As described in
“Theoretical methods,” the crystallographic water that
bridges the drug TMC-126 and Ile50/Ile50′ was includ-
ed in the initial model. Our results showed that this
bridging water was maintained throughout the whole
MD simulation.

Binding free energy

In order to obtain the relative binding free energy and the
VDW, electrostatic and solvation energy terms, the MM-
PBSA and MM-GBSA methods were implemented using a
single-trajectory protocol. As described in “Theoretical
methods,” when we calculated the relative binding free
energy between HIV-1 and TMC-126, the entropy contri-
bution was assumed to cancel out completely [48]. The
values of the different energy terms shown in Eqs. 1–6 were
obtained by averaging 200 snapshots taken from the last
1 ns of the MD simulation at 5 ps intervals.

Fig. 2 The root-mean-square deviation (RMSD) of the backbone Cα
atoms during the MD simulations of the complex with respect to the
initial minimized structure of TMC-126

Fig. 3 The average structure from the last 1 ns of the MD trajectory
of the complex of HIV-1 protease with TMC-126 superimposed on the
initial structure via the protease’s backbone atoms. The initial structure
of the complex is shown in cyan, whereas the MD structure of the
complex is shown in yellow. The figure was created using Chimera

Fig. 4 The root-mean-square fluctuations of the backbone atoms
versus the residue number of the HIV-1 protease and TMC-126
complex
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Using Eqs. 1–6, the contributions of the energy
components to the relative binding free energies of the
receptor, ligand, and complex were calculated, and they are
listed in Table 1. Using Eq. 7, with the MM-PBSA and
MM-GBSA approaches, the calculated relative binding free
energies of TMC-126 with HIV-1 are −37.01 and
−62.37 kcal mol−1, respectively (note that the entropy
contribution was assumed to cancel out) [48]. Based on the
contributions of the different energy components shown in
Table 1, it is clear that the electrostatic interaction and the
VDW interaction in the gas phase provide the driving forces
for affinity binding. The nonpolar solvation energy provides
a slightly favorable contribution to the binding of the
inhibitor to PR, whereas the polar solvation energy provides
an unfavorable energy component.

Free-energy decomposition

Analyzing the binding free-energy decomposition and the
hydrogen bonds should lead to detailed insights into the
binding mechanism for the PR–inhibitor complex. As
described in “Theoretical methods,” when the MM-GBSA
approach is used, the binding free energy is decomposed
into per-atom contributions that can be summed over atom
groups to obtain the different energy contributions from
residues, backbones and side chains [24, 25].

Table 2 reports the decomposition of ΔGbind on a per-
residue basis into the contributions from VDW, electrostatic
interactions, polar solvation energy, and nonpolar solvation
energy. From Table 2, it is apparent that the calculated
protein–inhibitor binding energy (ΔGbind) is greater than
0.12 kcal mol−1, which is extremely helpful in elucidating
the binding mechanism of TMC-126 to PR at the atomic
level. The calculated binding energies between the asym-

metric inhibitor TMC-126 and monomers A and B are
18.75 kcal mol−1 and 14.49 kcal mol−1, respectively, which
are very close to the values calculated by Zhang et al. [49].
The contributions of the flap region (38–58) and the active
site region (residue 23–32) are 10.4 kcal mol−1 and
12.72 kcal mol−1, respectively, which correspond to
31.39% and 38.39% of the contribution of PR to the
binding; the flap elbow region makes a contribution of
0.02 kcal mol−1, corresponding to 0.1% of the total binding.

Table 2 shows that the residues Ala28, Ile50, Ile84′,
Gly27, Ile50′, Ala28′, Ile47′, and Gly49 contribute more
than 1.5 kcal mol−1 to the binding. These residues are
mostly from the flap region (residues 38–58) and the active
site region (residues 23–32). As we know, the flap region
and the active site region are important regions for the
binding [47]. Ala28 contributes −4.65 kcal mol−1 to the
binding affinity, most of which derives from its backbone
(−3.96 kcal mol−1). Ala28′ also makes a rather significant
contribution of −1.77 kcal mol−1, and its backbone
contributes −1.11 kcal mol−1. Ile50 and Ile50′ also provide
large contributions to the binding: −2.63 kcal mol−1 and
−2.08 kcal mol−1, respectively. Unlike Ala28/Ala28′,
instead of their backbones contributing most, their side
chains (with VDW interactions) are the main contributors to
the binding. Their nonpolar solvation energies (1.03 and
0.71 kcal mol−1) appear to be unfavorable for binding.
Similar to Ile50/Ile50′, the side-chain contribution domi-
nates for the other two isoleucine residues, Ile84 and Ile27.
As shown in Table 2, Ile47 has a greater contribution from
its backbone than from its side chain, and its binding occurs
mainly through the VDW interaction. More than a half of
the contribution of Gly49′ (−1.61 kcal mol−1) originates
from the side chain (−0.91 kcal mol−1), according to the
calculated free-energy decomposition.

Table 1 The binding free
energy components of the
protein–inhibitor complex (HIV-
1–TCM126), as calculated using
MMPBSA methods (unit:
kcal mol−1)

a Components: Eele Coulombic
energy; EvdW VDW energy;
EMM=Eele+EvdW; Gpolar,PB polar
solvation energy; Gnonpolar,PB

nonpolar solvation energy; Gsol-

vation,PB=Gpolar,PB+Gnonpolar,PB;
Gsubtotal,PB=EMM+Gsolvation,PB

b Average of 200 snapshots
c Standard error of the mean
value

Componenta Complex PR TMC-126 Delta

Meanb Stdc Mean Std Mean Std Mean Std

Eele −4103.6 54.13 −3939.2 53.79 −131.6 2.19 −32.8 5.65

EvdW −833.22 20.58 −771.16 19.85 5.72 2.64 −67.77 3.59

EMM −539.47 64.38 −441.34 63.28 2.44 6.14 −100.57 5.6

Gnonpolar,PB 56.83 0.77 58.83 0.78 5.29 0.05 −7.29 0.09

Gpolar,PB −2380.55 45.03 −2411.06 45.05 −40.33 1.29 70.84 4.17

Gsolvation,PB −2323.72 44.59 −2352.23 44.62 −35.04 1.28 63.55 4.15

Gsubtotal,PB −2863.19 41.54 −2793.57 40.5 −32.61 5.97 −37.01 4.68

Gnonpolar,GB 74.27 1.03 76.93 1.04 5.8 0.07 −8.46 0.12

Gpolar,GB −2398.71 47.09 −2409.76 47.04 −35.61 1.58 46.66 4.42

Gsolvation,GB −2324.44 46.5 −2332.83 46.45 −29.81 1.56 38.2 4.4

Gsubtotal,GB −2863.91 39.26 −2774.17 38.56 −27.37 6.11 −62.37 4.46
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Computational alanine scanning

The computational alanine scanning (CAS) method was
implemented to acquire ΔΔGbind by mutating residues of
proteins to alanine. HIV-1 is a homodimer protease
consisting of two identical monomers. In terms of the
binding decomposition method, the CAS method can
mutate the same residue in each monomer simultaneously,
so that we can gain insight into the function of the residue
in the homodimer.

In order to perform CAS, we first need to select which
residue pairs can be mutated to alanine. Our criteria for
selecting these mutated pairs were that the chosen residues

should make significant contributions to the binding, or that
they should be located in a crucial area such as the binding
interface, pocket, or flap region. As mentioned in “Theoretical
methods,” the CAS method does not work well for very
small or very big residue mutations. The mutation of proline
[50] to alanine sometimes leads to significant conformational
changes [29]. In this study, based on our selection criteria,
and by combining the residue locations and the results
reported in Table 3, 15 pairs of residues were chosen for
mutation to alanine in the CAS method: Arg8, Leu23,
Leu24, Thr26, Asp29, Asp30, Val32, Ile47, Ile50, Val56,
Leu76, Val82, Asn83, Ile84, and Arg87. In order to make this
method practical, we assumed that local changes do not

Table 2 Decomposition of
ΔGbind on a per-residue basis
into contributions from the van
der Waals energy (ΔEvdW),
electrostatic interaction energy
(ΔEele), nonpolar solvation free
energy (ΔGpolar,GB) and polar
free energy (ΔGnonpolar) (units:
kcal mol−1)

S, B, and T represent the side-
chain residue, monomer B, and
total (monomers A and B) con-
tributions, respectively

Residue ΔEvdW ΔEele ΔGpolar,GB ΔGnonpolar S ΔGsubtotal B ΔGsubtotal T ΔGsubtotal

Ala28 −2.55 −2.01 0.09 −0.18 −0.69 −3.96 −4.65
Ile50 −2.3 −1.18 1.03 −0.18 −2.16 −0.47 −2.63
Ile84′ −1.85 −0.2 0.01 −0.17 −2.13 −0.09 −2.22
Gly27 −1.37 0.0 −0.66 −0.1 −0.71 −1.43 −2.14
Ile50′ −1.72 −0.9 0.71 −0.17 −1.83 −0.26 −2.08
Ala28′ −1.46 0.42 −0.55 −0.18 −0.66 −1.11 −1.77
Ile47′ −1.53 0.31 −0.3 −0.16 −1.56 −0.12 −1.69
Gly49′ −0.81 −1.67 0.96 −0.08 −0.91 −0.7 −1.61
Ile84 −1.15 0.22 −0.33 −0.13 −1.27 −0.11 −1.39
Gly49 −1.05 −1.29 1.09 −0.12 −0.75 −0.63 −1.38
Val82′ −0.97 0.06 −0.34 −0.09 −1.2 −0.15 −1.35
Val32′ −0.78 0.0 −0.43 −0.07 −1.15 −0.11 −1.27
Gly27′ −0.61 0.35 −0.67 −0.04 −0.41 −0.57 −0.98
Leu23′ −0.7 −0.14 −0.04 −0.04 −0.79 −0.13 −0.92
Arg87 −0.19 −2.19 1.58 0.0 −0.74 −0.07 −0.8
Ile47 −0.89 0.36 −0.14 −0.11 −0.74 −0.05 −0.79
Arg8′ −0.87 −1.24 1.48 −0.16 −0.73 −0.06 −0.79
Pro81′ −0.63 −0.17 0.11 −0.09 −0.61 −0.16 −0.78
Asp25 −1.1 1.44 −0.95 −0.07 −0.68 0.0 −0.68
Val32 −0.49 −0.03 −0.13 −0.03 −0.64 −0.04 −0.68
Val82 −0.38 −0.08 −0.05 −0.05 −0.52 −0.05 −0.57
Leu23 −0.38 0.12 −0.24 −0.04 −0.44 −0.09 −0.54
Asp29 −1.6 1.5 −0.3 −0.11 0.78 −1.3 −0.52
Pro81 −0.35 −0.1 0.04 −0.04 −0.4 −0.05 −0.46
Leu76′ −0.39 0.1 −0.11 −0.02 −0.4 −0.02 −0.42
Thr26 −0.2 0.3 −0.48 0.0 0.13 −0.52 −0.38
Asn83′ −0.09 0.05 −0.3 0.0 −0.03 −0.32 −0.35
Gly86 −0.09 −0.35 0.13 0.0 −0.23 −0.07 −0.31
Gly86′ −0.08 0.27 −0.4 0.0 −0.22 0.01 −0.21
Leu24′ −0.09 0.15 −0.27 0.0 −0.01 −0.19 −0.2
Val56′ −0.06 0.02 −0.13 0.0 −0.19 0.01 −0.17
Leu76 −0.14 −0.03 0.01 0.0 −0.15 −0.01 −0.16
Asn83 −0.05 −0.03 −0.08 0.0 −0.02 −0.14 −0.16
Arg87′ −0.07 1.82 −1.9 0.0 −0.08 −0.07 −0.15
Asp30 −1.27 1.99 −0.75 −0.08 0.23 −0.35 −0.12
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impact on the global conformation of the PR and the total
binding modes for the binding of PR to inhibitor. Such an
assumption has been proven to be applicable for most
mutations according to various alanine scanning mutagenesis
experiments [51].

The results obtained with the CAS approach for 15 pairs
of residues of PR are shown in Table 3. The changes in the
energy terms (VDW interactions, electrostatic interactions,
the polar and nonpolar solvation free energies) upon alanine
mutation are also listed in Table 3. According to Eq. 8,

negative values of ΔΔGbind indicate unfavorable substitu-
tions. In contrast, positive ΔΔGbind values suggest that the
alanine residue at the mutated position is more favorable for
binding.

As can be seen from Table 3, the binding free energies
drop considerably when the six critical residues (Leu23,
Val32, Ile47, Ile50, Val82, and Ile84) are mutated to alanine.
On the contrary, the ΔΔGsubtotal,GB values of Val26, Asp29,
and Asp30 are all positive, which indicates that the binding
between protease and TMC-126 is influenced when these

Table 3 The computational alanine scanning results for the HIV-1 protease and TMC-126 complex

Contribution Arg8Ala Std Leu23Ala Std Leu24Ala Std Thr26Ala Std Asp29Ala Std

ΔΔEele 0.85 1.65 0.03 0.03 −0.03 0.01 −0.08 0.09 3.26 2.48

ΔΔEvdW −1.83 0.35 −1.73 0.43 −0.03 0.00 −0.07 0.01 −1.39 0.29

ΔΔEMM −0.98 1.68 −1.7 0.42 −0.06 0.01 −0.15 0.09 1.87 2.53

ΔΔGnonpolar,PB −0.13 0.04 0.12 0.03 0.0 0.01 0.0 0.01 −0.02 0.05

ΔΔGpolar,PB 0.77 1.68 −0.12 0.79 0.01 0.28 −0.07 0.31 −2.06 2.31

ΔΔGsolvation,PB 0.64 1.67 0.0 0.77 0.01 0.28 −0.07 0.31 −2.08 2.31

ΔΔGsubtotal,PB −0.33 1.02 −1.69 0.85 −0.04 0.28 −0.21 0.28 −0.19 1.54

ΔΔGnonpolar,GB −0.17 0.05 0.16 0.04 0.0 0.01 0.0 0.01 −0.02 0.07

ΔΔGpolar,GB −1.33 1.41 −1.02 0.14 −0.05 0.04 0.78 0.24 0.25 2.24

ΔΔGsolvation,GB −1.5 1.42 −0.86 0.14 −0.05 0.04 0.78 0.24 0.25 2.24

ΔΔGsolvation,GB −1.5 1.42 −0.86 0.14 −0.05 0.04 0.78 0.24 0.23 2.24

ΔΔGsubtotal,GB −2.48 0.71 −2.57 0.46 −0.12 0.04 0.63 0.19 2.1 1.06

Contribution Asp30Ala std Val32Ala std Ile47Ala std Ile50Ala std Val56Ala Std

ΔΔEele −1.11 2.37 0.01 0.24 0.25 0.20 −0.09 6.94 0.09 0.06

ΔΔEvdW −0.86 0.31 −1.4 0.46 −2.85 0.50 −3.84 4.51 −0.12 0.02

ΔΔEMM −1.97 2.34 −1.39 0.49 −2.6 0.56 −3.93 6.42 −0.03 0.06

ΔΔGnonpolar,PB −0.01 0.03 0.09 0.02 0.09 0.03 0.15 0.12 0.0 0.01

ΔΔGpolar,PB 4.35 2.08 −1.53 0.71 0.85 0.59 2.17 5.07 0.03 0.19

ΔΔGsolvation,PB 4.34 2.08 −1.44 0.71 0.94 0.58 2.32 5.07 0.03 0.19

ΔΔGsubtotal,PB 2.38 1.93 −2.82 0.80 −1.65 0.78 −1.6 5.54 0.01 0.19

ΔΔGnonpolar,GB −0.01 0.03 0.12 0.02 0.12 0.04 0.2 0.16 0.0 0.01

ΔΔGpolar,GB 3.59 2.00 −1.32 0.33 −0.24 0.17 −0.89 5.33 −0.58 0.11

ΔΔGsolvation,GB 3.58 2.01 −1.2 0.34 −0.12 0.18 −0.69 5.34 −0.58 0.11

ΔΔGsubtotal,GB 1.61 0.86 −2.59 0.49 −2.72 0.53 −4.62 5.57 −0.61 0.08

Contribution Leu76Ala std Val82Ala std Asn83Ala std Ile84Ala std Arg87Ala std

ΔΔEele 0.01 0.04 −0.38 0.25 0.12 0.11 0.26 0.28 −0.64 1.08

ΔΔEvdW −0.85 0.32 −1.61 0.41 −0.03 0.00 −4.6 0.82 −0.36 0.04

ΔΔEMM −0.84 0.30 −1.99 0.43 0.09 0.11 −4.34 0.88 −1.0 1.09

ΔΔGnonpolar,PB 0.04 0.03 0.05 0.02 0.0 0.01 0.15 0.05 0.0 0.01

ΔΔGpolar,PB 0.8 0.90 0.35 0.35 −0.15 0.16 1.73 1.13 −0.77 1.07

ΔΔGsolvation,PB 0.83 0.90 0.4 0.34 −0.16 0.16 1.88 1.10 −0.77 1.07

ΔΔGsubtotal,PB 0.01 0.90 −1.57 0.53 −0.06 0.12 −2.45 1.49 −1.76 0.62

ΔΔGnonpolar,GB 0.05 0.04 0.07 0.03 0.0 0.01 0.2 0.07 0.0 0.01

ΔΔGpolar,GB −0.13 0.09 −0.9 0.31 −0.68 0.13 −1.15 0.31 −0.63 0.98

ΔΔGsolvation,GB −0.08 0.11 −0.83 0.31 −0.69 0.13 −0.95 0.30 −0.64 0.98

ΔΔGsubtotal,GB −0.92 0.27 −2.82 0.50 −0.6 0.10 −5.29 0.91 −1.63 0.40

Std standard error (units: kcal mol−1 )
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residues are mutated to alanine. These results are in good
agreement with those obtained from the free-energy
decomposition method.

Interactions between HIV-1 protease and inhibitor

In this section, we analyze some PR residues that are key to
the binding to the inhibitor, based on the results obtained
using BFED and CAS and the hydrogen bond data listed in
Table 4.

The interactions between PR and the inhibitor based on
the average structure from the MD simulations are plotted
in Fig. 5. In order to investigate the hydrogen bonds during
MD simulations, the results of a dynamic analysis of
hydrogen bonds based on the trajectories of the MD
simulations are listed in Table 4. Some of the hydrogen
bonds are also indicated in Fig. 5.

The BEFD-calculated results show that the favorable
residues mainly come from six groups around Ala28/
Ala28′, Ile50/Ile50′, and Ile84/Ile84′. Table 4 shows that
the residues that make significant contributions to the
binding are all hydrophobic amino acids. According to the
results shown in Table 2, the major force that drives the
inhibitor to most of the residues in PR is VDW interactions,
especially for the essential residues. This conclusion is
consistent with the binding free energies shown in Table 1.

As shown in Table 2, Ala28 contributes most of the binding
affinity. The main driving forces for the binding of the
inhibitor to Ala28 are the VDWenergy (−2.55 kcal mol−1) and
electrostatic energy (−2.01 kcal mol−1), which originate in the
C–H…π interactions between the bis-tetrahydrofuran (THF)
and the alkyl of Ala28, and in the C–H…O interactions of the
side-chain atoms of Ala28 with the oxygen atoms of the bis-
THF and inhibitor, respectively. The interaction between

Ala28′ and the inhibitor is similar to that of Ala28, in that
the main driving force for the binding of Ala28′ to the
inhibitor is the van der Waals energy (−1.46 kcal mol−1) from
the C–H…π interactions between the phenoxymethyl of the
inhibitor and the alkyl of Ala28′. In this case, the favorable
polar solvation energy (−0.55 kcal mol−1) is mostly countered
by the unfavorable electrostatic energy (0.42 kcal mol−1).

Although Asp25 and Asp25′ are located at the active site as
catalytic aspartic acids, monoprotonated Asp25 contributes
only −0.68 kcal mol−1 with an unfavorable electrostatic
interaction (1.44 kcal mol−1) to the total binding affinity, and
Asp25′ makes an unfavorable contribution (2.02 kcal mol−1)
to the binding affinity due to the combination of a strongly
unfavorable polar solvation energy (11.48 kcal mol−1) and a
highly favorable electrostatic energy (−9.51 kcal mol−1). As
shown in Table 4, the OD1 of Asp25 and Asp25′ form
hydrogen bonds with Ala28 and the inhibitor with occur-
rence rates of >98%, which suggests that the Ala28 pair
make a favorable contribution to the binding that stabilizes
the complex.

Although the PR is symmetrical, it is clear from Table 4
that the calculated contributions of Asp29 and Asp29′ are
different: negative (−0.52 kcal mol−1) and positive
(0.14 kcal mol−1), respectively. Similar behavior is also
found for the residues Asp30 (−0.12 kcal mol−1) and
Asp30′ (0.36 kcal mol−1). The results in Table 4 show that
Asp29 and Asp30 form stable hydrogen bonds with the
oxygen of the bis-THF in the inhibitor. The donor–acceptor
distances for these pairs and their corresponding occupan-
cies are 3.004 Å and 3.204 Å, 95.2% and 61.2%,
respectively. On the other hand, Asp29′ and Asp30′ do
not form hydrogen bonds with the inhibitor. Therefore, the
hydrogen bonds make favorable contributions to the VDW
interactions of Asp29 and Asp30 with the inhibitor, which
suggests that the bis-THF group in TMC-126 plays an
important role in the binding with the PR. In addition, as
shown in Table 3, the calculated ΔΔGsubtotal,GB values of the
residue pairs Asp29Ala and Asp30Ala are 2.1 and
1.61 kcal mol−1 respectively, which means that the side
chains of Asp29 and Asp30 make unfavorable contributions
to the binding affinity. The calculated ΔΔEele of Asp29Ala
and the ΔΔGpolar,GB of Asp30Ala are 3.26 kcal mol−1 and
3.59 kcal mol−1, respectively, indicating that the electro-
static interactions of their side chains have a significant
effect on the binding to the inhibitor.

The calculated results listed in Table 3 show that there is
a significant loss of binding free energy when the four
critical residue pairs Ile47/Ile47′ Ile50/Ile50′, Ile84/Ile84′,
and Val82/Val82′ are mutated to alanine. The CAS-
calculated results show that the residues Ile50/Ile50′ have
a significant effect on the binding, a −4.71 kcal mol−1

reduction in ΔΔGsubtotal,GB, which is in fair agreement with
the side-chain contribution (−3.99 kcal mol−1) obtained

Table 4 Hydrogen bonds for the last 1000 ps of the trajectory

Hydrogen bonds % Occupied Distance

Donor Receptor

Asp25–OD1 Ala28–N–H 98.80 2.851 (0.10)

Asp25′–OD1 PI–O22–H 98.60 2.670 (0.12)

PI–O4 Asp29′–N–H 95.2 3.004 (0.17)

PI–O2 Asp30′–N–H 61.2 3.203 (0.17)

PI–O2 Asp29′−N–H 43.2 3.220 (0.17)

Hydrogen bonds between WAT and PRb and PIa

WAT–O Ile50–N–H 91.2 3.084 (0.18)

WAT–O Ile50′–N–H 90.2 3.022 (0.17)

PI–O11 WAT–O–H1 86.60 2.787 (0.14)

PI–O26 WAT–O–H2 83.20 2.748 (0.15)

a HIV-1 protease
b HIV-1 protease inhibitor
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using the BFED method (Tables 2 and 3). As shown in
Table 3, the favorable contributions of Ile50 and Ile50′ to
the binding energy originate mainly from the VDW
interaction (−3.84 kcal mol−1) in Table 3. A possible reason
for this is that the side-chain alkyls of Ile50 and Ile50′ form
some C–H…H–C interactions with the inhibitor. In addi-
tion, the hydrogen atoms connect with the backbone
nitrogen atoms of Ile50 and Ile50′, forming strong
hydrogen bonds with the oxygen of the WAT207 (Table 4).

As can be seen from Tables 2 and 3, the interactions of
Ile84/Ile84′ and Ile47′ with the inhibitor are similar to that
of Ile50/Ile50′. Moreover, the contact of the alkyls of Ile47′
and Ile84′ with the phenyl group of the inhibitor, which
results in C–H…π interactions, can also add strong van der
Waals interactions to the binding. These results indicate that
the VDW interactions significantly favor the binding of
these isoleucine residues.

It is well known that the crystal water molecule WAT207
plays an important role in PR–inhibitor binding, since it can
generally form four hydrogen bonds with Ile50/Ile50′ and
TMC-126 [26]. As shown in Table 4, the occupancy rates of
these four hydrogen bonds are higher than 80%, which
suggest that these hydrogen bonds are extraordinarily stable
during MD simulations, and that the WAT207 act as a
conduit to connect the inhibitor with PR.

Comparisons between the CAS and the BFED methods

The calculated results obtained by computational alanine
scanning using the MM-PBSA and MM-GBSA approaches

are shown in Table 5. The regression between the calculated
ΔΔGsubtotal.PB and ΔΔGsubtotal.GB values for the 15 pairs of
residues is depicted in Fig. 6. From Fig. 6, the correlation
coefficient between the calculated ΔΔGsubtotal.PB and
ΔΔGsubtotal.GB values was found to be 0.76 for 15
mutations. As shown in Table 5, the values of ΔΔGbind

obtained by the PB model are clearly smaller than those
yielded by the GB model, except for Val32Ala and
Arg87Ala. Since the standard deviations obtained by the
GB model are a little bit smaller than those given by the PB
model, it appears that in this system, the PB model is more
sensitive to the atomic coordinates than the GB model
when calculating contributions to the solvation energy.
These conclusions are consistent with the results reported
by Li et al. [52].

In order to compare the computational alanine scanning
(CAS) approach with the binding free-energy decomposi-
tion (BFED) approach, in Table 5 we sum the calculated
ΔΔGsubtotal values of the same 15 pairs of residues
corresponding to chains A and B using the BFED method,
and the calculated ΔΔGsubtotal,GB results for the 15 pairs of
residues obtained by the CAS method.

The per-residue contributions calculated using the
BFED method include the contributions from the
backbone and the side chain. As far as the CAS method
is concerned, the backbone does not generally change,
because only Cγ is replaced by a methyl in the mutated
topology file. Consequently, ΔΔGsubtotal mainly reflects
the contribution from the side chain of the residue. Thus,
the side-chain contributions from the residues in monomers

Fig. 5 Geometries of ten resi-
dues of HIV-1 protease that
participate in some of the stron-
gest interactions with TMC-126,
based on the average structure
from the last 1 ns of MD
simulation
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A and B obtained using the BFED method and the
ΔΔGsubtotal,GB results obtained by the CAS method are
compared and shown in Fig. 7. The correlation coefficient
between ΔΔGsubtotal for the side chain calculated by the
BFED method and ΔΔGsubtotal,GB calculated by the CAS
method is 0.94 for the 15 mutants of residues, which
indicates that the CAS method allows useful insight into
the contribution of the side chain. Zoete and Michielin
studied different systems using both BFED and CAS, and
concluded that both of these methods can achieve
consistent results [32], which is in good agreement with
our calculated results.

Our results showed that the correlation between BFED
and CAS is better than that between GB and PB, as
calculated by the CAS method. A possible reason for this is
that both BEED and CAS are based upon the GB model in
our study.

Both the BFED and the CAS methods have been widely
used to identify the hotspots of receptor–ligand complexes
reliably and to obtain further insight into their binding and
related functional information [32]. Using the analysis of
the BFED and CAS methods, it can be concluded that

Fig. 7 Regression between the calculated ΔΔGsubtotal,GB obtained by
computational alanine scanning and the ΔGsubtotal for the side chain,
obtained by free-energy decomposition for the 15 pairs of residues of
HIV-1 protease

Fig. 6 Regression between the calculated ΔΔGsubtotal,PB and ΔΔGsubtotal,PB

values obtained by computational alanine scanning for the 15 residues

Table 5 Summation of ΔGsubtotal obtained by free-energy decomposition for the same residues in chain A and chain B of the complex, and the
ΔΔGsubtotal,GB values obtained by computational alanine scanning for the 15 pairs of residues (units: kcal mol−1)

Residue A a S c ΔGsubtotal A ΔGsubtotal B bS ΔGsubtotal B ΔGsubtotal T dS ΔGsubtotal T ΔGsubtotal ΔΔGsubtotal,GB

Arg8 0.01 −0.06 −0.73 −0.79 −0.72 −0.85 −2.48
Leu23 −0.44 −0.54 −0.79 −0.92 −1.23 −1.46 −2.57
Leu24 −0.01 −0.11 −0.01 −0.2 −0.02 −0.31 −0.12
Thr26 0.13 −0.38 0.11 −0.09 0.24 −0.47 0.63

Asp29 0.78 −0.52 0.13 0.14 0.91 −0.38 2.1

Asp30 0.23 −0.12 0.29 0.36 0.52 0.24 1.61

Val32 −0.64 −0.68 −1.15 −1.27 −1.79 −1.95 −2.59
Ile47 −0.74 −0.79 −1.56 −1.69 −2.3 −2.48 −2.72
Ile50 −2.16 −2.63 −1.83 −2.08 −3.99 −4.71 −4.62
Val56 −0.08 −0.07 −0.19 −0.17 −0.27 −0.24 −0.61
Leu76 −0.15 −0.16 −0.4 −0.42 −0.55 −0.58 −0.92
Val82 −0.52 −0.57 −1.2 −1.35 −1.72 −1.92 −2.82
Asn83 −0.02 −0.16 −0.03 −0.35 −0.05 −0.51 −0.6
Ile84 −1.27 −1.39 −2.13 −2.22 −3.4 −3.61 −5.29
Arg87 −0.74 −0.8 −0.08 −0.13 −0.82 −0.93 −1.64

a A represents ΔGsubtotal for the residues in chain A
b B represents ΔGsubtotal for the residues in chain B
c S represents ΔGsubtotal for the side chains
d T represents the summation ΔΔGsubtotal for the residues in chains A and B
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although these two methods are different, they are comple-
mentary to some extent.

First, the BFEDmethod is based upon the GBmodel; as far
as the CAS method is concerned, both PB and GB models are
applied to estimate the binding free-energy differences.
Consequently, owing to the distinctness of the models’
principles, the results calculated based on the PB model of
CASmethods are more accurate than those calculated with the
BFED methods. Compared to BFED, the CAS calculations
are time-consuming. Second, by applying the BFED approach
at an atomistic level, the per-atom contributions can be
summed over atomic groups such as residues, backbones,
and side chains, in order to obtain their contributions to the
binding free energy of the receptor–ligand complex. Simulta-
neously, the BFED approach allows us to decompose each
residue’s binding free energy conveniently into different
energetic components, such asVDWinteractions, electrostatic
interactions, and nonpolar solvation energy. On the other
hand, the CAS approach requires separate, time-consuming
calculations to perform a detailed study of protein–protein
interactions at the residue level, and focuses on the impact of
side chains on the binding affinity, since it is only employed to
evaluate the side-chain contributions of the residues of intest
that are mutated into alanine in the topology files. Unfortu-
nately, the CAS method can only be applied to specific
residues: not very small residues (such as glynine) or residues
that would induce significant global conformational changes
(such as proline and cysteine). Third, it is worth mentioning
that the CAS approach provides a chance to investigate the
influence of several mutants in the complex on the binding
affinity, because it allows more than one residue to be mutated
to alanine when the topology files are prepared. In contrast to
the BFED method, the CAS method provides a preferable
insight into systems in which several mutations exist
simultaneously; in particular, it can be applied to the dimer
and even more complicated systems, such as the HIV-1
protease homodimer and inhibitor complex. As the CAS
method substitutes alanine for other residues, this approach
can also be regarded as an effective tool to analyze the drug
resistance caused by mutagenesis, which could result in
improvements to drug design and better guidance for new
experimental investigations. In addition, the results obtained
by CAS can be compared directly to the experimental data on
mutagenesis. However, the CAS approach is not suitable for
detecting the binding mechanisms of complexes in which the
binding affinity originates from the backbones.

Conclusions

The binding free energy of the complex of HIV-1 protease
and TMC-126 was calculated using the MM-PBSA and
MM-GBSA methods based on decomposition of the energy

at an atomic level on the basis of the GB model. The
computational alanine scanning method based on the GB
and PB models was applied to this complex in order to
investigate the different contributions of HIV-1 protease
residues when binding to TMC-126.

The binding mechanism of PR with TMC-126 was
investigated by structural analysis, by calculating the free
energy and decomposing the inhibitor–residue interaction,
and computational alanine scanning. The favorable interac-
tions and the driving forces in the binding of the inhibitor to
PR are the van der Waals and electrostatic forces, which
mainly come from six groups around Ala28/Ala28′, Ile50/
Ile50′, and Ile84/Ile84. Ala28 mainly contributes to the
binding affinity. The contributions of Asp29 and Asp30 to
the binding in chains A and B are significantly different
because they form hydrogen bonds with bis-THF of the
inhibitor, which suggests that the bis-THF group in TMC-126
plays an important role in the binding of the PR. The VDW
energy significantly favors binding for isoleucine residues
such as Ile47, Ile50 and Ile84. The flap region and the active
site region of the PR are crucial to its binding affinity,
contributing about 69.78% of the total binding affinity. The
crystal water molecule acts as a bridging medium between the
inhibitor and PR by forming four hydrogen bonds among the
residues Ile50/Ile50′ and TMC-126.

Based on the correlation coefficients obtained from
regression analyses relating to different theoretical methods
and models, both the BFED and the CAS methods have
particular advantages and weaknesses when investigating the
binding mechanism. BFED is a rapid and convenient
approach. It does not need to consider the global change and
can prove the effects of both the backbone and side chains for
each residue. However, the CAS method can provide
preferable insight into the resistance of mutagenesis and the
binding affinities between residues in dimic and multimeric
proteins and inhibitors. To conclude, these two complemen-
tary methods provide a useful way to determine the hotspot
residues and to investigate the binding affinity incisively. We
expect that this work will provide some helpful insights into
the future of drug design with potent inhibitors.
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Abstract Aimed at identification and structural character-
ization of novel putative therapeutic targets in H. pylori, the
etiological agent of numerous gastrointestinal diseases
including peptic ulcer and gastric cancer, the present study
comprised of three phases. First, through subtractive
analysis of metabolic pathways of Helicobacter pylori
HPAG1 and human, as documented in the KEGG database,
11 pathogen-specific pathways were identified. Next, all
proteins involved in these pathogen-specific pathways were
scrutinized in search of promising targets and the study
yielded 25 candidate target proteins that are likely to be
essential for the pathogen viability, but have no homolog in
human. The lipopolysaccharide (LPS) biosynthesis pathway
was found to be the largest contributor (nine proteins) to this
list of candidate proteins. Considering the importance of LPS
in H. pylori virulence, 3D structural models of three
predicted target enzymes of this pathway, namely 2-
dehydro-3-deoxy-phosphooctonate aldolase, UDP-3-O-[3-
hydroxymyristoyl] N-acetylglucosamine deacetylase and
Phosphoheptose isomerase, were then built up using the
homology modeling approaches. Binding site analysis and
docking of the known biological substrate PEP to 2-dehydro-
3-deoxyphosphooctonate aldolase revealed the potential
binding pocket present in the single monomeric form of the
enzyme and identified 11 amino acid residues that might play
the key roles in this protein-ligand interaction.

Keywords Binding site analysis . Differential pathway
analysis . Essential proteins . Homology modeling .

Molecular docking

Introduction

Helicobacter pylori is the first formally recognized bacterial
carcinogen [1] and a major cause of various gastrointestinal
diseases, ranging from chronic active gastritis without
clinical symptoms to peptic ulceration, gastric adenocarci-
noma, and gastric mucosa-associated lymphoid tissue
(MALT) lymphoma [2–4]. More than 50% of the human
population harbors this gram-negative microaerophilic
microbe in their stomach [5], making it the most wide-
spread infection in the world and the infection persists for
life, if left untreated [3]. Multiple drug regimens have been
proposed for the initial treatment of H. pylori infection [6–
9]. However, rising antibiotic resistance and various side-
effects of existing intervention strategies [10, 11] have
increased the need of development of anti- H. pylori drugs
and the crucial first step in designing a new drug is to
identify one or more new therapeutic targets. To this end,
the present endeavor attempts, through in silico approaches,
to identify novel potential drug targets in H. pylori HPAG1.
Among 20 different strains of H. pylori, for which complete
genome sequences were available in the public domain at
the time of initiation of the study, H. pylori HPAG1 was
specifically selected for this analysis, since it was a clinical
isolate from a patient with chronic atrophic gastritis, the
precursor to gastric adenocarcinoma [12].

There are many computational approaches to identify
potential targets such as identification of virulence genes or
pathogen–specific essential genes, characterization of
pathogen-specific unique metabolic pathways, elucidation of
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membrane localized drug targets etc. [13–16]. In most of these
approaches, a set of candidate pathogen gene-products are
identified on the basis of two major criteria- essentiality and
selectivity [15–18]. A target protein must be indispensible for
the growth, replication, viability or survival of the pathogen,
but it should not have any homolog in the host genome. This
would ensure that the inhibition of the identified targets
would be detrimental to the pathogen, but have no undesired
cross-reactivity with the host proteins. The present study
employed the subtractive metabolic pathway strategy [15] for
identification of pathogen-specific pathways and then per-
formed the subtractive genome analysis [16] to sort out the
enzymes present exclusively in the pathogen, but not in the
host. Twenty five promising targets, participating in 11
pathogen-specific pathways have been identified - the
lipopolysaccharide (LPS) biosynthesis pathway being the
largest contributor to this list of candidate proteins. In the
subsequent phase of the study, homology modeling of the

candidate enzymes from the LPS biosynthesis pathway has
been taken up depending upon the availability of the template
structures. An attempt has also been made to predict the
putative ligand binding cavities in the enzymes under study
and to identify the key amino acid residues, potentially
involved in the enzyme-substrate interactions.

Materials and methods

Figure 1 represents a flowchart of the work carried out in
the present study. As shown in the flowchart, all annotated
protein sequences of Helicobacter pylori HPAG1 were
downloaded from National Center for Biotechnology
Information (NCBI) [19]. All metabolic pathway identifi-
cation numbers of H. pylori HPAG1 and Homo sapiens
were also extracted from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [20].

Fig. 1 Flowchart of the whole work
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Subtractive pathway analysis

ID nos. of the pathways of H. pylori HPAG1 were compared
with those of human. The pathways not found in human but
present inH. pylori HPAG1 (according to KEGG annotation)
were marked as the pathogen-specific pathways (Table 1)
and proteins involved in these pathways were selected for
downstream analysis.

Differential genome analysis

All proteins of the pathways enlisted in Table 1 were
subjected to BLASTp [21] search against H. sapiens non-
redundant database available at NCBI and sequences
exhibiting no hit for e-value <0.005 were selected for
further study.

Screening for essential proteins

BLASTp search was carried out individually for each of the
selected H. pylori HPAG1 proteins against the Database of
Essential Genes (DEG) [22], following the criteria shown in
Fig. 1. If the annotated function of a query protein be same
as that of its BLASTp hit in DEG, then the protein was
considered as essential gene-product of H. pylori HPAG1.
All non-human-homologous essential H. pylori proteins,
identified this way, were considered as the potential
therapeutic targets.

In an earlier study on H. pylori [18], the “essentiality” of
the identified targets was assessed merely on the basis of
their orthology to the DEG members. In the present study,
the method of subtractive pathway analysis [15] was
employed to find out H. pylori-specific pathways and then
the proteins participating only in these pathways were
screened for essential proteins with no human homologs.

Prediction of membrane-localized targets

All the identified potential drug targets were submitted to the
TMHMM [23] server 2.0 to identify the putative transmem-
brane helices, if any, in these proteins.

Prediction of potential 3D structures of candidate target
proteins

The next step in the study was prediction of the potential
tertiary structures of the identified target proteins using the
approach of homology modeling. It was, however, not
feasible to take up the task of homology modeling of a total
of 25 identified target proteins in a single endeavor.
Therefore, the present study focused only on the identified
target proteins of the LPS biosynthesis pathway - the largest
contributor to the list of identified candidate targets
(Table 2).

Template selection

All candidate target proteins of the LPS biosynthesis
pathways of H. pylori HPAG1 were individually subjected
to BLASTp search against PDB [24]. A BLASTp hit was
selected as a suitable template, if it had the same annotation
as the query protein and they both shared an identity of at
least 30%. However, following these criteria, suitable
templates for homology modeling could be found only for
three candidate enzymes of LPS biosynthesis pathway,
namely 2-dehydro-3-deoxy-phosphooctonate aldolase
(HPAG1_0003), UDP-3-O-[3-hydroxymyristoyl] N-
acetylglucosamine deacetylase (HPAG1_0395) and Phos-
phoheptose isomerase (HPAG1_0840). Homology model-
ing was, therefore, carried out only for these three enzymes.
Details of the template proteins selected for three query
proteins are given in Table 3.

Model building

Commercial software package Discovery Studio 2.1 from
Accelrys [25] was used for modeling, energy minimization,
binding site analysis and docking purposes. To build up the
models of the three proteins under study, the following
procedure was followed. All templates for a specific target
protein were aligned using the “align structures (MODELER)”
module with gap open penalty set to 0.0 and gap extension
penalty set to 2.0. Then the multiple alignment output was
aligned with the target protein sequence, using the “align
sequence with structure” module (scoring matrix: as1; gap
open penalty: -900; gap extension penalty: -50). The final
alignment was checked manually for further refinement.
Models were built using the module “build homology
models” with optimization level set to medium and cut

Table 1 List of the metabolic pathways present in H. pylori HPAG1
but absent in Human

KEGG pathway ID Metabolic pathway

00473 D-Alanine metabolism

00550 Peptidoglycan biosynthesis

00540 Lipopolysaccharide biosynthesis

00628 Fluorene degradation

00362 Benzoate degradation via hydroxylation

03090 Type II secretion system

03070 Type III secretion system

03080 Type IV secretion system

02020 Two-component system

02030 Bacterial chemotaxis

02040 Flagellar assembly
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overhangs set to true. In each trial, 50 models were built with
an option available. The models having least the discrete
optimized protein energy (DOPE) score and lowest PDF
energy were selected as the best model. Further correction of
models in the loop regions were done using the “loop
refinement (MODELER)” module with optimization level
set to medium. Finally the side chain was adjusted using the
“side-chain refinement” module applying CHARMm force
field. Images of final models were generated using Discover
studio 2.1 and the surface view was generated using UCSF
Chimera [26] for the visualization of 3D models.

Model validation

To check the stereochemical quality as well as the overall and
residue-by-residue geometry of the models, Ramachandran
plots of the protein models were built using Procheck 3.4 [27].
The reliability of the predicted models were further assessed

usingVerify3D [28]. Models qualifying in all these tests were
selected for further study.

Energy minimization of modeled proteins

Energy minimization was carried out in order to remove
or reduce possible geometric problems in the bimolec-
ular systems, such as improbable bond distances, bond
angles and torsion angles. In the present study, energy
minimization for all three modeled proteins was per-
formed with GROMACS 4.5.3 software package [29]
using the GROMOS96 43 a2 force field [30], with cubic cell
geometry. The default simple point charge (SPC) water was
added to the box and periodic boundary condition was
applied. The distance between the grid box and the protein
was set to 1.0 nm. In order to neutralize the total charge of
the system counter ions were placed in the box. Energy
minimization was carried out initially by steepest descent

Table 2 List of essential gene-products from pathogen-specific pathways having no human homolog

Metabolic pathway (KEGG ID) Product name Length (aa) Locus_tag COG ID

Lipopolysaccharide biosynthesis (00540) 2-dehydro-3-deoxyphosphooctonate aldolase 276 HPAG1_0003 COG2877M

3-deoxy-D-manno-octulosonic-acid transferase 393 HPAG1_0941 COG1519M

ADP-heptose–LPS heptosyltransferase II 349 HPAG1_1132 COG0859M

Hypothetical protein HPAG1_0843 173 HPAG1_0843 COG0241E

Lipopolysaccharide heptosyltransferase-1 340 HPAG1_0281 COG0859M

Phosphoheptose isomerase 192 HPAG1_0840 COG0279G

UDP-3-O-[3-hydroxymyristoyl] glucosamine
N-acyltransferase

336 HPAG1_0190 COG1044M

UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine
deacetylase

295 HPAG1_0395 COG0774M

UDP-N-acetylglucosamine acyltransferase 270 HPAG1_1321 COG1043M

Two-component system (02020) Anthranilate phosphoribosyltransferase 335 HPAG1_1232 COG0547E

Anthranilate synthase component 1 500 HPAG1_1230 COG0147EH

C(4)-dicarboxylates and tricarboxylates/succinate
antiporter

482 HPAG1_0141 COG0471P

carbon storage regulator 76 HPAG1_1368 COG1551T

Indole-3-glycerol phosphate synthase 181 HPAG1_0278 COG0134E

Short-chain fatty acids transporter 454 HPAG1_0678 COG2031I

Tryptophan synthase alpha chain 262 HPAG1_1235 COG0159E

Tryptophan synthase beta chain 393 HPAG1_1234 COG0133E

Peptidoglycan biosynthesis (00550) UDP-MurNac-pentapeptide presynthetase 493 HPAG1_0724 COG0770M

UDP-N-acetylmuramate–L-alanine ligase 449 HPAG1_0606 COG0773M

UDP-N-acetylmuramoylalanyl-D-glutamate–2,
6-diaminopimelate ligase

447 HPAG1_1419 COG0769M

UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
synthetase

422 HPAG1_0470 COG0771M

D-Alanine metabolism (00473) Alanine racemase, biosynthetic 377 HPAG1_0924

Type II secretion system (03090) Hypothetical protein HPAG1_1440 191 HPAG1_1440 -

Peptidoglycan biosynthesis & D-Alanine
metabolism (00550 & 00473)

D-alanyl-alanine synthetase A 347 HPAG1_0722 COG1181M

Two-component system & Bacterial
chemotaxis (02020 & 02030)

Chemotaxis protein 124 HPAG1_0380 COG0784T
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method followed by conjugate gradient. Then all three
systems were subjected to MD simulations for 5 ns. The
trajectory stability was monitored by the analysis of energy
(supplementary Fig. 10) and the backbone RMSD (supple-
mentary Fig. 11) as a function of time for the three structures.
Temperature plot showing the normal oscillation behavior of
the temperature about the desired average (300 K) for all
three structures are also given in supplementary information
(supplementary Fig. 12).

Binding site analysis

In an attempt to identify the putative active sites of the
modeled enzymes, their potential ligand binding sites (cavity)
were identified using “find sites from receptor cavities” tool of
Discovery Studio 2.1 [25], selecting the protein as receptor.
The grid resolution and site opening were set to 0.5 Å and
5.00 Å respectively and the minimum site size was set to 100
grid points of solvent accessible surface. The proteins were
then superimposed with their individual templates, having
co-crystal substrate bound structure and their active sites
were compared with the identified binding sites to find out
the possible active site of the individual proteins.

Docking

To identify the active binding site of the enzyme 2-dehydro-
3-deoxy-phosphooctonate aldolase and to predict the
residues involved in the enzyme-substrate interactions, the
biological substrate (PEP) of the enzyme was docked into
the enzyme. The initial structure of the ligand was drawn in

a new 3D window and a good 3D conformer was generated
using the clean operation. Finally the ligand was optimized
using “dreiding minimization” module (no. of iteration:
500) of Discovery Studio 2.1 [25]. The fully optimized
ligand was docked into the respective predefined binding
cavity using “Dock Ligands (LigandFit)” module, using a
Monte Carlo docking protocol. This methodology allows
for fully positional and conformational flexibility of the
ligand inside the active binding cavity to generate different
poses. In the docking study, ten poses were generated and
the best pose was selected on the basis of various scoring
functions (Ligscore1, Ligscore2, PLP1, PLP2, Jain, PMF)
denoting the energy of interaction. The best geometry of
ligand-receptor complex was subjected to energy minimi-
zation applying CHARMm force field and the interaction
pattern was studied.

Proteins from non-exclusive pathways of the pathogen
with no human homologs

Proteins involved in major metabolic pathways of H. pylori
HPAG1 that are not pathogen-specific (also found in
human), such as carbohydrate metabolism, energy metab-
olism, lipid metabolism, nucleotide metabolism, amino acid
metabolism and metabolism of cofactors and vitamins,
were also subjected to BLASTp search against H. sapiens
non-redundant database available at NCBI. Proteins which
do not have any hit below e-value 0.005 were cataloged in
the supplementary Table. This list provides a shortlist of the
H. pylori HPAG1 proteins that may be subjected in future to
further screening in search of suitable drug targets.

Table 3 Details of templates used in Homology modeling

Protein Template

Name Length
(AA)

PDB
id

Name Length
(AA)

Organism Identity Resolution

2-dehydro-3-deoxyphosphooctonate
aldolase

276 1fx6 2-dehydro-3-deoxyphosphooctonate
aldolase

267 Aquifex aeolicus 49% 2.06 Å

1o60 2-dehydro-3-deoxyphosphooctonate
aldolase

332 Haemophilus
influenzae

43% 1.80 Å

3fs2 2-dehydro-3-deoxyphosphooctonate
aldolase

298 Brucella
melitensis

46% 1.85 Å

Phosphoheptose isomerase 192 1tk9 Phosphoheptose isomerase 1 208 Campylobacter
jejuni

61% 2.10 Å

3bjz Phosphoheptose isomerase 219 Pseudomonas
aeruginosa
pao1

50% 2.40 Å

2i2w Phosphoheptose isomerase 212 Escherichia coli 46% 1.95 Å

1x94 putative Phosphoheptose isomerase 191 Vibrio cholerae 48% 2.50 Å

UDP-3-O-[3-hydroxymyristoyl]
N-acetylglucosamine deacetylase

295 2ves UDP-3-O-[3-hydroxymyristoyl]
N-acetylglucosamine deacetylase

299 Pseudomonas
aeruginosa

44% 1.90 Å

1yh8 UDP-3-O-[3-hydroxymyristoyl]
N-acetylglucosamine deacetylase

270 Aquifex aeolicus 36% 2.70 Å
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Results and discussion

Identification of candidate target proteins in H. pylori
HPAG1

Comparison of all annotated metabolic pathways in H.
pylori HPAG1 with those in human, as documented in the
KEGG database, revealed 11 pathogen-specific pathways, i.e.,
the pathways present in H. pylori HPAG1 but absent in
human (Table 1). Proteins involved in these pathways were
sorted out using the differential genome approach (Fig. 1).
The shortlisted proteins (having no human homolog) were
further screened for their essentiality and finally 25 H. pylori
HPAG1 proteins (Table 2) satisfied all pre-requisites for
promising drug-targets - they participate in pathogen-specific
metabolic pathways, are likely to be essential for the
pathogen but have no ortholog in the host. Hence, these 25
proteins may serve as candidate drug targets.

As can be seen from Table 2, among 11 pathogen-specific
pathways identified in the present study, only six pathways
contribute to the set of potential target components. The LPS
biosynthesis pathway is the largest contributor to such
candidate proteins – nine out of 25 potential targets belong
exclusively to this pathway. The two-component system is the
second largest contributor with eight candidate components
exclusively belonging to this pathway and one candidate
protein – a Chemotaxis protein - shared with bacterial
chemotaxis. The peptidoglycan biosynthesis and D-alanine
metabolism pathways, which exclusively possess four and
one candidate proteins respectively, mutually share the
candidate enzyme D-alanyl-alanine synthetase A and the type
II secretion system offers a hypothetical protein as a potential
target.

When these 25 proteins were subjected to TMHMM
server, four proteins were found to have predicted trans-
membrane helices, suggesting that these four proteins may
be membrane-bound and hence, may serve as membrane
localized drug targets. These proteins are C(4)-dicarboxylates
& tricarboxylates/succinate antiporter, short-chain fatty acids
transporter, 3-deoxy-D-manno-octulosonic-acid transferase,
and UDP-MurNac-pentapeptide presynthetase.

Homology modeling of three candidate targets
from the LPS biosysnthesis pathway

As already mentioned, the largest contributor to the list of
identified candidate targets (Table 2) is the LPS biosynthe-
sis pathway. Like all other gram negative bacteria, H. pylori
also contains LPS as a major component of its outer
membrane and there is an increasing body of evidence
indicating that H. pylori LPS, owing to certain unique
attributes, plays a vital role in host colonization and
inflammatory response [31, 32]. The relatively low endo-

toxic activity of H. pylori LPS as compared to other
bacteria facilitates persistence of inflammation in the gastric
mucosa [31], while its O-specific chain that mimics Lewis
blood group antigens in structure may signal the host
immune system to down-regulate an inflammatory response
[33], thereby aiding in effective colonization of host tissues.
This molecular mimicry may also be instrumental in
development of gastric autoimmunity [31, 34], leading to
atrophic gastritis [35, 36] and likely contribute even to
gastric lymphoma [4]. The core oligosaccharide of the LPS
mediates the binding of the bacterium to laminin, and
interferes with gastric cell receptor-laminin interaction,
which, in turn, may trigger or exacerbate the mucosal
degeneration [32].

Template searching

The observation that nine out of 25 candidate target
proteins belong to LPS biosynthesis pathway and the fact
that LPS is one of the key contributor to H. pylori virulence
have prompted us to take up the task of homology
modeling of the candidate target enzymes of this pathway.
Among these nine candidate proteins, 3D structure of only
one enzyme, UDP-N-acetylglucosamine acyltransferase,
from another H. pylori strain was known experimentally
(PDB id: 1j2z) at the time of initiation of this study. The
other eight potential target proteins of this pathway were,
therefore, subjected to BLASTp search against PDB for
identification of templates for structural modeling. However,
following the criteria described in the Materials & methods
section, suitable templates could be found only for three
candidate enzymes - 2-dehydro-3-deoxy-phosphooctonate
aldolase (HPAG1_0003), UDP-3-O-[3-hydroxymyristoyl] N-
acetylglucosamine deacetylase (HPAG1_0395), and Phospho-
heptose isomerase (HPAG1_0840). In the present study,
therefore, homology modeling was carried out for these three
enzymes of H. pylori HPAG1.

Among the several X-ray crystal structures of the
orthologs of these three proteins from different organisms,
suitable templates for homology modeling were selected on
the basis of the sequence identity of the orthologs with the
target proteins and the quality of their alignment. Table 3
shows the detail description of the template sequences
selected for three candidate proteins under consideration.

Homology models & their validation

2-dehydro-3-deoxy-phosphooctonate aldolase (HPAG1_0003)
(EC: 2.5.1.55, formerly 4.1.2.16) This enzyme converts
phosphoenolpyruvate (PEP) to 2-dehydro-3-deoxy-D-octonate
8-phosphate, which is a major step in the LPS biosynthesis. A
recent study involving mutagenesis of its orthologous enzyme
demonstrated the essentiality of this enzyme in Pseudomonas
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aeruginosa PAO1 [37]. The final model structure predicted
for 2-dehydro-3-deoxy-phosphooctonate aldolase of H. pylori
HPAG1 (Fig. 2) has eight β-strands and ten α-helices. The
reliability of the model has been assured by its Ramachandran
plot (Fig. 3a) showing 93% residues in the most favored
region, 6.6% in additional allowed region, 0.4% in generous-
ly allowed region and 0% in disallowed region, as well as by
the overall G-factor (0.0) that lies within the limit of the
favored region for a valid 3D protein model. The reliability of
the predicted model has also been substantiated by the
assessment with Verify3D that shows 84.12% of the residues
with an average 3D-1D score >0.2 (Fig. 4).

After energy minimization of the modeled structure the
binding site analysis of the model has identified 12 possible
ligand-binding cavities. In order to identify the potential
ligand-binding site among these 12 cavities, the modeled
structure was aligned with the ligand (PEP) bound structures
of 2-dehydro-3-deoxy-phosphooctonate aldolase of Aquifex
aeolicus (PDB id: 1fwn) and Escherichia coli (PDB id:
1q3n). The ligand-bound structure of A. aeolicus enzyme
was selected as its ligand-free form served as one of the
template during homology modeling of the target protein,
while the ligand-bound structure of the E. coli ortholog was
used as a control (i.e., its ligand-free form was not used as
template). The largest cavity with grid point volume of
296.375 appeared to be the potential ligand binding pocket

Fig. 2 Ribbon schematic representation of the homology model of 2-
dehydro-3-deoxyphosphooctonate aldolase of H. pylori HPAG1. α-
helices, β-strands, random loops and turns are represented as red, cyan
blue, white and green respectively. Image is generated using
Discovery studio visualizer

Fig. 3 Ramachandran plot obtained for the models of (a) 2-dehydro-3-
deoxyphosphooctonate aldolase, (b) Phosphoheptose isomerase and (c)
UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase. The
most favored regions, additional allowed regions and generously
allowed regions are represented by red, yellow and cream colors
respectively

b
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of H. pylori HPAG1 2-dehydro-3-deoxy-phosphooctonate
aldolase (Fig. 5). The predicted binding site is situated at the
center of the protein at the opposite side of the two terminals
of the amino acid chain and is surrounded by the β-strands
(supplementary Fig. 2) and it is in good agreement with the
reported binding site of its A. aeolicus ortholog (supplemen-
tary Fig. 3) [38].

It is worth mentioning at this point that in all the
templates under study, the enzyme is found to be present in
tetramer form, but the predicted binding sites remain the
same as in their monomeric forms. So it was possible to
study the protein-ligand interaction in a single monomer.

In the docking study using the substrate PEP (supplemen-
tary Fig. 1), 11 amino acid residues of H. pylori HPAG1 2-
dehydro-3-deoxy-phosphooctonate aldolase were identified
as the key residues, potentially involved in the protein-ligand
interaction. The predicted protein-PEP complex is shown in
Fig. 6. The identified key residues were Cys18, Ser49,
Lys52, Asp87, Pro107, Lys130, Arg173, His204, Phe239 and
Glu241 Asp252. In the docking study, PEP was found to
interact with these amino acid residues and it formed a single
H-bond of 1.1 Å length with Asp87, two H-bonds of 1.8 Å
and 2.4 Å length with Lys130 and another single H-bond of
1.3 Å length with Glu241 amino acid residue.

These 11 amino acid residues were found to be conserved
in all the templates used for building the model except for
Cys18 which is replaced in Haemophilus influenza with Asn
(Fig. 7). It is worth mentioning at this point that the reported
ligand (PEP) bound structure of one of the template, i.e., 2-
dehydro-3-deoxyphosphooctonate aldolase of A. aeolicus
(PDB id: 1fwn) identified 14 amino acid residues to be
involved in the protein ligand interaction [36]. Out of these
14 key residues, eight residues are identical to those
predicted as the key residues in the docking study reported
above (supplementary Fig. 4 and text).

Phosphoheptose isomerase (HPAG1_0840) (EC: 5.3.1.28)
It converts D-sedoheptulose 7-phosphate to D-glycero-D-
manno-heptose 7-phosphate [39] – another vital step of LPS
biosynthesis. The final model structure of the protein, as
shown in Fig. 8, has five β-strands and seven α-helices. The
Ramachandran plot of the predicted model (Fig. 3b) with
90.1% residues in most favored region, 9.3% in additional
allowed region, 0.6% in generously allowed region, and 0%
in disallowed region endorses the high quality of the model.
Overall G-factor is found to be 0.0, which represents the
value of the favored region for an acceptable 3D protein
model. The model structure also passes the study of
compatibility of 3D-1D by Verify 3D that shows 81.25% of
the residues having an average 3D-1D score >0.2 (Fig. 4).

In all templates the enzyme was found to be present as a
tetramer. The observation of ligand (D-sedoheptulose 7-
phosphate) bound conformation of the enzyme in E. coli
(PDP id: 2i22) revealed that the binding site was shared by

Fig. 4 Verify 3D plots of the three modeled structures built up in this study.
In all three cases, more than 80% residues exhibit 3D-1D scores >0.2,
endorsing the reliability of the models

Fig. 5 (a) Surface view of the 3D structure of 2-dehydro-3-
deoxyphosphooctonate aldolase of H. pylori HPAG1. Docked ligand
is shown in green, (b) Closer view of the ligand binding cavity. Image
is generated using UCSF Chimera
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two monomers, suggesting that the ligand binds to a cavity
produced during dimerization of the protein. It was,
therefore, not possible to identify the key amino acid
residues contributing to in the protein-ligand interaction by
simple docking studies on the modeled monomer structure of
H. pylori HPAG1 Phosphoheptose isomerase.

UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deace-
tylase (HPAG1_0395) (EC: 3.5.1.108, formerly EC 3.5.1.n1)
This enzyme not only participates in the LPS biosynthesis
pathway but also in glycan metabolism and biosynthesis. It is a
zinc-dependent enzyme that catalyzes the deacetylation of
UDP-3-O-(3-hydroxytetradecanoyl)-N-acetylglucosamine to
form UDP-3-O-(3-hydroxytetradecanoyl)-glucosamine and
acetate [40] - a committed step in the biosynthesis of lipid
A, which helps in anchoring LPS into membrane. Among the
several X-ray crystal structures available from different
organisms of the target protein, two orthologs from P.
aeruginosa and A. aeolicus (Table 3) were selected as

templates for homology modeling of this protein on the basis
of their sequence identity and quality of optimal alignment
with the query enzyme. Figure 9 represents the final model of
the 3D structure of H. pylori HPAG1 UDP-3-O-[3-hydrox-
ymyristoyl] N-acetylglucosamine deacetylase, which is rich in
β-strands. The torsion angles of 88.6% of residues were
within the most favored region and 1.9% in generously
allowed region of the Ramachandran plot (Fig. 3c) and there
was no residue in the disallowed region, assuring high
quality of the predicted structure. Acceptability of the model
was further endorsed by the overall G-factor (−0.1) that lies
within the realm of the favored region of a 3D protein model
and the average 3D-1D score >0.2 for 83.45% of the
residues in 3D-1D compatibility test by Verify3D (Fig. 4).

As it is a zinc dependent enzyme where the metal zinc is
also involved in the protein-ligand interaction, the interac-
tion should not be studied by simple docking studies on the
protein alone. The co-crystal ligand bound form of any of
its selected templates was also not available, so the

Fig. 6 Docked complex of the substrate phosphoenolpyruvate (PEP) in the active site of 2-dehydro-3-deoxyphosphooctonate aldolase of H.
pylori HPAG1. Green dotted lines represent H-bonds. Image is generated using Discovery studio visualizer
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prediction of active binding site of this enzyme was not
possible.

It should be mentioned in this context that sequences of
all three candidate target proteins selected for modeling in
this study are highly conserved (∼ 80% identity and >90%
similarity) and the reported 15 active amino acid residues of
2-dehydro-3-deoxy-phosphooctonate aldolase are also con-
served across all H. pylori strains (supplementary Figs. 7–9
show multiple alignment of these proteins with all H. pylori
orthologs reported so far).

Conclusions

The present study aimed at identification of novel putative
targets for therapeutic intervention in H. pylori HPAG1

Fig. 7 Sequence alignment of
2-dehydro-3-deoxyphosphoocto-
nate aldolase of H. pylori
HPAG1 with template proteins
from Aquifex aeolicus (PDB id:
1fx6), Haemophilus influenza
(PDB id: 1o60) and Brucella
melitensis (PDB id: 3fs2). Iden-
tical matches, strong matches
and weak matches are repre-
sented by dark cyan blue, deep
sky blue and sky blue back-
ground respectively. The active
amino acid residues for H. py-
lori HPAG1 are represented by
gray background

Fig. 9 Ribbon schematic representation of the 3D structure of enzyme
UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase of
H. pylori HPAG1. α-helices, β-strands, random loops and turns are
represented as red, cyan blue, white and green respectively. Image is
generated using Discovery studio visualizer

Fig. 8 Ribbon schematic representation of the modeled 3D structure
of enzyme Phosphoheptose isomerase of H. pylori HPAG1. α-helices,
β-strands, random loops and turns are represented as red, cyan blue,
white and green respectively. Image is generated using Discovery
studio visualizer
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through in silico subtractive pathway analysis, differential
genome approach and essentiality study. Subtractive analysis
of the metabolic pathways ofH. pylori HPAG1 and human, as
documented in the KEGG database, revealed 11 pathogen-
specific pathways and a search for potentially indispensible
pathogen proteins having no human homolog yielded 25
candidate proteins as promising drug targets. All these
candidate proteins are, however, found to have orthologs in
other closely related / distant pathogens and hence, may be
used for broad-spectrum antibiotics. Among the eleven
identified pathogen-specific pathways, the LPS biosynthesis
pathway has been found to be the largest contributor to such
candidate proteins – nine out of 25 identified drug targets
belong to LPS biosynthesis pathway. An attempt has,
therefore, been made to build up 3D structural models of
three candidate enzymes of this pathway, 2-dehydro-3-
deoxy-phosphooctonate aldolase, UDP-3-O-[3-hydroxymyr-
istoyl] N-acetylglucosamine deacetylase and Phosphoheptose
isomerase, for which suitable template structures were
available in PDB. All three proteins selected for modeling
are known to play important roles in the LPS biosynthesis
pathway and blocking the action of any of these essential
enzymes with no human homolog would be detrimental to
the pathogen, but not to the host. Binding site analysis and
docking of the known biological substrate PEP to 2-dehydro-
3-deoxy-phosphooctonate aldolase revealed the potential
binding pocket present in the single monomeric form of the
enzyme and the residues that may potentially be involved in
the protein-ligand interaction. These findings are likely to
open up avenues for designing and development of novel
drugs against H. pylori and other related pathogenic
microbes.
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Abstract Carboxypeptidase G2 (CPG2) is a zinc-
metalloenzyme employed in a range of cancer chemotherapy
strategies by activating selectively nontoxic prodrugs into
cytotoxic drugs in tumor as well as in the treatment of
intoxication caused by high-doses of the anticancer drug
methotrexate (MTX). CPG2 catalyzes the hydrolytic cleav-
age of C-terminal of glutamate moiety from folic acid and
analogues. Regardless of its extensive application, its
mechanism of catalysis has not yet been determined and,
so far, no co-crystallized complex has been published. So, in
this study, molecular docking and a short molecular
dynamics (MD) simulation sampling scheme, as a function
of temperature, were performed to investigate a possible
binding mode for MTX, a recognized substrate of CPG2. The
findings suggested that MTX interacts possibly in quite
specific points of the CPG2 active site, which are probably
responsible for the molecular recognition and cleavage

procedures. The MTX substrate fits well in the catalytic site
by accommodating the pteridine moiety in an adjacent
pocket to the active site whereas a glutamate moiety is
pointed toward the protein surface. Additionally, a glutamate
residue can interact with a crystallization water molecule in
the active site, supporting its activation as a nucleophilic
group.

Keywords Binding mode . Carboxypetidase G2
. Catalytic

mechanism .Methotrexate .Molecular modeling

Introduction

Carboxypeptidase G2 (CPG2) is a zinc-dependent metal-
loenzyme employed in a range of cancer chemotherapy
strategies such as antibody-directed enzyme prodrug ther-
apy (ADEPT), gene-directed enzyme prodrug therapy
(GDPET), as well as in the treatment of intoxication caused
by high-doses of the anticancer drug methotrexate (MTX)
[1, 2]. CPG2 is a bacterial enzyme, produced as a
homodimer by Pseudomonas sp. strain RS-16, which
catalyzes the hydrolytic cleavage of C-terminal of gluta-
mate moiety from folic acid and its analogues. Its X-ray
crystal structure was determined at 2.5 Å of resolution [3].
Each subunit of the molecular dimer consists of a binding
domain containing two zinc ions (oxidation state 2+) and a
dimerization domain of four anti-parallel β-sheets flanked
by two α-helices [3–5]. The active site contains two His
residues (His 112 and His 385), which coordinate each of
the metal atoms separately in order to maintain them in an
average distance of 3.3 Å. The Asp 141 residue coordinates
simultaneously the both zinc ions while the Glu 175 residue
forms a hydrogen bond with a crystallization water
molecule (HOH36), which bridges the metals. One of the
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zinc atoms (Zn2) is also coordinated by the Glu 200 residue
whereas the other (Zn1) is coordinated by Glu 176 [3, 4].

A comparison of the CPG2 tridimensional structure to
other metallohydrolases revealed that it shares 56% of
identity in the active site with an aminopeptidase from
Aeromonas proteolytica (AMP) [3, 4, 6]. Despite its
extensive application, the CPG2 mechanism of catalysis
has not yet been elucidated. Also, there is no co-crystallized
structure of any of its known substrates reported [4, 7].
However, it is believed that the CPG2 catalysis can happen
via a general mechanism applied to all metallopeptidases
containing similar co-catalytic metallo-active sites. For
instance, the aminopeptidase from AMP bacteria and
glutamate carboxypeptidase GII (GCPGII) have had their
mechanism of catalysis suggested through the application
of computational methods [3, 6, 8, 9].

In this regard, the first step in catalysis procedure is
probably the recognition of the N- or C-terminal group from

the substrate by an adjacent pocket to the active site, which
can present hydrophobic or hydrophilic character. The zinc ion
at the CPG2 active site provides the orientation of the
carbonyl group of substrate toward a crystallization water
molecule to promote its polarization, and consequently
making it more susceptible to a nucleophilic attack (see
Fig. 1, step 1). The zinc bound-water molecule acts as a
nucleophile, and the attack possibly occurs through a
tetrahedral transition state (Fig. 1, step 2). Finally, an amino
acid residue located near to the active site would act as a
hydrogen bonding acceptor, aiding the deprotonation of the
nucleophilic water molecule (Fig. 1, step 3) [4, 8].

The role of both zinc atoms is not yet completely
understood but some authors believed that the Zn1 (Fig. 1),
termed as catalytic zinc, could bind the substrate to orient
the peptide whereas the Zn2 (Fig. 1), called co-catalytic
zinc, should be important to stabilize the anionic tetrahedral
intermediate [8]. This general proposed mechanism, how-

Fig. 1 Schematic view of
the CPG2 active site from
Pseudomonas sp. based on X-ray
crystallographic coordinates [3],
and general mechanism proposed
regarding the hydrolysis via
metallopeptidases (α corresponds
to the bond formation as result of
a nucleophilic attack; β is related
to the broken bond after
a nucleophilic attack)

1868 J Mol Model (2012) 18:1867–1875



ever, has never been empirically or theoretically proved, at
least regarding the CPG2.

Thus, the present study reports a binding mode hypothesis
established to the complex CPG2-MTX by applying molec-
ular docking and a short molecular dynamics (MD)
simulation sampling scheme as a function of temperature
(warming up scheme). Moreover, previous information
related to binuclear zinc-metalloenzymes, such as AMP and
GCPGII [6, 8, 9], was also considered for building up the
binding hypothesis. The findings can be used as a starting
point to the rational design of new substrates which can be
applied in chemical drug delivery systems.

Methodology

Building up the three-dimensional models

The three-dimensional (3D) structure of MTX was con-
structed in its protonated state using the HyperChem 7.51
software [10]. The MTX co-crystallized structure bound to
the dihydrofolate reductase from Moritella profunda was
retrieved from Brookhaven Protein Data Bank (PDB) [11]
(entry code 3IA4 at 1.70 Å resolution [12]) and used as the
reference geometry for drawing the ligand. This crystallized
structure was used to have a theoretical minimum closest to
an experimental geometry. The geometry optimization was
performed in MM + force field without any constraints and
the partial atomic charges were computed using the AM1
[13] semiempirical method, also implemented in the Hyper-
Chem software [10].

Roswell et al. [3] deposited the Cartesian coordinates of
CPG2 in PDB [11] under the entry code 1CG2 at resolution of
2.5 Å. As already mentioned, each subunit of the molecular
dimer consists of a larger catalytic domain containing two
zinc ions at the active site, and a separate smaller domain that
forms the dimer interface. This 3D structure was used as a
receptor geometry reference, but in order to reduce the
computational time consuming only one polypeptide chain
was employed to build up the receptor model, and subse-
quently perform the MD simulations. The two active sites
present in the dimer are 62 Å apart and are presumed to be
independent. So, the analysis of only one chain can be
consequently considered as biologically relevant.

The appropriate number of hydrogens was added on all
atoms of the receptor model and methyl groups were used
as blocking groups in the N- and C-terminal portions.
AMBER atom types [14] and partial charges were assigned
to all atoms, except to the blocking groups. All ionizable
residues were assigned the charge state which normally
present at the pH of the experimental conditions (7.2). Lone
pair electrons were not modeled explicitly. Water molecules
located in the crystal structure of CPG2 were removed

except to the one which probably participates in the ligand-
receptor interactions at the enzyme active site (HOH36).
The final model was also visually inspected to be certain of
its structural integrity.

Molecular docking and MD simulations

GOLD software, version 3.1 [15], was used to explore and
derive the best binding interactions and conformation of
MTX in the active site of the target protein, employing a
genetic algorithm. The energy functions of the interactions
are partly based on the conformational and non-bonded
interactions. The fitness function used was GoldScore,
which corresponds to the sum of four energy components,
such as: protein-ligand hydrogen bond energy (external
H-bond), protein-ligand van der Waals (vdW) energy
(external vdW), ligand internal vdW energy (internal vdW),
and ligand torsional strain energy (internal torsion) [16]. The
zinc ions were parameterized as tetrahedral, and a cutoff
radius of 10 Ǻ was created around the docked molecule. All
the other options were kept as default. Ten docking runs were
performed considering ten conformations each to totalize a
hundred conformations. All conformations were analyzed
according to the distance between protein-ligand atoms,
which were most likely involved in the catalytic mechanism.
The donor-acceptor bond distance limit was considered as
3.90 Å [8, 17, 18]. Then, the best binding model was chosen
combining information from the energy rank position and the
alignment/orientation in the active site regarding the inter-
molecular interactions (distance values).

The selected complex model was used as input to the energy-
minimization procedure using the MOLSIM 3.2 program [19].
The steepest descent (500 iterations) and conjugated gradient
(219 iterations) methods were applied and the convergence
criterion established was 0.1 kcal mol-1. A dielectric constant
value of 3.5, which simulates the biological membrane
environment, was considered in the analysis of each selected
complex model [20, 21]. The energy-minimized output model
was the initial structure for the MD simulations, also employ-
ing the MOLSIM 3.2 program [19].

A fictitious mass of 5000 u.m.a. was assigned to all main
chain atoms (backbone) of the entire receptor/enzyme model
in order to maintain the integrity of the model during the MD
simulations. The use of fictitious masses is virtually the same
as using Cartesian constraints, particularly when the masses
are chosen to be very large [22].

A short MD simulation sampling scheme at progressively
higher temperatures was repeated until a user-defined final
temperature of evaluation was reached. This kind of MD
simulation sampling scheme was applied here for generating
the lowest energy state of the complex as fast as possible,
allowing the crossing of energetic barriers through a warming
up scheme of the system. Also, a better accommodation of the
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ligand MTX in the active site of CPG2 can be provided by
using that procedure, since at the higher simulated temper-
atures the docked ligand is allowed to find its optimal
intermolecular alignment in the active site [22]. The lowest
energy conformation of each simulation was selected and then
used as the starting geometry for a subsequent MD simulation
at a higher temperature. The MD simulation sampling scheme
performed was the following: 20 ps (step size of 1 fs) at 50 K,
100 K, 200 K, and 300 K. Output trajectory files were saved
at every 20 simulation steps, resulting 5000 conformations.
The choice of short or relaxation MD simulations was found
to be the best compromise in producing trajectory geometries
and energies that remained close to the X-ray structure of
CPG2 for reasonable amounts of CPU time.

As soon as the higher temperature simulation was
accomplished a longer slightly cooling down simulation was
performed. So, the lowest energy conformation of the
complex selected from the simulation at 300 K was gently
cooling down in a MD simulation of 1 ns at 298 K
(temperature of the CPG2 experimental assay).

The hydration shell model proposed by Hopfinger [23] was
employed to estimate the solvation energy contribution of the
lowest energy conformation identified from each MD simula-
tion sampling scheme, since the MOLSIM 3.2 software does
not consider explicit water molecules during the MD simu-
lations. The absence of explicit water molecules during the
simulation analysis can lead to the generation and sampling of
artifact states relative to the actual binding mode. Otherwise, the
inclusion of explicit waters introduces questions regarding
assignments of waters and the extent of sampling needed to
generate equilibrium/steady ensembles. These unknowns can
also lead to artifact states. The use of an implicit solvation
model as a hydration shell scheme seems to be both a good
compromise, and a diagnostic, to evaluate solvation effects [23].

The lowest energy conformation of the receptor/enzyme
model selected from eachMD simulation was compared to the
crystal structure of CPG2 through the root mean square
deviation (RMSD), using HyperChem 7.51 [10], in order to
verify if the integrity of the system was maintained during
the MD simulations sampling scheme. RMSD values lower
or equal to 1.5 Å were considered acceptable [22], indicating
no significantly structural deviation.

Lipophilic potential and cavity depth properties mapping

Lipophilic potential (LP) and cavity depth (CD) properties
of the CPG2-MTX complex selected from MD simulation
at 298 K were mapped onto Connolly partial surfaces,
using the MOLCAD module of the Sybyl 8.0 package [24].
These procedures allow to visualize surface features and
physical properties essential for molecular recognition, and
also to characterize the size, shape, and physical properties
of intramolecular cavities and channels. The colors coded

for the LP map and CD property range from brown
(lipophilic regions) to blue (hydrophilic regions) and from
blue (shallow) to yellow (deep or buried), respectively.

Results and discussion

The molecular docking procedure was applied to find out the
most likely alignments of MTX in the active site. The distance
between the zinc atom (Zn1, 1) of the active site and the oxygen
(2) of the carbonyl group of the amide from the substrate, and
that involving the nucleophilic oxygen (3) of the crystallization
water molecule and also the carbonyl carbon (4) of the amide
from the substrate (see the dashed lines in Fig. 2) were
considered for analyzing a set of 100 conformations.

Thus, a distance value of 3.90 Å was considered as the
limit for the establishment of an electron donor-acceptor
bond. This limit of distance was based upon reported
distance values obtained from theoretical studies applied to
the enzyme glutamate carboxypeptidase and a peptide
substrate [8] as well as from geometry studies regarding
metal-ligand interactions using crystallography [17].

As already mentioned, the values found for the energy
fitness function were also evaluated for selecting the best
conformations. Fifteen from a hundred conformations pre-
sented reasonable distance values but not all had a suitable
energy scoring function (Goldscore). The findings are shown
in Table 1. Only those conformations, which were sufficient in
both criteria, were selected to further studies.

Conformation I, which was ranked in the first place
regarding the energy fitness function (GoldScore), exhibited
a distance value of 2.75 Å between atoms 1 and 2, and 2.92 Å
between atoms 3 and 4, and consequently was chosen as the
best complex model (see Fig. 3).

Fig. 2 Distances considered for selecting the best complex models.
Carbon atoms are depicted in black, nitrogen in blue, oxygen in red, and
zinc atoms are as light blue spheres called as Zn1 and Zn2, respectively
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The complex model from molecular docking procedure
showed that MTX probably interacts in specific points,
providing a molecular recognition and cleavage by the
target, CPG2. MTX is aligned in the catalytic site by
accommodating the pteridine moiety in an adjacent pocket
(S1, Fig. 4) to the active site composed mainly by the
amino acid residues Ser 210, Thr 213, Phe 327, Thr 361,
Ala 363, Ile 374, and Glu 375. The glutamic acid side-chain
is pointed towards the surface (S1’, Fig. 4) and it is
seemingly stabilized by the establishment of a hydrogen
bonding interaction with the Arg 324 residue of the
enzyme. A general view of the CPG2 active site and the

mentioned MTX orientation is depicted in Fig. 4a and b,
respectively.

The pteridine moiety fits well in the S1 pocket and it is
held by hydrogen bonding interactions involving both the
endo and exocyclic nitrogen atoms from pteridine and the
carbonyl oxygen from the Lys 208 and Ser 210 residues,
respectively. The amide nitrogen of Ser 210 also partic-
ipates in an intermolecular interaction with MTX as
hydrogen bonding donor. These molecular docking findings
were validated by the MD simulation sampling scheme.
The two approaches presented a similar profile regarding
the distance values and atomic positions found for MTX
and the amino acid residues of CPG2 active site. That can
be checked by comparing Figs. 4 and 5. However, it is
noteworthy that the MD simulation sampling scheme
provides a more reliable data in terms of interatomic
distances and intermolecular interactions.

Rowsell et al. [3] reported a pocket in the CPG2 crystal
structure which could be an equivalent portion to a
hydrophobic pocket present in a similar aminopeptidase from
AMP, which accommodates the N-terminal phenylalanine
residue of a hydroxamate inhibitor. However, in CPG2, this
pocket would be hydrophilic and it could accommodate the
large pteroate moiety of folic acid. In this theoretical study,
the pteroate moiety of MTX is indeed lying in the S1 pocket.

The glutamate moiety is pointed toward the surface of
protein. Additionally, it establishes a hydrogen bonding
interaction with the Arg 324 residue located in the S1’ pocket,
and probably interacts with adsorbed water molecules present
at the CPG2 active site (see Fig. 5). Again, the findings are in
agreement with those published by Rowsell et al. [3]. They
showed that the replacement of the Arg 324 residue by an
Ala would provide a mutant enzyme with low activity

Fig. 3 Graphical representation of conformation I found for the
complex CPG2-MTX. MTX is presented as stick model where the
carbon atoms are in light green, oxygen in red, nitrogen in blue, zinc
ions in orange, and hydrogen atoms in white. The receptor model is
shown as Richardson or cartoon scheme where β-sheets are as pink
narrows and α-helices as cyan spiral ribbons (Pymol Viewer) [25]

Conformation Docking* Goldscore** Distance (Ǻ)
of atoms (1) and (2)

Distance (Ǻ)
of atoms (3) and (4)

I 1 1° 2.75 2.92

II 1 3° 3.33 3.22

III 1 8° 3.39 3.22

IV 2 1° 3.59 3.56

V 2 3° 3.36 3.25

VI 3 1° 3.44 3.22

VII 3 9° 2.79 3.67

VIII 4 10° 3.41 3.29

IX 5 6° 3.55 3.46

X 5 9° 3.49 3.37

XI 6 2° 3.26 3.12

XII 7 3° 3.49 3.53

XIII 8 3° 3.37 3.29

XIV 8 5° 3.65 3.58

XV 10 9° 3.42 3.30

Table 1 The best 15 conforma-
tions from the molecular docking
procedure

* Docking column indicates from
which docking run the complex
was obtained

** Goldscore column points out
the position of the complex among
the pool obtained from a specific
docking run. The scoring function
applied here was based upon the
energy value found for the com-
plexes generated in each run.
Although, conformations occupy-
ing the same position in the
ranking, but resulting from distinct
run, does not necessarily present
the same energy
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toward MTX. The results from the MD simulation sampling
scheme also suggested that the Glu 175 residue of CPG2

active site would act as a general acid/base during the

catalysis. One of its carboxyl groups seems to be placed at a
favorable distance (3.67 Å) to interact with the hydrogen of
amide from MTX. The other Glu 175 carboxyl group would

Fig. 4 General view of the CPG2

active site showing the two pos-
sible pockets involved in the
molecular substrates recognition
(a). Alignment of the MTX in
the active site displaying the
pteridine ring lying at the S1
pocket (b). The protein molecu-
lar surface is colored in blue.
MTX is presented as stick model
where the carbon atoms are in
green, oxygen in red, nitrogen in
blue, zinc ions in orange, and
hydrogen atoms in white (Pymol
Viewer [25])

Fig. 5 Representation of the
MTX binding mode in the CPG2

active site found after the MD
simulation sampling scheme. The
protein molecular surface is col-
ored in blue and the residues Glu
175, Arg 324, Gly 360, Ser 210,
and Lys 208 are showed as stick
model where the carbon atoms
are in green, oxygen in red,
nitrogen in blue, zinc ions in
orange, and hydrogen in white.
MTX and a water molecule are
also presented as stick model
whereas the zinc ions are as
orange spheres (Pymol Viewer
[25])
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interact with the water molecule in the active site, supporting
the activation of this water as a nucleophylic agent as
similarly proposed to the Glu 151 residue in the AMP
aminopeptidase [3, 4]. Additional intermolecular interactions
were also observed, for instance, involving the amide of the
substrate and the carbonyl oxygen of the Gly 360 residue.

The plots of the results from the MD simulation sampling
scheme found for the CPG2-MTX complex selected in the
molecular docking procedure are presented in Figs. S1 and
S2 (Electronic supplementary material). The energy of the
conformational ensemble profile (CEP) from the CPG2-MTX
complex was stabilizing as the temperature was increasing
and it was more energetically stable only when the

temperature of 300 K was reached (see Fig. S1). A longer
and more stable CEP was generated at 298 K (Fig. S2).

The thermodynamic parameters found for the CPG2-
MTX lowest-energy conformations selected from the MD
simulation sampling scheme are presented in Table 2. The
total potential energy (ET) is the summation of the
following energy contributions: the stretching energy
(Estretch), the bending energy (Ebend), the torsional energy
(Etors), the 1–4 (Lennard-Jones) interaction energy (E1,4),
the van der Waals energy (EvdW), the electrostatic energy
(Eel), the sum of van der Waals and electrostatic intermo-
lecular energy contributions (EvdW+el), the solvation energy
(Esolv), and the hydrogen bonding energy (EHb). It is

Table 2 Thermodynamic parameters found for the CPG2-MTX lowest-energy conformations selected from the MD simulation sampling scheme

T (K) Estretch Ebend Etors E1,4 EvdW Eel EintervdW+el Esolv EHb ET

50 2862.4 2755.6 2735.8 8690.3 −2254.8 −8641.1 588.6 −774.0 −57.5 −51.6
100 3111.7 3077.9 2793.8 8778.3 −2214.3 −8775.0 579.1 −705.0 −58.0 −51.3
200 3674.5 3687.8 2857.4 8850.9 −2011.8 −8837.9 581.9 −679.0 −56.6 −48.5
300 4123.2 4143.8 2976.3 8954.5 −1938.4 −8933.0 586.7 −564.0 −56.9 −47.6
298 3991.7 4037.2 2985.7 8936.8 −2022.3 −9418.5 584.9 −577.5 −57.2 −57.15

Estretch = stretching energy; Ebend = bending energy; Etors = torsional energy; E1,4 = 1–4 interaction energy; EvdW = van der Waals energy; Eel =
electrostatic energy; EvdW+el = sum of van der Waals and electrostatic intermolecular energy contributions, Esolv = solvation energy; EHb =
hydrogen bonding energy; ET = total potential energy, which is the summation of all energy contributions (kcal mol-1 )

Fig. 6 Cavity depth, CD, (a) and
lipophilic potential, LP, (b) maps
calculated onto the Connolly
partial surfaces of the
CPG2-MTX complex selected
from the MD simulation at 298 K
(MOLCAD, Sybyl 8.0 package
[24]). The LP maps range from
brown (lipophilic regions) to blue
(hydrophilic regions) whereas the
CD property ranges from blue
(shallow) to yellow (deep or
buried). (c) LP map of MTX; (d)
Ball-stick model of MTX where
carbon atoms are depicted in
light gray, nitrogen in blue,
oxygen in red and hydrogen
in cyan
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noteworthy that the CPG2-MTX lowest-energy conforma-
tions selected from the MD sampling scheme did not
present significant differences in terms of ET values. The ET

values ranged from −57 to −47 kcal mol-1.
Moreover, the CPG2 models selected from the MD

simulation sampling scheme presented RMSD values
smaller than 1.5 Å when compared to the crystallographic
enzyme (Fig. S3, Electronic supplementary material),
which indicates that they maintained their structural
integrity during the MD simulation procedure [22].

The molecular surfaces analysis for the CPG2-MTX
complex selected from MD simulation at 298 K was
performed using the MOLCAD module (Sybyl 8.0 software
[24]). The LP and CD properties were mapped onto Connolly
partial surfaces as shown in Fig. 6.

The CD mapping (Fig. 6a) provided a clearer view
regarding the tridimensional arrangement of the S1 pocket,
which seems to be deeply buried in the 3D enzyme
structure, and it would not be so available to establish
molecular interactions as those observed to the zinc atoms
and water molecule in the CPG2 active site.

Observing Fig. 6(b), the pteroate moiety seems to anchor
in the S1 pocket having as driving forces not only the
already discussed hydrogen bonding interactions but also a
complementarity of LP property with this part of the protein
structure. The blue (to green) colored region in the CPG2

LP map reveals a certain hydrophilic character of the S1
pocket. Interestingly, the most hydrophilic portion of the
MTX LP map (Fig. 6c), colored in green (to blue), fits
perfectly over that region of the active site. Otherwise,
hydrophobic interactions would occur only in a portion
above the active site, which is not quite relevant for the
MTX positioning or enzymatic attack.

Finally, despite the presence of two carboxylic groups in
the MTX glutamate portion, it did not present a highly
hydrophilic potential in comparison to the whole system.
Even so, the glutamate still points toward the most external
part of CPG2 where adsorbed water molecules would
usually take placed. This arrangement can be well under-
stood when a hydrogen bonding interaction with the Arg
324 residue is considered. The elimination of this amino
acid residue from the enzyme structure, as mentioned
above, leads to a decreasing of the catalytic activity. Thus,
the hydrophilic character of the pteroate moiety would
provide a better alignment of MTX toward the S1 pocket
(also hydrophilic) in the CPG2 molecular recognition
process.

Conclusions

The evaluation of the findings from molecular docking and
MD simulation sampling scheme to the complex CPG2-

MTX indicated that MTX interacts in specific points
regarding the recognition process by CPG2, at a molecular
level, and it probably is cleaved following a general
mechanism proposed for metalloproteases [4, 8]. Moreover,
some particularities should be pointed out, such as the S1
pocket arrangement and specific intermolecular interac-
tions, which seem to keep MTX in a favorable orientation/
alignment to suffer a nucleophilic attack.
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Abstract Ribulose-1,5-bisphosphate carboxylase/oxygen-
ase (RuBisCO), the most important enzyme for the
assimilation of carbon into biomass, features a well-
known isotope effect with regards to the CO2 carbon atom.
This kinetic isotope effect α=k12/k13 for the carboxylation
step of the RuBisCO reaction sequence, and its microscopic
origin, was investigated with the help of cluster models and
quantum chemical methods [B3LYP/6-31G(d,p)]. We use a
recently proposed model for the RuBisCO active site, in
which a water molecule remains close to the reaction center
during carboxylation of ribulose-1,5-bisphosphate [B. Kan-
nappan, J.E. Gready, J. Am. Chem. Soc. 130 (2008),
15063]. Alternative active-site models and/or computation-
al approaches were also tested. An isotope effect alpha for
carboxylation is found, which is reasonably close to the one
measured for the overall reaction, and which originates
from a simple frequency shift of the bending vibration of
12CO2 compared to 13CO2. The latter is the dominant mode
for the product formation at the transition state.

Keywords Cluster model . Dark reactions .

Densityfunctional theory . Isotope effect . Photosynthesis .

Quantum chemistry . RuBisCO

Introduction

Plant growth depends to a large extent on the ability to fixate
carbon dioxide. Ribulose-1,5-bisphosphate carboxylase/oxy-
genase (RuBisCO), is the core enzyme which adds carbon
dioxide to ribulose-1,5-bisphosphate (RuBP) to form an
enzyme-bound six-carbon intermediate, which is split by
hydrolyzation into two molecules of 3-phosphoglyceric acid
(3-PGA) [1–3]. During the reaction sequence leading from
RuBP to 3-PGA, which is shown in Figure 1, an isotope effect
is observed: There is a small kinetic preference to add 12CO2

rather than 13CO2. For RuBisCO from spinach (Spinacia
oleracea) at pH=8 and room temperature, for example, one
finds a ratio α=k12/k13=1.030±0.001 for the overall reaction
rate constants [4, 5]. Note that Fig. 1 is an idealization,
leaving, e.g., the possibility that carboxylation and hydro-
lyzation are concerted [3].

In the present work, we study kinetic isotope effects with
quantum chemical models. We focus on RuBisCO found in
the leaves of spinach, for which several X-ray structures are
available, e.g., [6–8]. Our investigation considers the
carboxylation step only, i.e., the electrophilic attack of
CO2 to enolized RuBP. For more detailed models of the full
RuBisCO reaction, see Refs. [4, 9–12].

The carboxylation in RuBisCO has been studied by
quantum chemical approaches in the past, e.g., in Refs. [10,
13–16]. In Ref. [10], a cluster model was developed based
on crystal structures [6, 7] and a mechanism was proposed,
in which an initially Mg2+-coordinated water molecule is
replaced by CO2 during carboxylation. This model will be
called the “conventional model” in what follows. The X-ray
structures leave some room for mechanistic interpretation,
however, and recently an alternative mechanism was
suggested in Ref. [11]. In this “new model”, it was assumed
that the water molecule initially coordinated with Mg2+ is
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not replaced by CO2 during the carboxylation reaction, but
rather remains bound to the metal center before and during
CO2 addition. In this case, the water would be immediately
available for the hydrolyzation step. In Ref. [11], several
computational models were devised for this situation, the
largest comprising 77 atoms, called the “FM20” cluster (see
Figs. 2 and 3 below).

Here we will mostly consider the “new model” and the
FM20 cluster also, now to study the kinetics of the
carboxylation reaction. Test calculations are also done for
the “conventional model”. The precise composition and
preparation of the model(s), along with a description of the
computational methods is provided in Sect. System treatment
and methods. The energetics and kinetics of the carboxyla-
tion step and the isotope effect will be considered in
Sect. Results and discussion. The work concludes with a
summary and outlook in Sect. Conclusions and outlook.

System treatment and methods

To set up a computational model for the “new mechanism”
proposed by Kannappan and Gready [11], we used

published coordinates [B3LYP/6-31G(d,p)] of the gas-
phase transition state of their 77-atom FM20 model as a
starting point. This model consists of a sixfold-coordinated
Mg2+ ion, surrounded by CO2, Lys175, Lys177, Lys201
(carboxylated, denoted “KCX201”), Asp203, Glu204,
His294, Lys334, and a single water molecule bridging the
Mg2+ and CO2 units. In all amino acids backbone chains
were replaced by single hydrogen atoms, and aliphatic
chains by CH3 groups, with the exception of Lys334, to
remain faithful to the original model of Ref. [11]. By
protonation / de-protonation, His and Lys are singly
positively, and Glu, Asp are singly negatively charged.
KCX was neutral. Further, the RuBP substrate molecule
was cut between atoms C4 and C5, omitting one of the
phosphate groups, and C5 was replaced by hydrogen. The
other phosphate group was saturated with H and is neutral,
but the RuBP model itself has –2 charge.

The overall charge of the cluster is +2. The FM20
transition state model is shown in Fig. 2.

Starting from the transition state structure, a fully relaxed
scan along the distance of the C-atom of CO2, and C-atom
C2 of RuBP in steps of 0.1Å was performed both in
forward (to the product, carboxylated form) and backward

Fig. 1 Carboxylation reaction pathway of RuBisCO according to Refs. [1, 3, 7]. Individual steps: Enolization, followed by carboxylation and fast
hydrolyzation, and finally C-C bond cleavage. Note that hydrolyzation and carboxylation are suspected to be concerted in some sources [1]

Fig. 2 Transition state of
the 77-atom “new model”
(model “FM20”), determined on
the B3LYP/6-31G(d,p) level of
theory in Ref. [11]. The arrows
indicate atom motion along the
reaction coordinate, for 12C, as
calculated in this work. Atom
and group labeling as used in
the text
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(non-carboxylated form) directions. After obtaining the
potential energy curve which is shown in Fig. 3, reoptimiza-
tion of the structures closest to the two minima gave stable
reactant and product geometries, as verified by normal mode
analysis. Normal mode analysis at the maximum of the
reaction path provided a single imaginary frequency if the
same basis set and method [B3LYP/6-31G(d,p)] as in Ref.
[11] was used, confirming the nature of this stationary point
as transition state. In case of other methods / basis sets, the
transition state had to be re-optimized using the QST3
method [17].

For all calculations, the Gaussian09 [18] program
package was used. In addition to B3LYP [19] calculations
with the 6-31G(d,p) basis [20], also other methods
(Hartree-Fock), and basis sets [6-31G(d)] were tested.
Besides gas phase (in vacuo) models as in Ref. [11],
clusters embedded in a polarizable continuum (polarizable
continuum model, PCM) [21] were also considered. Here,
chloroform was used as a solvent (dielectric constant ε=
4.71) to roughly resemble the protein environment beyond
those amino acid residues which are explicitly included in
the quantum chemical model [22]. While an ε of 4 can be
considered more close to the situation within a protein [23,
24], it has been previously reported that a slightly higher ε
has almost no effect on the energies [25]. As there is no
solvent defined in Gaussian09 having an exact ε of 4, we
decided to use chloroform as a compromise in terms of
dielectric constant and solvent probe radius.

Isotope effects were studied from normal modes at
stationary points and by replacing the 12C atom of reacting
CO2 with

13C. Thermochemical properties were calculated in
harmonic approximation, with B3LYP/6-31G(d,p) frequencies
scaled by 0.983 [26]. A temperature of T=298.15 K and a

pressure of 1 atm were chosen. In particular, free energy
differences ΔG(T)=ΔH(T)−T ΔS were determined, where
the enthalpy ΔH(T)=ΔEel+ΔEZPE+ΔΔEvib(T) contains the
electronic energy (and nuclear repulsion) contribution ΔEel, a
zero-point vibrational energy correction ΔEZPE , and the
change of vibrational energy at temperature T, ΔΔEvib(T).ΔS
is an entropy difference.

Rate constants k were calculated from Eyring transition
state theory as

k ¼ kBT

h
� e�$Gz =kBT ; ð1Þ

where kB is Boltzmann’s constant, and ΔG‡=G‡−G
(reactant) the activation free energy. For the carboxylation
step, the reactant is the precarboxylation configuration (left
cluster in Fig. 3 below). The kinetic isotope effect α is

a ¼ k12
k13

¼ eð$G
z
13�$G

z
12Þ=kBT ; ð2Þ

where indices “12” and “13” refer to 12CO2 and 13CO2,
respectively.

Tunneling contributions to the rate can be important and
are estimated by a one-dimensional Wigner correction,
predicting a rate enhancement factor [27]

Γ ¼ 1þ 1

24

�hwz
kBT

� �2

ð3Þ

Here, ω‡ is the modulus of the (imaginary) TS
frequency. The tunneling corrected kinetic isotope effect is
αt=α (Γ12/Γ13).

Results and discussion

Geometries, energetics and kinetics

In Fig. 3, besides the B3LYP/6-31G(d,p) reaction path for
model FM20, the optimized geometries for reactant,
transition, and product states of the carboxylation step are
shown. Our geometries and energies (at T=0 K), are
generally in good agreement with those already published
[11]. (Small deviations arise from the slightly different
computational protocols, and from the fact that we use
frequency scaling.)

In the reactant state, the CO2 molecule is linear, with a
large distance to the C2 atom of RuBP, of 3.85Å. In the
transition state the C(CO2)-C2(RuBP) distance is consider-
ably shorter (2.45Å), and CO2 is already bent with a CO2

bond angle of 153°. Finally, in the product configuration the
C(CO2)-C2(RuBP) bond has formed, with a C-C bond
length of 1.61Å, and a CO2 bond angle of 127°.

Fig. 3 Carboxylation reaction pathway of RuBisCO, in the form of a
scan along the C(CO2)-C2(RuBP) distance, as obtained from a
B3LYP/6-31G(d,p) calculation, using the 77-atom model of Fig. 2.
The geometries of stationary points (reactant, transition, product state)
are indicated by crosses. See text for details
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In Table 1 we show energy-related data, namely energy
differences ΔEel, zero-point corrected energy differences
ΔEel+ΔEZPE , and finally, free energy differences ΔG,
both for 12C and 13C. The differences refer to activation
energies [e.g., ΔG‡=G‡−G(reactant)] and reaction ener-
gies [e.g., ΔG=G(product)−G(reactant)], again for the
“new” (FM20) model, gas phase, and B3LYP/6-31G(d,p).
Also listed are computed rate constants k12 and k13, and
tunneling enhancement factors Γ. The latter were calcu-
lated from Eq. (3), with B3LYP/6-31G(d,p) transition state

frequencies wz ¼ 2pcevz, of en
z
12 ¼ 122:8cm�1 and en

z
13 ¼

121:0cm�1, respectively. Finally, the table shows isotope
effects without (α) and with tunneling correction (αt), and
quantities related to more approximate treatments of the
isotope effect (see below).

From Table 1, the following observations can be made:

(i) The reaction free energies ΔG are negative, indicating
an exergonic, spontaneous reaction. Similarly, in Ref.
[11] this reaction step was found to be exoenergetic at
T=0 K within this model. Note that here we observe
not only clear zero-point corrections as in Ref. [11], but
considerable thermal corrections in addition.

(ii) The activation free energies ΔG‡ are in the order of
40 kJ/mol, slightly higher for the heavier isotope. We

find that the electronic contribution to the activation energy
is about 21 kJ/mol. Zero-point energy corrections are non-
negligible (in agreement with Ref. [11], more than 5 kJ/
mol), but temperature and entropy contributions are more
important, accounting for another 13 kJ/mol.

(iii) The larger activation free energy for the heavier
isotope translates into a slightly lower reaction
rate. The computed reaction rate for the carboxyl-
ation step alone is much larger than the experi-
mental turnover rate of the RuBisCO active site,
which is 1.75 s−1 [9]. There is of course no one-to-
one correspondence between the carboxylation rate
and the overall turnover, however, there are also
great method and model dependencies of the
carboxylation rate which can contribute to the
disagreement. Nevertheless, the ratio α=k12/k13=
1.036 is surprisingly close to the experimental value
of 1.030 for this system [4]. This value is much more
insensitive to the specific reaction model and
computational level (see below).

(iv) Tunneling corrections are small, in the order of one
percent for absolute rates. They hardly show up in the
isotope effect, and are therefore not further considered
in the following.

Microscopic origin and “robustness” of the isotope effect

Let us assume that the carboxylation step determines the
isotope effect, because no other step involves the CO2-unit
directly. We can then analyze microscopic details of its
origin, by referring to the eigenvector which corresponds to
the imaginary frequency iω‡ at the transition state, as shown
in Fig. 1. The arrows schematically indicate the motion of
atoms along the reaction coordinate, toward reactant and
product configurations. It is seen that this motion is
dominated by a bending vibration of CO2, which is needed
to carboxylate RuBP.

In general, the isotope effect for the carboxylation depends
on many factors. To gain basic physical insight, we note first of
all that the zero-point energy of the reacting CO2 bending
mode contributes to G(reactant), but not to G‡, according to
Eyring’s transition state theory. Assuming in further approx-
imation that (i) during the formation of the transition state the
modes perpendicular to the reaction mode remain almost
unchanged, and (ii) temperature effects cancel out when
changing the isotope, one gets from Eq. (2)

a ¼ eð$G
z
13�$G

z
12Þ=kBT � e

�h ðwb
12�wb

13Þ=2kBT ð4Þ

� 1þ
�h ðwb

12 � wb
13Þ

2kBT
: ð5Þ

Table 1 Quantities related to the energetics and kinetics of the
carboxylation step for different isotopes (12C and 13C), using the
“new” 77-atom model (FM20 [11]) and B3LYP/6-31G(d,p) in vacuo.
The temperature was T=298.15 K

12CO2
13CO2

Energetics / (kJ/mol)

$Eel

$Eel þ $EZPE

$G

-35.50 -35.50
-20.14 -20.18
-7.06 -7.06

$E
z
el

$E
z
elþ$E

z
ZPE

$Gz

21.26 21.26

26.72 26.80

39.98 40.06

Kinetics

(s−1)k 6.16 105 5.95 105

Γ 1.0146 1.0142

a ¼ k12
k13

at ¼ a Γ 12
Γ 13

1.036

1.036

evb (cm−1) 629.4 611.5

�hðwb
12 � wb

13Þ=2
e

�hðwb
12�wb

13Þ=2kBT
wb

12

wb
13

(J/mol) 107

1.044

1.029
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Here, �hðwb
12 � wb

13Þ=2 is the difference in the zero-
point energies of the 13CO2 and 12CO2 isotopomers in the
reacting (bending) mode, which we can in further approx-
imation set equal to the bending mode of the free CO2

molecule.
Note that free CO2 has two degenerate bending modes,

of which only one transforms into the reaction coordinate.
The second approximate Eq. (5), according to which the
isotope effect depends linearly on the zero-point energy
difference of the CO2 bending mode, holds if kB T is much

larger than $$Gz13�12 ¼ $Gz13 � $Gz12 , which is the case at

room temperature.
Table 1, lower part, shows the vibrational frequencies

of the bending mode of free 12CO2 and 13CO2 obtained
from a (scaled) normal mode analysis at B3LYP/6-31G(d,p)
level, along with several quantities derived thereof.
From the table we note that the ZPE difference reflects
indeed reasonably well the changes in Gibbs free

activation energies upon isotope substitution, $$G
z
13�12 ,

as anticipated in Eq. (4). The ZPE difference of the free
molecular bending mode is 107 J/mol, compared to

$$Gz13�12 ¼ 86 J=mol. The zero-point energy contribution

to $$Gz13�12 is 74 J/mol, the rest (12 J/mol) are due to
temperature corrections.

As a consequence, the approximate relation for the
kinetic isotope effect as suggested in Eq. (4) holds also,
with α=1.044 as compared to the “exact” value of 1.036. In
the high-temperature approximation (5), basically the same
isotope effect (1.043) is obtained as with Eq. (4).

We finally note that an alternative picture can be used to
explain the isotope effect which is based on simple
Arrhenius expressions. In the Arrhenius model, rates for
unimolecular reactions are given as:

k ¼ ve�Ea=RT ; ð6Þ
where ν is the “attempt frequency”, and Ea an effective
activation energy.

Since in the Arrhenius model the reaction proceeds
purely classical along a one-dimensional path with no
perpendicular modes, Ea is the same for both isotopes and
differences occur in attempt frequencies only. Assuming
that the latter can be chosen as the harmonic frequency of
the bending mode (of free CO2), we get

a � vb12

vb13
¼ wb

12

wb
13

ð7Þ

in this case. The result is α=1.029 (Table 1), in accidentally
good agreement with the “exact” value (2).

The above analysis can - and should - be criticized in
many respects, mostly because of the inaccuracy of our

model. First of all, the choice of the cluster for the “new
mechanism” suggested in Ref. [11] has a large impact on
relative energies as demonstrated in that reference. Second-
ly, there is still the more established, “old” model according
to which the water molecule at Mg2+ is replaced by CO2

before carboxylation of RuBP. Third, method and basis set
dependencies should be checked. Fourth, the carboxylation
step may not be decisive alone, nor is it even fully clear that
the carboxylated product is a true intermediate (i.e., the
reaction might be concerted with the hydration step). Last
but not least a larger portion of the protein environment
may be important and, related to that, it may be necessary
to sample the thermal protein environment (e.g., in a finite-
T QM/MM setup) in order to arrive at reliable activation
free energies.

To address some of these problems at least in an
exploratory fashion, we have studied cluster models for
the “old mechanism” with up to 102 atoms (see also Ref.
[10]), which were based on crystal structures for the system
at hand [6, 7]. Also, another basis set [6-31G(d)], another
electronic structure method (Hartree-Fock, HF), and the
embedding in a polarizable continuum as described above
(for the “new mechanism”) were tested. An outcome of all
of these studies is that indeed the absolute activation
energies for the carboxylation step depend critically on
the computational protocol / method, and so do absolute
rates. However, in all cases (where a true transition state
could be found), it was observed that the isotope ratio α is
remarkably robust, and that the CO2 bending mode in the
binding pocket plays a decisive role. For example, using (i)
HF/6-31G(d,p) and the 77- atom “new” model, (ii) HF/6-
31G(d,p) and the 102-atom “conventional” model, or (iii)
B3LYP/6-31G(d,p)/PCM and the 77-atom “new” model, the
computed isotope effects were 1.049, 1.042, and 1.049,
respectively. At the same time, the activation free energies
varied by up to a factor of two, and absolute rates by
several orders of magnitude. The latter isotope effects are
too large compared to experiment and the FM20 [B3LYP/
6-31G(d,p)] model, but qualitatively correct and originat-
ing from differences in the CO2 bending mode. This
clearly shows that in order to compute the isotope effect for
the turnover rate for RuBisCO in various systems as
accurately as it can be measured [4, 28], it will certainly
be necessary to go beyond the methodology / models
proposed here: B3LYP activation energies are reported to be
too low in general [29], and ab initio HF activation energies
too high due to the lack of electron correlation. In the
future, more advanced studies systematically exploring the
effect of different computational methods should be
performed, e.g., using DFT functionals such as M06-2X
[30]. The prominent role of the of the CO2 bending mode
during C-C bond formation, however, seems to be quite
generic.
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Conclusions and outlook

We have studied the kinetic carbon isotope effect in the
carboxylation step of the RuBisCO reaction. Absolute
activation and reaction energies and reaction rates depend
sensitively on model type, size, and computational method
and require further refinement. The isotope effect itself is
traced back to the CO2 bending vibration, which is the
reacting mode in the transition state during the formation of
a C-C-bond. More precisely, the effect is due to a loss of zero-
point energy for the vibrating CO2 in the reactant configura-
tion, leading to a slightly increased activation energy for
13CO2. We believe that the essential physics is independent of
details of the protein environment, while the exact magnitude
of the kinetic isotope effect is clearly not [28].

For a complete assessment of isotope discrimination, the
reactants’ binding process to the protein and the product
release should be considered. In general, for fully quanti-
tative predictions, larger models of a thermal protein
environment must be studied, and (thermo-)dynamic
effects. For basic insight, however, the QM cluster models
employed here seem to be valuable.
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Abstract B-cell lymphoma (Bcl-2) protein is an anti-
apoptotic member of the Bcl-2 family. It is functionally
demarcated into four Bcl-2 homology (BH) domains: BH1,
BH2, BH3, BH4, one flexible loop domain (FLD), a
transmembrane domain (TM), and an X domain. Bcl-2’s BH
domains have clearly been elucidated from a structural
perspective, whereas the conformation of FLD has not yet
been predicted, despite its important role in regulating
apoptosis through its interactions with JNK-1, PKC, PP2A
phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and
FKBP38. Many important residues that regulate Bcl-2 anti-
apoptotic activity are present in this domain, for example
Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural
elucidation of the FLD would likely help in attempts to
accurately predict the effect of mutating these residues on the
overall structure of the protein and the interactions of other
proteins in this domain. Therefore, we have generated an
increased quality model of the Bcl-2 protein including the
FLD through modeling. Further, molecular dynamics (MD)
simulations were used for FLD optimization, to predict the
flexibility, and to determine the stability of the folded FLD. In
addition, essential dynamics (ED) was used to predict the
collective motions and the essential subspace relevant to Bcl-2
protein function. The predicted average structure and ensem-
ble of MD-simulated structures were submitted to the Protein
Model Database (PMDB), and the Bcl-2 structures obtained
exhibited enhanced quality. This study should help to
elucidate the structural basis for Bcl-2 anti-apoptotic activity
regulation through its binding to other proteins via the FLD.

Keywords Bcl-2 . Loop modeling .MD simulations .

Apoptosis . Flexible loop domain . Essential dynamics

Abbreviations
1GJH Bcl-2 isoform 2 structure (from NMR)
2XA0 Model of complex of Bcl-2 and Bax

peptide (from X-ray diffraction)
1G5J Model of complex of Bcl-XL and Bad

peptide (from NMR)
SM Swiss-Model generated model of Bcl-2

based on the 1GJH template
CW ClustalW alignment based Bcl-2 model

generated by MODELLER
MOD MODELLER-generated model based on

the 1GJH template and obtained using
the same alignment as used by SM

MODLOPT MODELLER loop-optimized model
PM0076467 PMDB ID of the MD-simulated average

structure
PM0077081-
PM0077103

23-Structure ensemble resulting from
clustering

MD Molecular dynamics
ED Essential dynamics
PMDB Protein Model Database
FLD Flexible loop domain

Introduction

The FLD region (amino acids 34–92) of Bcl-2 (239 amino
acids) lies between the BH4 and BH3 domains, lacks a
defined structure, and is not structurally conserved among
Bcl-2 family members (Fig. 1) [1]. The BH domains are
responsible for Bcl-2’s anti-apoptotic function, which is
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linked with its homodimerization and its heterodimerization
with its own family members and those of other families,
whereas FLD regulates the activity of Bcl-2. The FLD
contains phosphorylation sites—Thr56, Thr69, Ser70,
Thr74, and Ser87—that are essential for the regulation of
Bcl-2 activity. By using 2-D peptide mapping and sequenc-
ing, the residues Thr56, Thr74, and Ser87 were found to be
phosphorylated in response to a microtubule damaging
agent (paclitaxel) that also arrest T cells at G2/M phase of
cell cycle. Changing these sites to Ala led to enhanced
survival following death signal as well as paclitaxel
treatment [2]. These residues also constitute a ubiquitin-
dependent cleavage/MAP kinase site. It was discovered that
there was cleavage of Bcl-2 at this site upon TNF-α
induced cell death in endothelial cells due to a ubiquitin-
dependent proteosome complex. The phosphorylation of
these residues has been shown to abolish Bcl-2 degradation
[3]. On the other hand, single phosphorylation of Bcl-2 at
Ser70 is essential for full and potent cell survival activity.
The residue Ser70 was shown to be phosphorylated by IL-
3, PKC and EPO to maintain normal cellular homeostasis
[4], whereas the Ser70Ala mutant is not phosphorylated after
IL-3/Bryo stimulation, and is unable to prolong cell survival
upon either IL-3 deprivation or etoposide treatment. Ser70Glu
substitution also suppresses etoposide-induced apoptosis more
potently than wild-type Bcl-2 [5]. Furthermore, the DNA
damage induced by p53–Bcl-2 binding was shown to be
associated with the weaker Bcl-2–Bax interaction and
increased apoptotic cell death in a mechanism regulated by
FLD. This demonstrates that FLD is also involved in
regulating the binding of Bcl-2 with Bax and indirectly
regulating such interactions with pro-apoptotic proteins [6].
Additionally, FLD contains a caspase 3 (apoptosis effecter
protease) recognition and cleavage site at Asp34. Cleavage at
Asp34 by caspase 3 renders Bcl-2 unable to inhibit apoptosis.
The mutation of Asp34Ala makes Bcl-2 resistant to caspase 3

mediated cleavage and hence enhances anti-apoptotic activity
[7]. The FLD-deleted mutant of Bcl-2 displays enhanced
ability to inhibit apoptosis without impairing Bcl-2 hetero-
dimerization with pro-apoptotic proteins. Full-length Bcl-2
was found to be ineffective at preventing anti-IgM induced
cell death of an immature B cell line (WEHI-231). In
contrast, this mutant protected WEHI-231 cells from death
[8]. Moreover, a molecular interaction between FKBP38 and
Bcl-2 has been shown to occur through the unstructured loop
of Bcl-2, and this appears to regulate phosphorylation in the
loop [9]. Normally proteins are degraded by cellular
proteases; nonetheless, the flexible loop in Bcl-2 has been
shown to shield or protect it from rapid degradation by
cellular proteases due to the presence of a random coil
structure that exhibits a long half-life [8, 10, 11].

All these studies indicate that the FLD plays an
important role in providing stability to the Bcl-2 protein
and regulation of its anti-apoptotic activity. Understanding
the interactions of various proteins with FLD would likely
help us to tweak apoptosis signaling and the treatment of
various malignancies [12] in which Bcl-2 expression is not
under control, such as acute myeloid leukemia (AML) [13].
Therefore, the FLD represents an attractive target for drugs
that modulate protein–protein interactions, and studies of
the FLD would likely facilitate drug discovery and improve
our understanding of human diseases.

No data on the 3D conformation of the FLD are
currently available; nevertheless, the NMR structure of
Bcl-2, in which the FLD is replaced with residues of the
Bcl-XL protein, is available [14]. In our study, sequence-
based results showed that the FLD is an extensively
disordered region. In order to predict the conformation of
the FLD, we elucidated the structure of the Bcl-2 protein
using Swiss-Model [15] and MODELLER software [16].
Based on the stereochemical parameters, we observed that
MODELLER generated a refined model. Further, the FLD (as

Fig. 1 Functional division of the Bcl-2 protein into domains (represented
as tubes), N- N-terminal, BH- Bcl-2 homology, FLD- flexible loop
domain and TM- transmembrane, connected through the flexible region
represented as wires. The interacting proteins and functions of the

domains of Bcl-2 are shown by dotted lines. Important residues such as
Asp34 and Ser70 lie in the FLD region; the substitution of these
residues (i.e., Asp34Ala and Ser70Glu) upregulates the anti-apoptotic
activity of Bcl-2
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generated by MODELLER) was optimized by the loop
modeling method of MODELLER, and then energy minimi-
zation was performed. Since the accurate prediction of the
secondary and tertiary stable structure and dynamics of the
FLD cannot be achieved through experimental measurements
[17], we used MD simulation to predict a putative confor-
mation and the flexibility of the FLD. The MD simulation of
the energy-minimized Bcl-2 model was carried out using
GROMACS (Groningen Machine for Chemical Simulations)
[18]. The average structure of the Bcl-2 protein was obtained
from the 15 nsMD-simulated trajectory. Further, the predicted
average model was energy minimized and validated by
stereochemical and overall quality checks. Subsequently, the
average model was checked for its ability to bind with pro-
apoptotic peptides by docking. Clustering was performed to
ensemble the structures based on the RMSD along the MD
simulation trajectory. The electrostatic behavior (dipole
moment) was predicted for the entire MD simulation
trajectory, and was found to be in accordance with the X-
ray structure. ED was used to reduce the dimensionality and
to predict the essential subspaces for large collective motions
that are relevant when generating a biologically functional
Bcl-2 model. Our results show that the model obtained has
enhanced quality and may be useful for studies focusing on,
for example, mutagenesis and protein–protein docking. The
average model and ensemble were submitted to the PMDB
[19], and are available for further analysis.

Computational methods

Sequence analysis of Bcl-2 protein

The human Bcl-2 sequence (Genbank I.D. 231632; Swissprot I.
D. P104152) containing 239 amino acids was used for sequence
analysis and modeling. BLAST [20] identified the sequences
homologous to Bcl-2 in different organisms. PDBblast was
used to search for Bcl-2 homologs with solved 3D structures.
The BLAST parameters of an expect value of 10, a hitlist size
of 100, a threshold of 11, and a word size of 2 were used, and
the BLOSUM62 matrix was employed. Unordered regions in
the protein were predicted by the DISOPRED server [21]. The
IUPred method [22] was used to obtain the specific amino
acid composition of the disordered region of the FLD, which
does not form a stable, well-defined structure.

Predicting the structure of Bcl-2 and FLD optimization

The Swiss-Model server (http://swissmodel.expasy.org) and the
MODELLER program were used to generate the 3D model of
Bcl-2. The Swiss-Model automated modeling mode con-
structed the Bcl-2 model (SM) based on the 1GJH template
(73.171% sequence identity). MODELLER 9v7 generated the

3D structure of the Bcl-2 protein based on the 1GJH template
by satisfying spatial restraints for the aligned regions.

Two models were generated using two different alignments
between the Bcl-2 sequence and the 1GJH template by
MODELLER. The first model (MOD) was obtained by manual
alignment (similar to the alignment used to generate the SM
model). The second model (CW) was obtained using ClustalW
[23] PIR format alignment between the Bcl-2 and 1GJH
template. This alignment was generated using the EBLOSUM
62 matrix [24] with a gap penalty of 10 and an extend penalty
of 0.5. The first model (MOD) was subjected to refinement of
the FLD using a loop optimization protocol (the loopmodel
class of the DOPE-based method) followed by MD simu-
lations (using the conjugate gradient optimization method) at
the temperatures 150, 300, 400, 800 and 1000 K using
MODELLER. An initial loop conformation (FLD) for residues
34–92 of the MOD model was generated using a fast loop
refinement method by simply positioning the atoms of the
FLD, uniformly spaced, on the line that connects the main-
chain carbonyl oxygen and the amide nitrogen atoms of the N-
and C-terminal anchor regions. This MODELLER loop-
optimized (MODLOPT) structure was further energy mini-
mized (globally) using the GROMOS96 43B1 force field [25]
by Swiss-Pdb viewer [26]. Pymol [27] was employed to
calculate structural alignment differences between the energy-
minimized MODLOPT and SM models. The modeled
structures were validated by ProSA-web [28] and SAVes server
(http://nihserver.mbi.ucla.edu/SAVES/) using the PROCHECK
[29], ERRAT [30] and WHAT CHECK [31] programs.

MD simulations

MD simulation of the energy-minimized MODLOPT model
was performed in order to predict the native conformation
of Bcl-2 and the structural changes induced by the FLD in
its domains. We used GROMACS package 4.0 [32], which
is a versatile collection of programs and libraries for
simulating molecular dynamics and subsequently analyzing
trajectory data. The simulations were carried out on a single
PC (3.40 GHz Core 2 Duo processor, Pentium IV, 4 GB
RAM; Hewlett Packard) running the Windows Vista
operating system (using Cygwin). The GROMOS 96 53a6
[33, 34] force field including all hydrogens, along with a
simple point-charge (SPC) water model [35], was used for
energy minimization. The pre-equilibrated [36] SPC water
was added to an octahedral box, and the protein was then
placed in the center of the box. 16809 solvent molecules
were embedded into the box, which extended at least 9 Å
from the Bcl-2 protein to the edge of the box. Two Na+ ions
were added to the solvent to neutralize the charges on the
Bcl-2 protein. The protein and nonprotein groups were
energy minimized with a tolerance of 2000 kJ mol−1 nm−1

using the steepest descent method for 500 steps. All bonds
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were constrained using the LINCS algorithm [37], and the
simulation was performed under NPT conditions, using the
v-rescale coupling algorithm [38] and the Parrinello–Rah-
man coupling algorithm [39], which stabilized the temper-
ature and pressure (P=1 bar, τP=0.1 ps; T=300 K, τT=0.1
ps). A smooth particle mesh Ewald (PME) method [40] was
used with a cut-off of 1.4 nm for electrostatic [41] and van
der Waals (vdW) [41–43] interactions. The electrostatic
interactions were calculated with PME using a grid spacing
of 0.12 nm. Periodic boundary conditions (PBC) were
employed to eliminate surface effects [44]. The final MD
simulations were carried out with a time step of 3 fs [45,
46] and without any position restraints [47]; 5,000,000
steps were performed for a total of 15 ns.

Analysis of the MD simulations

All analyses were carried out using programs included
in GROMACS (version 4.0.7), VMD [48], and Pymol.
Trajectories were subjected to energy analysis, global
structural analysis (measuring the radius of gyration, Rg),
and analyses of the RMSD (root mean square deviation)
after least-squares fitting to the protein atoms except for
hydrogens, secondary structure content, solvent accessi-
bility, and intramolecular hydrogen bonding. The flexible
regions and the stability of the Bcl-2 protein were
predicted via the RMSF (root mean square fluctuation).
The contact map was calculated using the minimum
distance matrix in order to identify the native contacts.
The solvent-accessible surface area (SASA) was calculat-
ed for the FLD residues. Salt bridges between oppositely
charged residues in the FLD within a minimum cutoff
distance of 0.5 nm were investigated. Secondary structure
analysis was performed using DSSP [49]. The average
structure was generated, energy minimized (using the
steepest descent method), and validated using SAVes and
ProSA-web before submitting it to the PMDB (id:
PM0076467). ProSA-web was used to evaluate the
stereochemical errors in and the quality of the model.
The Z-score was measured to check the compatibility
between the model’s sequence and structure. The linkage
method was used by the clustering tool (g_cluster) of
GROMACS to generate an ensemble of structures. The
secondary structures of the experimental and the
PM0076467-superimposed models were predicted by the
STRIDE [50] program. The electrostatic behavior between
charged residues was calculated by g_dipoles.

Autodock 4.2 [51] was employed to generate the Bax
(peptide)–Bcl-2 and Bad (peptide)–Bcl-2 complexes. Auto-
DockTools (ADT) was used to add hydrogen bonds (using
AD4 atom types) to the peptides/proteins and to assign
Gasteiger charges to 32 active torsions of the peptides. As
our aim was to assess the binding efficacy of the BH3

receptor cleft, we made the search space large enough to
include the whole BH3 cleft, and increased the exhaustive-
ness using affinity grids of 78×76×58 points and a spacing
of 0.375 Å around the protein (via Autogrid). The
Lamarckian genetic algorithm [52] was used for the
conformational search. Each Lamarckian job consisted of
50 runs. The initial population consisted of 150 structures,
and the maximum number of energy evaluations and
generations was 2,500,000. The default values were used
for the remaining parameters. The docking poses and
hydrogen bonds were visualized via Accelrys Discovery
Studio Visualizer 2.0 (http://accelrys.com/).

Essential dynamics analysis

The essential degrees of freedom (essential subspace) of
Bcl-2 were extracted from the trajectories according to the
ED method used (covariance analysis or principal compo-
nent analysis) [53–56]. The ED method involves construct-
ing the covariance matrix in order to observe the
fluctuations in the coordinates of Bcl-2. Correlated motions
were observed during the MD trajectories through the
eigenvectors of the non-mass-weighted covariance matrix
(C) for atomic position fluctuations. Before constructing C,
the overall rotation and translation was removed to allow
the visualization of internal motion. This was achieved by
performing least squares fitting to the average structure
based on the Cα coordinates. After the fitting procedure, the
internal motions described by the trajectory x(t) and the
covariance matrix C were constructed from the coordinates
of the positions of the Cα atoms:

Cij ¼ 1=S
X

t xi tð Þ� < xi >f g xj tð Þ� < xj >
� � ð1Þ

where S is the total number of configurations, t=1, 2, …
S; xi(t) are the position coordinates, with i=1, 2, ….3N; N is
the number of atoms from which C is constructed, and<xi>
is the average for coordinate i over all configurations [53].

The covariance matrix (621×621) was diagonalized to
obtain the eigenvectors and eigenvalues that provide
information about the correlated motions and overall
flexibility throughout the Bcl-2 protein. The eigenvectors
were then sorted according to their eigenvalues in descend-
ing order. Usually, the first ten eigenvectors were sufficient
to describe almost all of the conformational subspace
accessible to the protein. Principal component analysis
was used to identify the essential subspaces explored by the
simulations of the Bcl-2 protein that likely indicate changes
in the BH3 cleft. The dimensionality of the essential
subspace was monitored by noting the fraction of total
motion described by the reduced subspace, and this was
computed as the sum of the eigenvalues relative to the
included eigenvectors.
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Results and discussion

FLD disorder prediction

PDBblast gave 55 hits, among which the 1GJH (human
Bcl-2, isoform 2, chain_A, NMR structure) sequence
showed 73% sequence identity, 74% positives, and 19%
gaps, with a score of 301 bits, an e-value of 2×10−82, and a
query coverage of 86%. We observed maximum sequence
similarity to FLD only with the 1GJH (166 residues)

template. No hits were obtained with individual pBLAST
and PSI BLAST searches for the FLD (59 residues). In
order to find a match for the FLD, we used the PS2 [57] and
HHpred server [58]. However, neither of these servers
found a suitable template in their structure databases. These
results revealed that the FLD is an unordered region. In
addition, the FLD region was found to be largely unordered
using two specific structural tests (DISOPRED and
IUPred). The DISOPRED software predicted unordered
regions, specifically in FLD (residues 34–92) and at the N-

Fig. 2 a Plot of the disorder profile, which shows the probability of a disordered region in each residue, (black line). b The predicted tendency to
be disordered (red line) shows large peaks for the FLD and N-terminal regions

Table 1 PROCHECK Ramachandran distributions, ERRAT overall quality factors, Verify3D scores, WHATCHECK Z-scores, and ProSA-web Z-
scores for the 1GJH, SW, CW, MOD, MODLOPT, and PM0076467 models

3D model Ramachandran statistics ERRAT (%) Verify3D (%) WHAT CHECK
Z-score

ProSA-web
Z-score

Core (%) Allowed (%) Generous (%) Disallowed (%)

1GJH 73.6 24.3 1.4 0.7 79.355 96.36 −7.098 −6.61
SM 72.9 23.5 2.4 1.2 55.330 91.26 −5.909 −2.07
CW 84.5 10.1 4.2 1.2 42.347 97.34 −1.182 −5.97
MOD 88.7 9.5 1.2 0.6 36.788 99.04 −1.171 −6.52
MODLOPT 85.7 12.5 1.8 0.0 46.821 81.25 −2.732 −7.10
PM0076467* 81.5 16.7 1.2 0.6 80.233 98.08 −2.404 −6.63

* MD-simulated average structure
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terminal domain (residues 1–9) (Fig. 2a). The DISOPRED
program predicted that the Bcl-2 protein is unable to yield a
good consensus for the FLD segment. The scattered output
curve exhibits the presence of non-alpha and non-beta
regions in the FLD zone. IUPred predicted the tendency for
disorder in the Bcl-2 protein, and indicated that all four BH
domains were well structured. The FLD residues show a
high tendency to be disordered, with a probabilistic score of
>0.5 (for residues 32–83) (Fig. 2b), but as this score is
<1.0, the region does not appear to be completely
disordered [59].

Molecular modeling and optimization

Upon aligning the 1GJH sequence with its PDB file, we
noted differences in the FASTA format and coordinate files
for the first two residues (i.e., Met1 and Ala2). So, we
manually replaced these residues with gaps in the PIR-
format alignment file. After comparing the two different
models (MOD and CW) (Table 1), we observed that manual
alignment (Fig. 3a) generates a better model (MOD) than
that (CW) generated using default alignment with the
ClustalW program (Fig. 3b). MOD showed fewer confor-
mational strains as compared to CW, so we chose this
model for further analysis. MOD (residues 1-207) showed
N-terminal, BH4, BH3, BH1, BH2 and FLD (regulatory
domain) regions. In pair-wise sequence alignment, we did
not observe identity when comparing the complete FLD
region of Bcl-2 with 1GJH, so it is likely that MOD would

be constrained in the FLD. The accurate conformation of
FLD was predicted by removing a bump, using the loop
optimization protocol in the loop modeling method of
MODELLER. Three loop models were outputted, among
which the last model (MODLOPT) was chosen because this
model had the best-refined loop. MODLOPT was then
subjected to energy minimization for 22 energy iterations
(total energy range: E=7888150.500 kJ mol−1 to −1671.042
kJ mol−1). An RMSD of 4.189 Å for 1374 atoms was
observed between the energy-minimized MODLOPT and
SM models. We also identified two beta-strands in the FLD
of SM, between residues 35 and 37 and residues 48 and 50.

A comparison of all of the structures (Table 1)
showed that MODLOPT was the best. ERRAT was used
to calculate the overall quality of each model, and this
showed that MODLOPT has the highest overall quality
(42.857) of any of the models (Table 1). The 1GJH model
had an overall quality of 79.355, but when the FLD was
added to this model, its quality was observed to decrease
[14]. WHAT CHECK was employed to evaluate the

Fig. 4 a Potential energy of energy-minimized MODLOPT, which
converged after 261 steps. b Stable potential, kinetic and total energy
plot for the MD simulation. c Time evolution of the radius of gyration
shows the compactness of structures with respect to time. The radius
of gyration of a group of atoms was computed about the x- (RgX), y-
(RgY) and z- (RgZ) axes, as shown by the three colored lines, which
indicate the global shape of the molecule along the x-, y-, and z-
coordinates. d Root mean square deviations (RMSD) of structures
with respect to simulation time. e RMS fluctuations (in nm) of
residues; greater fluctuation was observed in the loop region

�

Fig. 3 a Manually aligned
Bcl-2 (207 residues) and 1GJH
(166 residues) sequences in PIR
format. This alignment was used
by MODELLER to generate
MOD. b PIR-format alignment
of Bcl-2 (207 residues) and
1GJH (166 residues), as gener-
ated using the Gonnet matrix in
ClustalW
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geometries of the models, and it showed that the
Ramachandran Z-score (−7.098) was very low for 1GJH
but normal (i.e., between −4 and +4) for the other 3D
models. Furthermore, a very low chi-1/chi-2 correlation Z-
score was observed for the 1GJH model (SD of Z-score=
−6.113), but the corresponding values for the other
structures were normal.

MD simulations

After validation, we realized that the energy-minimized
structure of MODLOPT needs to be improved in terms of
stereochemical and overall quality through optimization.
MD simulations can improve the FLD structure by using a
conformational search approach to study this type of
unordered region [60, 61]. Thus, we employed MD to
predict the folding of the FLD (i.e., the equilibrium
between the folded and unfolded states of Bcl-2 containing
the unstructured region). We observed conformational
changes at 300 K on the minimization and optimization of
the FLD domain. This observation encouraged us to
attempt an extensive study of the conformational behavior
of the Bcl-2 protein at 300 K over a time scale of 15 ns.

The energy-minimized MODLOPT was solvated in an
aqueous environment and then energy minimized. After
that, the GROMACS force field was used for MD
simulations. We chose several structural features along the
MD trajectories in order to predict the near-native confor-
mation [42], since discriminating models on the basis of
free energy alone is not a reliable approach, due to the very
small difference between the free energies of native and
decoy structures [62–69].

Predicting Bcl-2 protein flexibility

We performed MD simulation analysis to predict the
flexibility of FLD and its effects on the Bcl-2 protein. The
energy coordinates were observed to converge after 261
steps, at which point the lowest potential energy
(−865117.25 kJ mol−1) was calculated (Fig. 4a). The
average potential energy was observed to be −653040 kJ
mol−1. Finally, the potential, kinetic and total energies of the
system throughout the 15,000 ps MD simulation run were
calculated (Fig. 4b). An average potential energy of
−806634 kJ mol−1, an average kinetic energy of 130843
kJ mol−1, and an average total energy of −675791 kJ mol−1

Fig. 5a–d Docking poses of PM0076467 (red) with a Bax (blue) peptide and with c Bad peptide; the hydrogen bonds observed between the
complexes are shown in b and d, respectively
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were obtained. These three energies were observed to
remain stable during the whole run.

The compactness, shape, and folding of the overall Bcl-2
structure at different time points during the trajectory can be
seen in the plot of Rg (Fig. 4c). Rg was computed for atoms
that were explicitly mass-weighted. 1.60 nm was the
average converged value for Rg for 13,000–15,000 ps
simulations. This converged and equilibrated Rg value
showed that stability was obtained by the FLD. The
evaluation of the Rg revealed that there was a difference
between the initial and final value for the structure (it
decreases from 1.9 nm to 1.8 nm). These results indicate
that the final structure is more compact than the initial
structure. The RMSD value of 0.84 nm was obtained after a
least squares fit to the structure (except for hydrogens) of
the protein at the equilibrium plateau from 12,714 ps to
15,000 ps (Fig. 4d). A decrease in Rg indicates FLD
folding, whereas the attainment of an equilibrium state
indicates stability of structures with similar RMSDs. The
RMSF of the residues shows the overall quality of the
model, the flexibility of the FLD region, and the displace-
ment of the residues about the average position of the
model. The RMSF plot (Fig. 4e) shows that the fluctuations
of the FLD peak at residues Gly36 (0.4236 nm of

fluctuation), Ala45 (0.7697 nm of fluctuation) and Arg68
(0.4904 nm of fluctuation). The RMSF plot is uniform,
especially in the BH3 receptor cleft, indicating the
importance of this region in Bcl-2 protein activity.

The energy-minimized average structure extracted from
MD trajectory can be used to design new inhibitors or to
identify a new binding site that could be useful in drug
discovery [70]. Therefore, we computed the average
structure from the MD simulations, which was then further
energy minimized and validated by ProSA-web (Z-score
of −6.63) (Table 1). The average structure obtained after the
MD simulations displayed an overall quality factor of
80.233%, as predicted by the ERRAT program (Table 1);
this shows improved model quality. This model was
observed to have 81.5% of its residues in the core, 16.7%
in the allowed, 1.2% in the generously allowed, and 0.6%
in the disallowed regions. Verify3D analysis showed that
98.08% of the residues had average 3D-1D scores of >0.2
and G-factor dihedral values of −0.26 (acceptable values of
the PROCHECK G-factor lie within the range of 0 to −0.5).
Thus, all of the stereochemical and overall quality
parameters were better than those of the other models
(Table 1). The validated model was subsequently submitted
to the PMDB (id: PM0076467).

Table 2 Members of the 23 clusters, obtained on the basis of the RMSD; each cluster’s middle member was submitted to the PMDB

Cluster No. of members
of the cluster

Mean RMSD (nm) Middle structure RMSD of middle
structure (nm)

Members of the
cluster (ps)

PMDB id

1 1 0 – – 0 PM0077081

2 2 0.095 3 0.095 3, 6 PM0077082

3 2 0.097 9 0.097 9, 12 PM0077083

4 1 – 15 – 15 PM0077084

5 17 0.146 42 0.132 18–66 PM0077085

6 4 0.104 72 0.096 69–78 PM0077086

7 7 0.119 90 0.112 81–99 PM0077087

8 8 0.114 114 0.106 102–123 PM0077088

9 4 0.104 132 0.098 126–135 PM0077089

10 1 – 138 – 138 PM0077090

11 4 0.101 147 0.094 141–150 PM0077091

12 27 0.153 195 0.141 153–231 PM0077092

13 32 0.169 279 0.153 234–327 PM0077093

14 26 0.152 366 0.140 330–405 PM0077094

15 4 0.103 414 0.099 408–417 PM0077095

16 28 0.153 456 0.137 420–501 PM0077096

17 53 0.181 615 0.166 504–660 PM0077097

18 26 0.141 693 0.130 663–738 PM0077098

19 50 0.169 831 0.154 741–888 PM0077099

20 68 0.182 1002 0.161 891–1092 PM0077100

21 91 0.190 1257 0.173 1095–1365 PM0077101

22 148 0.198 1635 0.176 1368–1809 PM0077102

23 4397 0.291 7656 0.248 1812–15,000 PM0077103
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In order to analyze the accuracy of the predicted average
model, we docked it with pro-apoptotic peptides. The binding
mode in the PM0076467 structure was predicted by docking
this structure with the Bax peptide (residues 59–73, BH3
motif) (Fig. 5a) and the Bad peptide (residues 110–124, BH3
motif) (Fig. 5c). The docked complexes show that both of
the peptides bind efficiently into the BH3 cleft. We identified

the same hydrogen bonds in these complexes as those found
in previously solved complex structures [71, 72]. Arg 107:
HH11–Asp 13:OD2, Asn 143:HD22–Asp13:OD1, Arg146:
HH12–Asp10:OD1, Asp111:OD1–Lys6:NZ and Asp140:
OD1–Arg7:NH2 hydrogen bonds were observed between
PM0076467 and Bax (Fig. 5b), and Arg107:HH22–Ser15:
OXT, Arg146:HH22–Asp10:OD2, Arg6:NH2–Asp111:OD2

Fig. 6 a Top view of the ensemble of 23 structures, showing the
flexibility of the BH3 cleft. The initial structure is shown in red, and
the structure at 7656 ps (middle structure of the 23rd cluster) is shown
in green. b Side view of the ensemble of 23 structures, showing the
structural changes in the FLD. The initial structure is shown in red,

and the structure at 7656 ps (the middle structure of the 23rd cluster)
is shown in green. c Superimposition of the models PM0076467
(yellow), 1GJH (gray), 2XA0 containing Bax peptide (orange) and
1G5J containing Bad peptide (blue), showing the variability of the
BH3 cleft
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and Arg6:NE–Asp111:OD1 hydrogen bonds were noted
between PM0076467 and Bad (Fig. 5d). These results
indicate that FLD folding does not hinder or affect the
binding of antagonistic peptides to the BH3 cleft of Bcl-2,
and that the BH3 receptor cleft may play an important role in
FLD folding.

Clustering of conformations

Several computationally designed and redesigned pro-
teins have led to significant breakthroughs in biotech-
nological and biomedical applications, such as designing
new biocatalysts [73–76], enhancing protein binding
affinity [77] and redesigning protein binding specificity
[78–80], and redesigning a protein in order to bind to
cofactors [81]. MD simulation has an important role to
play in elucidating the functional mechanisms attained by
protein structures [82]. We have computed an average
structure from a 15 ns simulation, but this does not
necessarily mean that it is a physically meaningful
structure. To characterize the behavior of the models along
the trajectories, we computed an ensemble of structures
based on the RMSD using the clustering tool of GRO-
MACS. Here, we built 23 clusters using the linkage
method, with all of the clusters corresponding to RMSD
values ranging from 0 to 0.291 nm (Table 2). In this way,
we obtained a coarse estimate for the conformational

space along the trajectory explored by the same or
different models. This indicates that all of the conforma-
tions that are in the same cluster have the same potential
energy, because two clusters are formed when the system
crosses a sufficiently high energy barrier to reach a new
potential energy valley. The results shown in Table 2 allow
improved discrimination between different types of mod-
els than the results shown in Fig. 4d in the form of a
graph. The models obtained from 1812 ps to 15,000 ps
belonged to the same cluster, with similar RMSDs. This
implies that models in this cluster have the same energy
and do not deviate from one another much.

To predict the flexibility of the clusters, we super-
imposed the middle structures of all 23 clusters. Superim-
position of the 23 clusters (Fig. 6a and b) showed that the
FLD folds due to changes that occur in the BH3 receptor
cleft. We also observed that these changes occur mainly due
to the highly flexible behavior and variability of the
secondary structure content of residues 108–135, in the
region connecting BH3 and BH1. These observations
suggest a folded binding site for the FKBP38 protein,
which is reported to bind with the FLD [9]. The changes in
the BH3 cleft are also likely to regulate the binding of other
proteins to the FLD. Subsequently, each cluster’s middle
structure was energy minimized by the Swiss-Pdb viewer
program using the default parameters, and then submitted to
the PMDB (Table 2). This ensemble of closely related
structures should help us to predict the backbone flexibility
based on computationally designed and experimentally
obtained structures [83–85].

We observed the presence of the flexible region by
superimposing the MD-simulated average structure
(PM0076467) onto two experimental Bcl-2 structures
(1GJH and 2XA0, the model of the complex of Bcl-2 with
the Bax peptide) and one structure of Bcl-XL (i.e., 1G5J,
the structure of the complex of Bcl-XL with the Bad
peptide) (Fig. 6c). Stability was achieved by reducing the
length of the FLD, thus stabilizing the secondary structure
[86–88]. The BH3 cleft was observed to be flexible—which
is essential if Bcl-2 is to optimally heterodimerize with pro-
apoptotic proteins; the flexible nature of the native protein
is essential to its function [89]. Substantial differences in
the BH3 cleft were observed in the dynamics of the
structural features of the backbones of the simulated and
template structures. However, we identified the stabilized
conformations (including that of the FLD) from the MD
simulations.

Superimposing the models (2XA0, IGJH, 1G5J, and
PM0076467) helped us to calculate the differences between
them on the basis of the RMSD (Fig 6c). The observed
RMSD between 2XA0 and 1GJH was 1.105 Å, that
between 1G5J and 1GJH was 1.644 Å, that between 1G5J
and 2XA0 was 1.234 Å, that between PM0076467 and

Table 3 Secondary structure contents of 1GJH, 2XA0, and PM0076467
for the most flexible region (residues 108–125) designated as H (alpha
helix), G (310 helix), T (turn) and C (coil)

Residue Number Secondary structure contents of models

1GJH 2XA0 PM0076467

Tyr 108 T H H

Arg 109 T H H

Arg 110 T H H

Asp 111 T H H

Phe 112 H C H

Ala 113 H C H

Glu 114 H C H

Met 115 H G H

Ser 116 H G H

Ser 117 H G H

Gln 118 C G H

Leu 119 C C C

His 120 C C C

Leu 121 C C C

Thr 122 C T C

Pro 123 T T H

Phe 124 T T H

Thr 125 T H H
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1GJH was 2.084 Å, and that between PM0076467 and
2XA0 was 2.001 Å. We have observed that 2XA0 BH3
cleft is more inclined towards the Bcl-XL structure. These
results revealed that the 2XA0 and 1GJH models were
associated with a transition state, as shown by their
differences in the BH3 cleft. These BH3 cleft differences
may be due to the large dynamic motion found in the region
connecting BH3 and BH1 (residues 108–135). This region
was found to be the most flexible one; it affects or
constricts the BH3 cleft.

Since secondary structure content predicts the stabil-
ity of a protein, we calculated the secondary structure
content and observed transitions in this flexible region
(Table 3). The region covering residues 108–111 was
observed as a turn in 1GJH or a helix in 2XA0 and
PM0076467, whereas the region covering residues 112–
114 was found to be a helix in 1GJH and a coil in 2XA0.
The structural features of the PM0076467 model show
more of a resemblance to the structural features of 2XA0
than 1GJH. Residues 126–135 correspond to a helix in
1GJH, PM0076467, and 2XA0, indicating the stability of

this region. Residues 108–116 represent the most impor-
tant and flexible region, and the one that is likely to be
responsible for most of the transitional behavior in the
BH3 cleft. We did not perform any mutational studies,
because in some cases it appeared that a residue mutation
near or at the active site increases the flexibility, thereby
decreasing the activity of the interacting site by disrupting
its rigid active-site geometry [90].

Structure and stability analysis

The average numbers of residues involved in secondary
structures were calculated by the DSSP program. The
average structure was observed to contain an alpha-helix
(94–104 residues), coils (57–68 residues), bends (24–44
residues), turns (2–19 residues), a beta-sheet (4–6 residues),
a beta-bridge (2 residues) and a 3-helix (3–8 residues)
(Fig. 7a). It is worth mentioning that the percentage of
bends in the simulated conformation deviates greatly from
the starting structure, but becomes stable after 12,000 ps
and is maintained up to 15,000 ps (Fig. 7b). This may be

Fig. 7 a Average secondary
structure contents along the tra-
jectory of Bcl-2. Note that they
increase from the contents of the
corresponding starting structure.
b Predicted secondary structure
assignment for Bcl-2 residues
along the 15,000 ps trajectory
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due to the fact that several coils are converted into bends
and beta-sheets in the FLD and the N-terminal region
during simulations, but no alpha-helix was observed. This
indicated that the FLD would probably only contain beta-
sheets, as shown by the whole simulation. The structure
assignment prediction for residues Ala45 to Ala60 in the
FLD region shows stable beta-strands (in red) and bends (in
green). This observation is in accord with the beta-strands
observed in the SM model, and indicates that beta-strands
are likely to exist in the native structure of the Bcl-2 FLD
region.

The solvent-accessible surface area (SASA) was calculated
(Fig. 8a and b), and this showed that both hydrophilicity and
hydrophobicity decreased and then equilibrium was attained
after 12,500 ps of simulation. The hydrophobic SASA was
found to be 77–83 nm2 and the hydrophilic SASA 52–56
nm2. In addition, the free energy of solvation was found to
cover a larger area than the total SASA (Fig. 8a). The

calculation of the average SASA (over time, per residue)
indicated that Pro40, His55, Pro59, Arg63, Arg68 and Gln73
had the greatest exposure to the solvent (Fig. 8b). The
residues Arg63 and Arg68 covered areas of 1.67 nm2 and
1.88 nm2 of the solvent and showed the highest hydro-
philicity. The hydrophobic residues Ala61, Ala76, Ala81 and
Val89 covered areas of 0.489265, 0.193879, 0.423293, and
0.314359 nm2; among these, Ala76 showed the highest
hydrophobicity (Fig. 8b). These hydrophobic residues likely
comprise a potent active site in the FLD for a ligand or
another protein due to its hydrophobicity.

The secondary and tertiary structural changes that occurred
during the whole simulation were predicted by the mean
smallest minimum distance matrix (Fig. 9a), which accurately
describes the native state of the protein. This can be obtained
from the matrix of native contacts. The maps derived from
these contacts contain essential geometric topological infor-
mation, and describe structural interaction patterns in the
protein [91, 92]. We observed the formation of contact maps
between the backbone residues, and large changes in the
FLD at different time scales (Fig. 9b, c and d). The formation
of new contacts between residues 35 and 80 and residues 75
and 110 (in the average/mean distance matrix) was observed
to stabilize the protein structure, and it helped to produce the
secondary structure conformation of the FLD. This also
suggests that the binding of FKBP38 and other interacting
proteins to the FLD probably takes place at this region.

It appears that the hydrogen bonds stabilize the protein
and have crucial role to play in protein folding [93–101].
The average number of intramolecular hydrogen bonds was
calculated in different simulations. The intramolecular
hydrogen bonds within the whole protein were found to
involve 296 donors and 584 acceptors in total (within a
cutoff distance of 0.35 nm and angle of 30°). The
intramolecular hydrogen bonds that formed within the
FLD (Table 4) show that Ala residues participate most
frequently in hydrogen bonding. The intramolecular hydro-
gen bonds (within the FLD) were categorized according to
whether they were between hydrophobic and hydrophilic,
hydrophobic and neutral group, or hydrophilic and neutral
group residues. Hydrogen bonding between hydrophobic
and hydrophilic group residues was observed for the
Val92N–Pro90O, Thr69N–Ala67O, Arg68N–Val66O,
Ala67N–Pro65O, Val66N–Asp64O, Asp64N–Ala61O,
Arg63N–Ala61O, Phe49N–Pro44O, Phe49N–Pro46O,
Ile48N–Pro46O, Ala43N–Pro39O, Ala43N–Pro40O,
Ala42N–Pro39O, and Ala42N–Pro40O bonds. Hydrogen
bonds between hydrophobic and hydrophilic group residues
were present inside the core and on the surface of the
protein, and so they would probably participate in the
stabilization of the FLD.

Besides intramolecular hydrogen bonding, salt bridges
(Table 5) were observed between oppositely charged

Fig. 8 a Calculated solvent-accessible surface area (SASA) during
the whole simulation, showing the hydrophobic, hydrophilic, and total
areas equilibrated at 15,000 ps. b The SASA per residue, displayed as
black peaks; the red line indicates the standard deviations

J Mol Model (2012) 18:1885–1906 1897



residues. These salt bridges, may have a stabilizing effect
on the overall structure of the Bcl-2 protein. This stabilizing
effect is mainly attributed to the Arg and Asp residues
present within the FLD. The residues Asp34, Asp64,

Arg63, and Arg68 were noted to be particularly important,
and are likely to be responsible for FLD stability. The
mutation of these residues would understandably decrease
the stability of the protein.

Fig. 9a–d Contact maps formed between the residues of Bcl-2, as calculated from the minimum distance matrix: a mean changes; b at 3 ps; c at
2001 ps; d at 5001 ps, for the whole simulation
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These results should help to enhance our knowledge of
the interplay of forces that lead to the stability of the FLD
through salt bridges and hydrogen bonding. All these
results suggest that the FLD naturally adopts a folded state
rather than a random coil structure.

Calculating the dipole moment in order to predict
the electrostatic behavior

Permanent electric dipole moments contribute to the
electrostatic forces (long-range forces) in biomolecules,
and play an important role in determining biomolecule

folding, structure, and properties. Alpha-helix conforma-
tions of proteins lead to large macro-dipoles that induce
strong electric fields [102]. The fluctuations of a protein’s
polar groups in response to conformational changes play a
key role in the folding of its structure and its binding
properties [103]. The total dipole moment of Bcl-2 was
evaluated (Fig. 10), and the result was found to be similar
to that observed for 2XA0 (221.10 D). We observed that the
differences in dipole moment direction (x, y and z) and the
average fluctuations were in accordance with the X-ray
structure (2XA0). Moreover, the 1GJH template displayed
the highest dipole moment (635.91 D), which indicates that
this structure has high overall rigidity and displays low
flexible strength and kinetics in its associations with small
molecules or proteins. This would also affect its anti-
apoptotic activity, which is reported to decrease with
structural rigidity [104]. This implies that 1GJH shows
completely different electrostatic behavior to 2XA0 due to
its large dipole moment from its charged residues, which in
turn indicates unfavorable charge–macro-dipole interactions
in the 1GJH template, although the interactions are
favorable for simulated structures. The dipole moment
analysis accurately characterized the active Bcl-2 models
along the trajectory, which further validated the use of our
MD simulations to obtain the near-native or native
conformation.

Essential dynamics

Molecular dynamics focuses on internal protein motions,
and the correlation of the measured flexibility based on
ordered parameters with the configuration entropy [44].

Fig. 10 Total dipole moment (blue) versus time, showing the
electrostatic behavior during simulations

Table 4 Intramolecular hydrogen bonds within the FLD

Donor Acceptors

Thr74N Pro71O, Leu72O

Asp64N His55O, Ala61O, Ser62O

Arg63N His55O, Ala61O

Ser62N Pro59O, Ala60O

Ala61N His58O, His59O

Ala60N Ile48O, His58O

His58N Ser50O, Thr56O, Ala61O, Ser62O

Thr56N Gln52O, Pro53O, Gly54O, Ser62O

His55N Gln52O, Pro53O

Gly54N Ala38O, Pro39O, Pro40O, Gln52O

Gln52N Ser50O, His55O, Thr56O, Pro57O

Ser51N Ala42O, Pro44O, Phe49O

Ser50N Gly48O, Pro57O

Phe49N Pro44O, Ala45O, Pro46O, Gly47O

IlE48N Ala45O, Pro46O

Ala43N Pro39O, Pro40O, Gly41O, Ser51O

Ala42N Pro39O, Pro40O, Ser51O

Gly41N Pro39O, Ser51O

Ala38N Val35O, Gly36O

Positive Negative

Arg12 Asp34

Arg63 Asp102

Arg63 Asp64

Arg68 Asp102

Arg63 Asp34

Arg98 Asp34

Arg207 Asp64

Arg68 Asp64

Arg98 Asp64

Arg63 Glu29

Arg68 Glu29

Lys17 Asp34

Lys17 Asp64

Table 5 Residues that form salt
bridges in the FLD region
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Therefore, we applied principal component analysis to the
Bcl-2 trajectory in order to identify large-scale collective
motions of atoms and predict the flexible behavior of the
FLD and the BH3 cleft.

The collective (correlated) motions of the atoms in the
protein are key to its biological function [90, 105]. This
study revealed that the structures underlying the atomic
fluctuations (corresponding to B-factors) occur due to
correlated interactions between Bcl-2 atoms. Correlated

motions at the atomic level helped us to predict if the
overall fluctuations of Bcl-2’s C-α atoms in the system
have functional or biophysical relevance. In addition, these
atomic fluctuations describe the flexible behavior of the
Bcl-2 protein. The covariance matrix captured the degree of
collinearity in atomic motions for each pair among 207
residues. Cross-correlations between residue fluctuations
helped us to identify highly correlated, moderately corre-
lated, and anticorrelated regions (Fig. 11a). The covariance
621×621 symmetric matrix (Fig. 11a) shows that the large
group of atoms in the FLD moves in an anticorrelated
manner in relation to other domains. Using this matrix, we
detected that the residues 40–75 (in the FLD) are highly
correlated (red color), and that there is a weak atomic
correlation (light red) between residues 105–118 (in-
between the BH3 and BH1 domains) and residues 40–55
(in the FLD). This proved that the FLD and the BH3 cleft
may play important roles in the regulation of Bcl-2 activity.
These results indicate that any change in the FLD would
likely have some effect on the BH3 cleft, as observed in the
binding of p53 to FLD and the consequent decreased
interaction of Bcl-2 with Bax through its BH3 cleft [6].
These results are in accordance with our superposition
results (Table 3 and Fig. 6c). Hence, the results indicate that
most of the internal motions of the Cα atoms of Bcl-2
protein are confined within a subspace with very small
dimensions.

The diagonalization of this matrix leads to the
generation of eigenvectors and eigenvalues (Fig. 11b).
Each eigenvector describes a collective motion performed
by particles, whereas the eigenvalues indicate how much a
particular atom participated in the motion [106]. The
calculated eigenvalues and cumulative contribution in the
collective motion were calculated for the first 149
eigenvectors. 80% of the motion of the system was
described by the first five eigenvectors, which explained
the overall positional fluctuations contributing to the
largest motions (Fig. 11b). Similarly, the Cα atom
displacements showed that the largest motions are con-
fined to the first five eigenvectors and producing large
motions in the FLD and the BH3 cleft.

The eigenvectors describe the essential degrees of
freedom (containing large-scale global motions), which
are vital for protein function, and represent the part of
conformational space called essential subspace, whereas
near-constrained subspace refers to less interesting local
fluctuations or Gaussian distributions [56, 105, 107–111].
The two-dimensional graphs of eigenvector 1 versus
eigenvector 2, eigenvector 2 versus eigenvector 3, eigen-
vector 9 versus eigenvector 10, and eigenvector 20 versus
eigenvector 25 show the protein motion in conformational
space (Fig. 12a, b, c and d). No fluctuations or motions
were observed along the 25th eigenvector subspace for the

Fig. 11 a The covariance matrix shows anticorrelated and correlated
motions between atoms. Red indicates that two atoms move together
(correlated motions); blue indicates movement in opposite directions
(anticorrelated motions). The color intensity indicates the amplitude of
the RMS fluctuations (see the color bar). b Positional fluctuations,
indicating the eigenvalues and the cumulative contributions along 149
eigenvectors. Eigenvalues fluctuations shown in decreasing order of
magnitude and cumulative contribution fluctuation by increasing order
of magnitude, as obtained from the Cα coordinate covariance matrix
from a solvent simulation
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Bcl-2 protein. The projections on eigenvectors 1 and 2
(Fig. 12a) show random walk and large collective motions
in this essential subspace, which are observed to be relevant
to protein function. The shapes of the projections were

observed to be mutually independent (oval distribution) for
projections on eigenvectors 9 and 10 (Fig. 12c) and 20 and
25 (Fig. 12d). These physically constrained subspaces are
much less important for protein function, and are referred to
as Gaussian fluctuations (irrelevant local fluctuations).

The motions in the essential subspace are anharmonic
diffusional motions of the protein, which randomly moves
from one local minimum on the potential energy surface to
the other. These motions were identified by the scores
attained from extreme structure projections for eigenvectors
1–10 along the 15 ns MD trajectory (Table 6). The dynamic
behavior of the protein is predicted by essential dynamics
projections along the trajectory [112]. The projection of a
trajectory onto the eigenvectors gives an indication of the
sampling of conformational space. These spaces were
obtained by the average local minimum and maximum
scores describing the largest motions along the first
eigenvector corresponding to extreme structure with respect
to time. These scores, referred to as projections, show the
motion along the axis, the total extent of the motion, and
they predict the stability of the protein. The first eigenvec-

Fig. 12a–d Two-dimensional projections of the Bcl-2 trajectory on eigenvectors a 1 and 2, b 2 and 3, c 9 and 10, and d 20 and 25

Table 6 Minimum and maximum energy scores of the projections
along the ten eigenvectors, as calculated from the covariance matrix

Eigenvectors Minimum Maximum

Scores Time (ps) Scores Time (ps)

1 −26.898708 99.0 8.427352 9450.0

2 −8.904247 4695.0 11.013029 558.0

3 −11.996984 51.0 7.409557 1824.0

4 −6.242445 2666.0 5.714304 1068.0

5 −10.428877 6.0 8.632933 1101.0

6 −4.668922 531.0 5.037412 78.0

7 −7.668024 45.0 5.500106 528.0

8 −4.987044 11406.0 3.829373 9309.0

9 −5.176743 465.0 5.057445 1131.0

10 −3.973459 8358.0 3.590667 582.0
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tor describes the largest motions, which take the longest
time to converge during sampling. Our aim was to analyze
the essential subspace motions and determine the residues
that contribute to such motions, especially in the BH3 cleft.
Therefore, the ten extreme structures extracted along the
first eigenvector allow us to visualize the motion along the
axis and the total extent of the motion, which are largely
provided by the BH3 cleft (residues 108–135) (Fig. 13).
These results provide a plausible reason for the difference
in the BH3 clefts of the 1GJH and 2XA0 models.

Summary

In contrast to other members of the Bcl-2 family, the Bcl-2
and Bcl-XL proteins include a large region known as the
FLD. Our sequence and structural analysis results indicate
that these proteins do not have the same FLD regions. The
whole structure of the Bcl-2 protein has not yet been
determined experimentally; only the isoform NMR struc-
ture (1GJH) has been solved (excluding the FLD). The
structural features of the binding sites in the FLD are

unknown, and no information is available on the structural
changes to the Bcl-2 protein induced by the binding of
other proteins to the FLD. Mutational and protein interac-
tion studies have identified the importance of the FLD in
the Bcl-2 protein, but the structural changes induced by
FLD are still unknown. In view of the biological impor-
tance of the FLD, we focused our attention on creating a
model of the complete Bcl-2 protein that would likely help
us to get a better understanding of the regulation of Bcl-2
anti-apoptotic activity, which is mediated through FLD.

The structure of the complete Bcl-2 protein was
elucidated by homology modeling. MODELLER 9v7
produced a better model (MOD) using the manually aligned
1GJH template than Swiss-Model. Obtaining an accurate
Bcl-2 homology model is expected to reduce the errors that
occur when performing protein–protein interaction (dock-
ing) and mutagenesis studies. Further, the energy-
minimized 3D model of MODLOPT was observed to be
an improved-quality model, and to have a better overall
quality factor than the other models (CW and MOD). It
could therefore be used for further computational studies.
The presence of many coils in the FLD structure is
accounted for by the presence of 19 Pro residues, which
act as alpha-helix and beta-sheet breakers [113]. We also
observed that the presence of a high number of Pro residues
in the FLD disrupts the continuity of its structure, leading to
an unstructured conformation. Thus, in order to predict the
FLD folding, MD simulation of the energy-minimized
model of MODLOPT was performed, which revealed that
the Bcl-2 loop is very flexible, which may play a role in the
structural diversity of FLD models. However, we observed
that FLD stability was largely due by the presence of the
large number of Pro residues in the FLD. These take part in
hydrogen bonding between hydrophilic and hydrophobic
residues, and were observed to form more stable bonds than
those between hydrophilic and neutral group residues,
hydrophobic and neutral group residues, or vice versa
(Table 4). The residues Arg63 and Arg68 contributed the
highest hydrophilicities to the SASA, and are also likely to
play an important role in providing stability to the FLD by
forming salt bridges. The average structure of Bcl-2 was
extracted from the trajectories of MD simulations, and
further validated by PROCHECK, WHAT CHECK, ERRAT
and ProSA-web software. Our study indicates that the
average structure can be considered a near-native confor-
mation, as it shows good overall quality in comparison with
other models. The MD-simulated average model was
validated by several programs and was found to have the
best 3D conformation, with improved folding of the
unstructured flexible loop—a prerequisite for understanding
the mechanism of mutation and the interaction of proteins
with the FLD. The average structure resulting from the
trajectory could vary greatly, so conformation clusters

Fig. 13 BH3 cleft motion shown by ten extreme frames along the first
eigenvector. All extreme structures were depicted using Pymol. The
motions of atoms were observed to cause structural changes from the
first frame (green) to the last frame (orange). Arrows indicate the
direction of motion in the BH3 cleft; the region containing residues
108–135 shows the largest atomic motions
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with the same RMSD were identified by g_cluster. The
ensemble of structures of Bcl-2 can also be used to study
the structural basis for its activation and regulation upon
binding with other proteins at the FLD, considering its
improved quality as compared to structures already
available in the database. The electrostatic behavior of
the whole MD-simulated trajectory was found to agree
with the X-ray structure (2XA0), indicating the authen-
ticity of the simulations. The quality of the model
produced should aid attempts to make reliable predic-
tions of the bioactive FLD’s antagonists/agonists via in
silico analysis.

Further, PCA analysis was used as a tool to obtain
information about essential subspaces. PCA is very useful
for predicting the directions of motion of MD-simulated
structures in the essential subspace. This helped us to
predict the unfolding mechanism behind the conformational
and dynamic properties of the BH3 cleft, for which great
conformational variability was observed. PCA also helped
us to identify motions that are crucial to protein function
(Fig. 13) in the essential subspace shown by the first
eigenvector (Table 6). This study also indicates that the
identification of representative subspaces from the PCA is
useful for elucidating the structure–function relationship for
the FLD.
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Abstract Phosphatidylinositol 3-kinase α (PI3Kα) is a
promising target for anticancer drug discovery due to its
overactivation in tumor cells. To systematically investigate
the interactions between PI3Kα and PIK75 which is the
most selective PI3Kα inhibitor reported to date, molecular
docking, molecular dynamics simulation, and ensuing
energetic analysis were utilized. The binding free energy
between PI3Kα and PIK75 is −10.04 kcal•mol−1 using
MMPBSA method, while −13.88 kcal•mol−1 using
MMGBSA method, which is beneficial for the binding.
The van der Waals/hydrophobic and electrostatic interac-
tions play critical roles for the binding. The binding mode
of PIK75 for PI3Kα is predicted. The conserved hydro-
phobic adenine region of PI3Kα made up of Ile800, Ile848,
Val850, Val851, Met922, Phe930, and Ile932 accommodates
the flat 6-bromine imidazo[1,2-a]pyridine ring of PIK75.
The 2-methyl-5-nitrophenyl group of PIK75 extends to the
P-loop region, and has four hydrogen-bond arms with the
backbone and side chain of Ser773 and Ser774. And the
distinct conformation of the P-loop induced by PIK75 is
speculated to be responsible for the selectivity profile of
PIK75. The predicted binding mode of PIK75 for PI3Kα

presented in this study may help design high affinity and
selective compounds to target PI3Kα.

Keywords Molecular dynamics simulation .

Phosphatidylinositol 3-kinase α

Introduction

Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases
that phosphorylate the 3-hydroxyl of phosphatidylinositol,
generating phosphatidylinositol 3-phosphate, phosphatidy-
linositol 3,4-bisphosphate, and phosphatidylinositol 3,4,5-
trisphosphate that act as second messengers. The resulting
second messengers interact with pleckstrin-homology- (PH-)
domain-containing proteins, such as the Akt serine-threonine
kinases, eliciting a series of signal transduction events that
lead to DNA synthesis and cell proliferation via the activation
of the MDM2 and mTOR (mammalian target of rapamycin)
pathways [1, 2]. There are three major classes of PI3Ks,
namely Class I, II and III, based on their sequences and
substrate specificities. Among three distinct PI3K subfami-
lies, only the class I PI3Ks are capable of catalyzing the
conversion of phosphatidylinositol 4,5-bisphosphate (PIP2)
to phosphatidylinositol 3,4,5-trisphosphate (PIP3). Class I
PI3Ks can be further divided into IA and IB subclasses. The
class IA subfamily contains three isoforms, namely, PI3Kα,
β and δ activated by tyrosine kinases, antigen and cytokine
receptors. The class IB subfamily contains only one isoform,
namely, PI3Kγ activated byG-protein-coupled receptors [3, 4].
PI3Kα is a heterodimeric protein consisting of a catalytic
p110α subunit and a p85 regulatory subunit. The p110α
subunit contains N-terminal adaptor-binding (ABD), Ras-
binding, C2, helical and catalytic kinase domains. The ABD
domain was proposed to be responsible for p85α binding, and
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the C2 domain for cellular membrane binding [5]. PI3Kα is
activated by receptor tyrosine kinases (RTKs) such as
endothelial growth factor receptor (EGFR), human epidermal
growth factor receptor 2 (HER2), and vascular endothelial
growth factor receptor (VEGFR). The activated p110α
catalytic subunit catalyzes the conversion of the PIP2 to
PIP3 [1, 2].

The implication of PI3Kα in cancer was confirmed by
the observation that PI3Kα is frequently mutated in some
human cancers [6, 7]. Recently, Liu et al. [8] reported the
incidence of tumors with PI3Kα mutations in a much larger
population: breast, 27% (468/1766); endometrial, 24%
(102/429); colon, 15% (448/3024); upper digestive tract,
11% (38/352); stomach, 8% (29/362); pancreas, 8% (29/362);
and ovarian, 8% (61/787). And the mutations constitutively
confer a marked increase in its kinase activity. In addition,
under normal physiological conditions, PIP3 levels are tightly
regulated by the phosphatase and tensin homologue protein
(PTEN). The inactivation of PTEN by mutations in tumors
leads to the accumulation of PIP3 [9]. Therefore, PI3Kα has
become a potential and attractive target for anti-tumor
therapy and hence spark great interest in the discovery and
development of inhibitors. However, Due to the PI3Kα and
PI3Kγ isoforms share∼35% sequence identity, and the
catalytic kinase domains sequence identity is∼43.5%, the
sequence identity makes it more challenging to find
inhibitors with high selectivity PI3Kα and PI3Kγ. In
Hayakawa et al.’s work [10], PIK75, sulfonylhydrazone
substituted imidazo[1,2-a]pyridines derivative as shown in
Fig. 1, inhibits PI3Kα and PI3Kγ with IC50 values of 0.0003
and 0.040 μM, respectively, which is a selective PI3Kα
inhibitor up to now.

In our previous work, we have reported the pharmaco-
phore and docking study of PI3Kα inhibitors based on X-
ray crystal structure of human PI3Kα/p85α complex [11].
Several other studies based on X-ray crystal structures or
homology models built on the PI3Kγ structure using
homology modeling have been conducted [12–14]. All
these studies are based on one conformation from the X-ray

crystal structure or one homology model. However, protein
flexibility plays an important role in molecular recognition.
Recently, in Han and Zhang.’s work [15] the residue Trp780
and Asn782 in PI3Kα were suggested to confer the
isoform-specific selectivity between PI3Kα and PI3Kγ to
PIK75 based on the combination of docking and molecular
dynamics simulation. Sabbah et al. [16] reported the PI3K
inhibitor interactions with the PI3Kα H1047R mutant.
However, in these two studies, to study the effect of protein
flexibility on ligand docking, they carried out molecular
dynamics (MD) simulations on the wild-type and mutant
PI3Kα and then docked the ligands to the protein
conformations built from molecular dynamics simulations
at the well-equilibrated snapshot, but no molecular dynamics
simulations on the complex of the ligands and PI3Kα were
directly carried out. However, protein-ligand recognition is an
induced fit process. It has become increasingly clear that it is
critical to accurately model ligand-induced protein movement
in order to obtain high enrichment factors. Therefore,
molecular dynamics simulation on the complex of ligand
and protein becomes very valuable since it takes into account
of molecular flexibility and induced fit.

To identify the interactions between PI3Kα and its
inhibitor, this work is to systematically evaluate the inter-
actions between PI3Kα and PIK75 computationally through
molecular docking andmolecular dynamics simulation. Based
on theMD ensemble structures, we calculated the binding free
energy and binding energy decomposition over the course of
the trajectory and by residue by means of molecular
mechanics (MM)-Poisson-Boltzmann (generalized Born) sur-
face area (PB(GB)SA) approach. We also analyzed the
accumulated hydrogen bond distribution and binding energy
decomposition by residue, which revealed the hotspot
residues of PI3Kα-PIK75 binding. Finally, according to our
results, the binding mode of PIK75 for PI3Kα was predicted,
which will help design new PI3Kα inhibitor.

Materials and methods

Preparation of PI3Kα and its inhibitor PIK75

The X-ray crystal structures of PI3Kα (PDB id: 2RD0) was
retrieved from the RCSB Protein Data Bank. The lost loop
zones of the PI3Kα X-ray structure were generated and
refined by ab initio refinement of the loop in the loop refine
module of Modeler 9v5. The overall 2RD0 was subse-
quently subjected to 500 iterations of energy minimization
with backbone atoms being restrained using the OPLS2005
force field in the MacroModel module in the Schrodinger
software suite. The PI3Kα inhibitor PIK75 was built using
the Maestro Build panel and minimized by the MacroModel
program using the OPLS2005 force field.

Fig. 1 Chemical structure of
PIK75
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Docking simulations

First, the Gasteiger charges were applied to the PI3Kα and
the PIK75 structures. Then their non-polar hydrogens were
merged so that these hydrogen structures were not
considered in the docking calculations. AutoDock Tools
1.5.4 [17] was used to set up rotatable bonds of PIK75.
Second, energy affinity maps for PIK75’s atom types,
desolvation energies, and electrostatic potentials were pre-
calculated using AutoGrid4. Third, the binding site on the
PI3Kα was defined by a grid system of (x, y, z)=(46-point,
46-point, 52-point) with a grid Spacing of 0.375 Å that
originated at the center of the catalytic kinase domains.
Finally, docking simulations were carried out via Autodock4
[18] with a rigid receptor structure, which allowed for
flexibility in the ligand structure using a Lamarckian genetic
algorithm (LGA) in combination with a hybrid local and
global search for new docking conformations. The Lamarck-
ian genetic algorithm was applied to the following protocol:
trials of 100 runs, energy evaluations of 50 000 000,
maximum number of generations of 30 000, population size
of 200, a mutation rate of 0.02, a crossover rate of 0.8, and
an elitism value of 1. The docking results were evaluated by
sorting the binding free energy predicted by docking
conformations. Docked conformations were clustered using
a tolerance of 1.5 Å root-mean-square deviations (rmsd).

MD simulations of the PI3Kα/PIK75 complex

The PI3Kα receptor coordinate was concatenated with the
docked coordinates of PIK75 taken from the docking
simulation. To generate the topology and parameter files
for PIK75, firstly ab initio calculation was carried out at the
Hartree-Fock level of theory with 6–31+G* basis set using
Gaussian03 suite [19]. The computed electrostatic potential
(ESP) was then read in by the ANTECHAMBER [20]
protocol of the Amber9 suit [21] for the RESP charge
fitting and the atom equivalence treatment in conjunction
with the generalized Amber force field (GAFF) [22],
subsequently topology and parameter files were generated
for PIK75. The topology and parameter files of PIK75 were
included in the Supporting information.

All simulations were conducted by using the Amber9
program. Two parameter sets were used, the biomolecular
force field ff03 for the protein and general AMBER force
field (GAFF) for the organic small molecule. The PI3Kα/
PIK75 complex was soaked in a truncated octahedron box
of TIP3P water molecules with a margin of 15 Å along each
dimension. Ten Na+ ions were added to neutralize the
system. In summary, the system consists of PI3Kα, PIK75,
10 Na+ ions and 51082 water molecules. The covalent
bonds involving hydrogen atoms of the complex system
were constrained using the SHAKE option, and the particle

mesh Ewald (PME) method [23] was used to model the long-
range electrostatic interactions using the parallel sander
protocol on 16 cores of the IBM opteron cluster in National
High Performance Computing Center (Xi’an). The system
was then energy minimized with a 100 cycle steepest descent
method, which was followed by a 1900 cycle conjugate
gradient method. The temperature of the system was elevated
from 100 K to 300 K over 50 ps via the Berendsen
temperature coupling schemes in Amber using a TAUTP of
2.0 ps (time constant for heat bath coupling). The pressure of
the system was equilibrated for 200 ps using the Berendsen
pressure coupling schemes in Amber using a TAUP 2.0 ps
(pressure relaxation time). Finally, a 20 ns production run was
carried out and the trajectory of the complex structure was
written out every 10 ps in order to collect 2000 snapshots.

Binding free energy calculations

The binding free energies were calculated using the MMPB
(GB)SA method as implemented in Amber9. MMPB(GB)SA
computes the binding free energy by using a thermodynamic
cycle that combines the molecular mechanical energies with
the continuum solvent approaches [24]. The binding free
energy was calculated according to the equation:

ΔGbind ¼ Gcomplex � GPI3Ka � GPIK75; ð1Þ
where Gcomplex, GPI3Kα and GPIK75 are the free energies of
the complex, the protein PI3Kα and the ligand PIK75,
respectively. The free energy of each term was calculated as a
sum of the three terms:

G ¼ EMM þ Gsol � TS; ð2Þ

where EMM is the molecular mechanics energy of the
molecule expressed as the sum of the internal energy (bonds,
angles and dihedrals) (Eint), electrostatic energy (Eele) and van
der waals term (Evdw) computed using an Amber9 force field:

EMM ¼ Eint þ Eele þ Evdw: ð3Þ
Gsol accounts for the solvation energy which can divided

into the polar (GPB(GB)) and nonpolar part (GNP).

Gsol ¼ GPBðGBÞ þ GNP ð4Þ
The polar part (GPB(GB)) accounts for the electrostatic

contribution to solvation and was calculated using a Poisson-
Boltzmann (PB) model and a generalized-Boltzmann (GB)
model at igb=5 [25] via Amber9’s pbsa protocol [26] with a
PARSE charge/radii set, a 1.4 Å solvent probe radius, and a
0.5 Å grid spacing. The solvent’s dielectric constant was set
to 80, while the dielectric constant was set to 1 in the
protein’s interior.

The nonpolar part (GNP) accounts for the nonpolar
contribution to solvation and was approximated by relating
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it to the solvent accessible surface area (SASA) with
coefficient of 0.0072 [27].

The entropy contribution (– TS) arising from changes in
the degrees of freedom (translational, rotational, and
vibrational) of the solute molecules was included applying
classical statistical thermodynamics. Entropy contribution
was calculated using an nmode protocol with a distance
dependent dielectric constant [28].

After including all the energetic terms for PI3Kα, PIK75
and the complex Eq. 1 can be reorganized and expressed as:

ΔGbind ¼ ΔEMM þΔGsol � TΔS; ð5Þ
where ΔEMM, ΔGsol and ΔS are simply the change in the
internal energy, the solvation energy and the entropy between
PI3Kα, PIK75 and the complex. Binding free energy was
calculated using 1400 snapshots sampled with ptraj program
every 10 ps; these snapshots cover the last 14 ns of the MD
trajectory. Due to the high computational demand, the entropy
calculations were performed only for every tenth one of the
1400 snapshots (140 snapshots in total) described above.

Free energy decomposition

To provide further insight into the changes that occur in the
energetic profile of the interaction over the course of the
trajectory, we extracted and plotted the components of the
binding energy with respect to time. Notice that this energy
will be called hereafter as binding energy (ΔEbind) and not
binding free energy (ΔGbind) since it does not compute
average values but just single decomposition in a conforma-
tion. Additionally the entropy was not considered because
the entropy calculations were performed only for every tenth
one of the 1400 snapshots. So the binding energy (the
enthalpy, ΔEbind) was calculated according to the equation:

ΔEbind ¼ ΔEMM þΔEsol: ð6Þ

In addition, in order to identify the residues that
contribute the most to the calculated overall binding energy,
we used a residue-by-residue decomposition protocol
embedded in the GB solvent model based in MMGBSA.
The GB model is an alternative to the PB solvation model
that uses a pair-wise analytical approximation of the PB
model. Using this model the calculated energies can be
further broken down into individual residue’s contributions.

Results and discussion

Docking PIK75 to the crystal structure of PI3Kα

Due to no inhibitor-bound PI3Kα crystal has been solved,
we applied docking experiments to obtain the inhibitor-

bound complex for further study. Like other typical kinases,
the ATP-binding pocket of PI3Kα is located between a
mostly-helical carboxy-terminal (C) lobe and an amino-
terminal (N) lobe of the kinase domain. All known PI3K
inhibitors have extensive hydrophobic contacts with the
residues around the adenine-binding region, and make
backbone hydrogen-bond interactions with the hinge
region, which is the short polypeptide connecting the C-
and N-terminal lobes. Therefore, according to Knight’s
work [29], in our docking experiments, we define the poses
with hydrophobic contacts with the residues around the
adenine-binding region and the hydrogen bond between the
nitrogen atom of the imidazole ring of PIK75 and the
backbone of the hinge region as the correct poses.

In our docking experiment, 100 docked conformations of
PIK75 for PI3Kα were obtained and clustered to 36 clusters
using a tolerance of 1.5 Å rmsd. The lowest binding free
energy among 100 docked conformations is −9.25 kcal•mol−1,
but this cluster only includes two docked conformations. The
most populated cluster has 20 conformations, and its lowest
binding free energy among 20 conformations is −8.71
kcal•mol−1. The two poses of PIK75 for PI3Kα, named as
pose-A and pose-B respectively, are shown in Fig. 2. As seen
from Fig. 2, the orientations of the imidazo[1,2-a]pyridine
moiety of pose-A and pose-B are very different. The imidazo
[1,2-a]pyridine moiety of pose-A is out of the cavity which is
very well conserved in all PI3K isoforms and coincides with
the adenine-binding region. Pose-B has the critical hydrogen-
bonding interaction between the nitrogen atom of the
imidazole and the nitrogen atom of backbone of Val851 in
PI3Kα, and the imidazo[1,2-a]pyridine moiety inserts deeply
into the cavity coinciding with the adenine-binding region.
This binding orientation of the imidazo[1,2-a]pyridine
moiety is consistent with the results of Han and Zhang
[15]. Additionally, the cluster including pose-B is the most
populated cluster, 20 out of 100 conformations. Therefore,
pose-B was selected as the initial conformation of PIK75 for
molecular dynamics simulation of PIK75-bound PI3Kα.

Molecular dynamics simulation of PIK75-bound PI3Kα

To assess the stability of the MD trajectories, the backbone
atoms root-mean-square deviation (rmsd) of catalytic kinase
domain of PI3Kα and the heavy atoms rmsd of PIK75 from
the starting structure of PI3Kα and PIK75 obtained from
molecular docking above have been plotted in Fig. 3. As
seen from Fig. 3, during the first 3.5 ns, a sharp rise is
observed and then the function keeps stable and the rmsd
values of PI3Kα converge to a lower value about 2.3 Å.
The rmsd of PIK75 has an about 2 Å fluctuation at about
6.0 ns of the simulation then is stable in the rest of the
simulation. As can be seen from Fig. 3, the simulation
reaches equilibrium within 6.0 ns.
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The calculated relative binding free energy and contribu-
tions of van der Walls, electrostatic interaction and solvation
energy using the single trajectory MMPB(GB)SA method are
listed in Table 1. As seen from Table 1, the contributions of
the molecular mechanics part (ΔEMM) and the solvation part
(ΔGpb_sol, ΔGgb_sol) are calculated to be −55.52 kcal•mol−1,
22.11 kcal•mol−1 and 18.27 kcal•mol−1, respectively. Adding
the entropy contribution (TΔS, −23.37kcal•mol−1) calculated
by nmode protocol, the binding free energy (ΔGbind)
between PI3Kα and PIK75 is −10.04 kcal•mol−1 using
MMPBSA method, while −13.88 kcal•mol−1 using
MMGBSA method, which is beneficial for binding and is
good agreement with Han and Zhang’s value −11.24
kcal•mol−1 (or −12.99 kcal•mol−1) calculated by the formula

ΔG=−2.303RT log ki [15]. And the agreement does support
the physical relevance of the model and suggest that the
decomposition analysis below is meaningful. Therefore, this
PI3Kα and PIK75 complex formation exemplifies a classical
favorable reaction in solution where the increase of the
stability produced by the formation of the complex overcomes
the cost of the entropy and desolvation of protein and ligand.

From an energy component point of view, the PI3Kα/PIK75
complex formation leads to strongly favorable Coulombic
interactions (ΔEele, −16.49kcal•mol−1), opposed by disfavor-
able contributions due to the polar part of solvation free
energy (ΔGpb, 27.82kcal•mol−1; ΔGgb, 23.98kcal•mol−1).
So the total electrostatic contribution is 11.33 kcal•mol−1

using PB model, while 7.49 kcal•mol−1 using GB model,
and thus disfavors complex formation. And the complex

Fig. 3 RMSD of the backbone atoms of the catalytic kinase domain
of PI3Kα (a) and the heavy atoms of PIK75 (b)

Fig. 2 Two docked conforma-
tions of PIK75 for the X-ray
crystal structures of PI3Kα.
Hydrogen bonds are dashes

Table 1 Energy components and binding free energy for the PI3Kα/
PIK75 complex

Mean(kcal·mol−1) Std(kcal·mol−1)

ΔEele −16.49 5.63

ΔEvdw −39.03 3.62

ΔEMM −55.52 6.69

ΔGpb_sur −5.71 0.37

ΔGpb 27.82 6.02

ΔGpb_sol 22.11 5.77

ΔGgb_sur −5.71 0.37

ΔGgb 23.98 6.35

ΔGgb_sol 18.27 6.10

ΔHpb −33.41 9.60

ΔHgb −37.25 8.89

TΔS −23.37 14.53

ΔGbind(pb) −10.04
ΔGbind(gb) −13.88
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formation also leads to favorable van der Wales interactions
(ΔEvdw, −39.03 kcal•mol−1), added by favorable contribu-
tions due to the non-polar part of solvation free energy
(ΔGpb_sur, ΔGgb_sur, −5.71kcal•mol−1). So the total hydro-
phobic interaction contribution is −44.74kcal•mol−1 and thus
favors complex formation. Therefore, it is concluded that both
the electrostatic and van der Waals/hydrophobic interactions
are important for binding. These results suggest that a
potential PI3Kα inhibitor should be designed to interact with
PI3Kα by the stronger electrostatic and van der Waals/
hydrophobic interactions which can increase the contribution
of molecular mechanics. Additionally, this inhibitor should be
a more rigid one, because it might reduce the entropy lost and
improve the affinity.

Decomposition of the binding energy, ΔEbind,
over the course of the trajectory

In order to gain an insight into the factors that may drive
the formation of the PI3Kα/PIK75 complex, the plot of the
decomposition of the binding energy (ΔEbind) into the
molecular mechanics (ΔEMM) and solvation (ΔEsol) parts
is undertaken, see Fig. 4a-b. In the energy plot, three stages
can be identified as a consequence of the different energy
patterns of ΔEbind, ΔEMM and ΔEsol at specific trajectory
regions. Stage I, which is called preparation stage, is

characterized by an overall stabilization of all parts and it
lasts approximately until 6.0 ns. In stage II, from 6.0 ns to
12.5 ns, although the molecular mechanics energy (ΔEMM)
decreases and the solvation energy (ΔEsol) increases, the
binding energy (ΔEbind) is stable and approximately equal
to that of stage I. In stage III, the last 7.5 ns, the binding
energy is lower than that of stage I and II, which is the
global minimum of the binding energy over the course of
the trajectory. As seen from Fig. 4a-b, the favorable
molecular mechanics energy component and the unfavorable
solvation energy component offset each other in all of stages.
And the molecular mechanics energy makes the prominent
contribution to the binding energy. Especially, from stage II to
III, the drop of the molecular mechanics energy where the
solvation energy is relatively stable makes the drop of the
binding energy.

Therefore, the decomposition of the molecular mechanics
energy (ΔEMM) as a crucial part of ΔEbind into the
electrostatic (ΔEele), van der Waals (ΔEvdw) and internal
(ΔEint) can contribute to clarify which kind of interaction
causes the shift of the molecular mechanics energy. As seen
from Fig. 5, van der Waals interaction steadily contributes to
the molecular mechanics energy over the course of the
trajectory, while electrostatic interaction is positively corre-
lated with the molecular mechanics energy. So this result
suggests that the electrostatic term makes the prominent
contribution to the molecular mechanics energy.

As well known, in most docking programs, the number
of H-bonds is explicitly taken into account in the scoring
function. However, in MD simulation this H-bond contri-
bution is not explicitly calculated by default because H-
bond is included to electrostatic interaction as a particular
aspect of electrostatic interaction.

So to investigate the hydrogen bonding interaction
between PI3Kα and PIK75 in detail, the hydrogen bonding
interactions were clustered based on PIK75, see Table 2. As
seen from Table 2, the hydrogen bond between the nitrogen
atom of the imidazole of PIK75 and the nitrogen atom of
backbone of Val851 in PI3Kα is very stable in all of three

Fig. 4 Evolution of ΔEbind decomposition according to ΔEbind=
ΔEMM+ΔEsol (a) MMPBSA (b) MMGBSA

Fig. 5 Evolution of ΔEMM decomposition according to ΔEMM=
ΔEint+ΔEele+ΔEvdw.
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stages, which agrees with Ming Han and John Z. H.
Zhang’s work [15] and suggests that this hydrogen bond
plays a very crucial role in the binding of PI3Kα and
PIK75. Three hydrogen bonds, which are between two
oxygen atoms of nitro of PIK75 and the oxygen atom of
side chain of Ser774, the nitrogen atom of backbone of
Ser773 and the nitrogen atom of backbone of Ser774, are
not observed in stage I and II but are formed in all of stage
III, and the oxygen atom of side chain of Ser773 forms a
hydrogen bond with one oxygen atom of nitro of PIK75 in
the last about 3.0 ns of stage III, which can account for the
drop of the molecular mechanics energy and the binding
energy from stage II to stage III and is very well beneficial
for the binding. Additionally, the oxygen atom of sulfuryl
of PIK75 forms a hydrogen bond with the nitrogen atom of
Gln859 in the starting of stage III, then the nitrogen atom of
Thr856 in the last of 5.5 ns of stage III, which further helps
the binding.

Therefore, these results above suggest that both the van der
Waals/hydrophobic and electrostatic interactions are important
for the binding. Especially hydrogen bond interaction is a
crucial factor for the binding and responsible for the change of
the binding energy directly.

Decomposition of binding energy on a per-residue basis

In order to examine the residues contribution to the whole
binding, the binding energy (the binding enthalpy) decom-
position method by residue was used. As seen from Fig. 6,
the contribution of individual residue to binding varies in
the range of +0.3 to −6.0 kcal•mol−1. The significant
residues to binding are mainly located in two regions, the
conserved hydrophobic region of PI3Kα made up of
Ile800, Tyr836, Ile848, Val850, Val851, Met922, Phe930,
and Ile932 and the P-loop (residues Ile771-Leu779) region
at the active site cleft of PI3Kα. The contribution of the
conserved hydrophobic region is −0.83 kcal•mol−1 of
Ile800, −1.03 kcal•mol−1 of Tyr836, −0.83 kcal•mol−1 of
Ile848, −2.47 kcal•mol−1 of Val850, −4.31 kcal•mol−1 of
Val851, −1.51 kcal•mol−1 of Met922, −0.23 kcal•mol−1 of

Phe930 and −2.66 kcal•mol−1 of Ile932, respectively,
which occupies about 37.1% of the binding enthalpy
(ΔHgb, −37.25 kcal•mol−1) and suggests that the residues
of the conserved hydrophobic region are very important
to the binding, especially Tyr836, Val850, Val851, Met922
and Ile932. The contribution of the P-loop region is
−5.66 kcal•mol−1 of Met772, −3.36 kcal•mol−1 of Ser773
and −2.91 kcal•mol−1 of Ser774, which occupies about
32.0% of the binding enthalpy. Additionally the contribution
of Trp780, His855 and Thr856 is −1.49,−1.24 and −1.10
kcal•mol−1 respectively, which shows that these residues are
very important to the binding also. Therefore, PI3Kα
possesses two binding “hot spots”: the conserved hydropho-
bic adenine region and the P-loop region which includes
Ile771-Leu779.

Dynamics analysis of the interactions between PI3Kα
and PIK75

The trajectory file of 20ns molecular dynamics simulation
of PIK75-bound PI3Kα was clustered to six clusters by the
average-linkage clustering algorithm and the representative
structures were extracted from every cluster. The cluster
distribution along the simulation time 20ns is as follow: the

Fig. 6 Decomposition of ΔEMM+ΔGsol (the binding enthalpy) on a
per-residue for residues of the catalytic kinase domains of PI3Kα

Table 2 Hydrogen bonds of all
of trajectories

Hydrogen bonds were defined by
acceptor···donor atom distances
of<3.2 Å and acceptor···H-donor
angles of>120°. Hydrogen bonds
are reported only if they exist for
>10% of the investigated time
period.Occupancy is in units of
percentage of the investigated
time period

Hydrogen bond Occupancy Distance(Å)

PIK75 PI3Kα Stage I Stage II Stage III

Imidazole ring-N NH-Val851 97.8 99.2 99.4 2.918(0.105)

Nitro-O1 OH-Ser773 0 0 33.8 2.792(0.207)

Nitro-O1 NH-Ser773 0 0 92.6 2.941(0.176)

Nitro-O2 OH-Ser774 0 0 99.2 2.684(0.143)

Nitro-O2 NH-Ser774 0 0 98.6 2.866(0.119)

Sulfonyl-O NH-Gln859 0 0 17.4 3.016(0.213)

Sulfonyl-O NH-Thr856 0 0 46.3 3.138(0.144)
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six cluster respectively include the snapshots of 0∼4.0 ns,
4.0∼6.0 ns, 6.0∼9.0 ns, 9.0∼12.5 ns, 12.5∼13.5 ns and
13.5∼20.0 ns, which account for 20%, 10%, 15%, 17.5%,
5% and 32.5% of the ensemble of PIK75-bound PI3Kα
respectively. The representative conformations of PIK75-
bound PI3Kα of every cluster are shown in Fig. 7.

In the simulation of PIK75-bound PI3Kα, as seen from
Fig. 7a-f, the conformation of PIK75 keeps changing within

0∼13.5 ns (the first cluster to the fifth cluster), but is stable
within the last 6.5 ns simulation, which is the last clusters
and accounts for 32.5% of the ensemble of PIK75-bound
PI3Kα. The flat 6-bromine imidazo[1,2-a]pyridine moiety
of PIK75 is stable within 20 ns simulation, which inserts
deeply in the conserved hydrophobic region of PI3Kα
coinciding with the adenine-binding region, and accommo-
dates with this region. The key hinge hydrogen bond

Fig. 7 Six representative structures from clustering the molecular
dynamics simulation of PIK75-bound PI3Kα by the average-linkage
clustering algorithm (a-f) and six representative structures super-
imposed onto the docked structure in PI3Kα obtained from docking
PIK75 to the apo X-ray structure of PI3Kα (g). (a) from the first
cluster, (b) from the second cluster, (c) from the thirst cluster, (d) from

the fourth cluster, (e) from the fifth cluster, (f) from the sixth cluster,
(g) 0, 1, 2, 3, 4, 5, and 6 represent P-loop region of the PI3Kα from
the docked structure obtained from docking PIK75 to the apo X-ray
structure of PI3Kα and the representative structure from the first
cluster, the second cluster, the third cluster, the fourth cluster, the fifth
cluster and the sixth cluster, respectively. Hydrogen bonds are dashes
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between the nitrogen atom of the imidazo[1,2-a]pyridine
moiety of PIK75 and the residue Val851 is stable during all
of 20 ns simulation, and there is a T-shaped contact between
the aromatic rings of Tyr836 and imidazo[1,2-a]pyridine
ring of PIK75, which agreed with Han and Zhang’s
observation [15] and can account for the important
contribution of the conserved hydrophobic region to the
binding using the free energy decomposition method by
residue above.

However, the 2-methyl-5-nitrophenyl group of PIK75 is
observed to show significant conformational flexibility
within 0∼13.5 ns simulation (the first cluster to the fifth
cluster) as seen from Fig. 7a-e. In the last of 6.5 ns
simulation, it is very interesting that the nitro moiety of
PIK75 extends to the P-loop region and has four hydrogen-
bond arms with the backbone and side chain of Ser773 and
Ser774 as shown in Fig. 7f. Additionally, in this stage, the
oxygen atom of the sulfonyl group of PIK75 forms
hydrogen bond with Thr856, and the phenyl group of
PIK75 has a T-shaped contact with Trp780. These inter-
actions help lock PIK75 in the ATP-binding pocket of
PI3Kα and make the binding between PI3Kα and PIK75
more stable, which can explain the important contribution
of P-loop region, Thr856, and Trp780 to the binding using
the free energy decomposition method by residue above.

In the simulation of PIK75-bound PI3Kα, as seen from
Fig. 7g, the catalytic kinase domain of is stable after 4.0 ns,
except for the P-loop region. The P-loop moves toward the
outside of the ATP-binding pocket within 0∼6.0 ns as seen
from Fig. 7a, b, g, then moves toward the inside of the ATP-
binding pocket within 6.0∼12.5 ns as seen from Fig. 7c, d, g.
The movement made the P-loop to adopt a more close
conformation than that in the ligand-free structure of PI3Kα,
which agrees with the knowledge that the ligand-free
structures are in the most open form. Then due to the
PIK75-induced effect, the P-loop further moves toward the
inside of the ATP-binding pocket within the last 7.5 ns as
seen from Fig. 7e, f, g and forms stable interactions with the
2-methyl-5-nitrophenyl moiety of PIK75 by hydrogen bond
and hydrophobic interactions. Therefore, our MD simulation
of PIK75-bound PI3Kα reflects the course of induced fit
effect of PIK75 for PI3Kα.

Additionally, six clusters of PIK75-bound PI3Kα simu-
lation generated by the average-linkage clustering algorithm
are consistent with the change in the energy profile above
(Figs. 4 and 5). The binding energy of the first and second
clusters is approximately equal to that of the third and
fourth clusters. Due to the PIK75-induced effect, PIK75
forms more stable interactions with PI3Kα in the fifth and
sixth clusters. The binding energy of the fifth and sixth
clusters is lower than that of the first to fourth clusters,
which is the global minimum of the binding energy over the
course of the trajectory. Therefore, the representative

conformation extracted from the sixth cluster should be
the stable binding mode of PIK75 for PI3Kα.

Hence, according to the MD simulation, the binding
mode of PIK75 for PI3Kα is predicted. The conserved
hydrophobic adenine region of PI3Kα made up of Ile800,
Ile848, Val850, Val851, Met922, Phe930, and Ile932
accommodates the flat 6-bromine imidazo[1,2-a]pyridine
ring of PIK75. The NH of Val851 forms the conserved
hydrogen with the nitrogen atom of the imidazole in PIK75,
and there is a T-shaped contact between the aromatic ring of
Tyr836 in PI3Kα and imidazo[1,2-a]pyridine ring of
PIK75. The 2-methyl-5-nitrophenyl group of PIK75
extends to the P-loop region, and has four hydrogen-bond
arms with the backbone and side chain of Ser773 and
Ser774. There is a T-shaped contact between the aromatic
ring of Trp780 and the benzene ring of PIK75.

PI3Kα shares∼35% sequence identity with PI3Kγ iso-
forms, and the kinase domain of PI3Kα shares∼43.5%
sequence identity with that of PI3Kγ, which makes it more
challenging to find inhibitors with high selectivity between
PI3Kα and PI3Kγ. According to Hayakawa [10], PIK75 is
the most selective PI3Kα inhibitor reported to date, which
inhibits PI3Kα and PI3Kγ with IC50 values of 0.0003 and
0.040 μM, respectively. In the binding mode of PIK75 for
PI3Kα predicted in our study PIK75 forms stable inter-
actions with the conserved hydrophobic adenine region and
P-loop region of PI3Kα. The residues lining the ATP-
binding pockets of PI3Kα and PI3Kγ isoforms are highly
conserved, but the residues of P-loop region of PI3Kα and
PI3Kγ are obviously different. The P-loop in PI3Kα is
IMSSAKRPL (residues Ile771-Leu779), while the
corresponding loop in PI3Kγ is VMASKKKPL (residues
Val803-Leu811). So it is suggested the P-loop plays an
important role in the selectivity profile of PIK75. Amzel et
al. [12] compared the X-ray crystal structures of PI3Kα and
PI3Kγ and speculated that the different conformations of
the P-loops of PI3Kα and PI3Kγ could be exploited for the
design of the isoform-specific PI3Kα inhibitors. So it is
speculated that the critical difference between the P-loop
sequence of PI3Kα and PI3Kγ causes the different
conformation of the two P-loops and the different confor-
mation of the two P-loops causes specific interactions with
PIK75 when they bind to PIK75.

Conclusions

The prevalence of PI3Kα signaling abnormalities in human
cancer cells has made PI3Kα an attractive target for
anticancer drug discovery. This work is to systematically
investigate the interactions between PI3Kα and PIK75
which is the most selective PI3Kα inhibitor reported to date
via combined molecular docking and molecular dynamics
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simulation. The binding free energy (ΔGbind) between
PI3Kα and PIK75 is −10.04 kcal•mol−1 using MMPBSA
method, while −13.88 kcal•mol−1 using MMGBSA meth-
od, which is beneficial for the binding. And this complex
formation exemplifies a classical favorable reaction in
solution where the increase of the stability produced by
the formation of the complex overcomes the cost of the
entropy and desolvation of protein and ligand. PI3Kα
possesses two binding “hot spots”: the conserved hydro-
phobic adenine region which is made up of Ile800, Ile848,
Val850, Val851, Met922, Phe930, and Ile932; the P-loop
region which includes Ile771-Leu779. And the P-loop
region is speculated to be responsible for the selectivity
profile of PIK75. The predicted binding mode of PIK75 for
PI3Kα presented in this study could be very useful for the
discovery of more promising compounds to target PI3Kα.
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Abstract Enzootic pneumonia caused by Mycoplasma
hyopneumoniae is a major constraint to efficient pork
production throughout the world. This pathogen has a
small genome with 716 coding sequences, of which 418 are
homologous to proteins with known functions. However,
almost 42% of the 716 coding sequences are annotated as
hypothetical proteins. Alternative methodologies such as
threading and comparative modeling can be used to predict
structures and functions of such hypothetical proteins.
Often, these alternative methods can answer questions about
the properties of a model system faster than experiments. In
this study, we predicted the structures of seven proteins
annotated as hypothetical in M. hyopneumoniae, using the
structure-based approaches mentioned above. Three proteins
were predicted to be involved in metabolic processes, two
proteins in transcription and two proteins where no function
could be assigned. However, the modeled structures of the
last two proteins suggested experimental designs to identify

their functions. Our findings are important in diminishing the
gap between the lack of annotation of important metabolic
pathways and the great number of hypothetical proteins in
the M. hyopneumoniae genome.

Keywords Comparative modeling . Known function .

Modeller .Mollicutes . Threading

Introduction

Mycoplasmas belong to the class Mollicutes and number
approximately 200 species, among which are obligate
parasites of humans and commercially important mammals
[1] such as pigs. Mycoplasmas are wall-less bacteria
distinguished by small genomes of low G+C content. The
parasitism, the reduced genome, and the close association
of these bacteria with their hosts have contributed to the
absence of enzymes involved in important biosynthetic
pathways in mycoplasma [2].

Enzootic pneumonia caused by Mycoplasma hyopneu-
moniae is a major constraint to efficient pork production
worldwide. The M. hyopneumoniae genome contains
920,079 base pairs and 716 protein-coding genes, of which
418 encode proteins that are homologous to proteins with
known functions. Currently, there are nearly 1,500 complete
genome sequences in GenBank, and half of all of the
predicted genes encode proteins having no inferable
functions. Similarly, almost 42 % of predicted M. hyopneu-
moniae genes correspond to proteins annotated as hypo-
thetical [3]. This lack of annotation is a particularly
intriguing and unsolved issue because, as mentioned above,
components of important and essential metabolic pathways
present in other organisms have not been identified in
mycoplasmas [4, 5].
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The BLAST program [6] has contributed significantly to
the analysis of nucleotide and amino acid sequences, allowing
the prediction of biological functions and evolutionary
relationships of genes and proteins [7]. However, this tool
can be used with a high degree of confidence only when the
sequences are evolutionarily close to each other and the
identity between them is over 50%. To overcome these
limitations, alternative methodologies such as threading and
homology modeling have been used to answer questions
about protein properties. These methods are possible because
biological processes such as gene duplication and evolution-
ary divergence occur in many distantly related organisms [8],
giving rise to structurally and functionally similar families of
proteins. When one or more proteins in a family have
experimentally determined structures, it is feasible to model
the structures of many other members with reasonable
accuracy. This condition is particularly true when the
sequence identity between protein domains is ≥30% and
larger than 100 residues.

Threading and homology modeling can identify domains
and active sites, aiding in placing their locations within a
3D structure (i.e.,surface or buried). Because the determi-
nation of a crystal structure is an arduous and sometimes
impractical task for some proteins, the homology modeling
methodology is a helpful approach that can guide further
experimental assays to investigate protein function [9–11].
The rapid growth of structural genomics is producing a
considerable number of templates that can be used for
homology modeling. The availability of more templates
increases the quality of new models, thereby diminishing
the gap between computationally derived models and
experimental outcomes.

Thus far, mycoplasma genome sequences have not been
annotated for activities related to the utilization of ATP,
NAD and NADH and amino acid synthesis derived from
pyruvate. However, genes corresponding to these activities
must exist, otherwise their enzymatic activities would not
have been found [12]. This discrepancy suggests that
sequence-based methodologies for identifying protein function
may not be suitable for mycoplasmas in some cases.

In this study, using structure-based approaches, we were
able to predict the function of seven proteins annotated as
hypothetical in the M. hyopneumoniae genome. Three of
the proteins are involved in metabolic processes, a finding
that may enhance further studies concerning the metabolism
of this bacterium. Another two proteins are involved in
transcription, controlling gene expression based on cellular
or environmental signals, an important characteristic of
pathogenic bacteria such as M. hyopneumoniae. Functions
for the other two proteins could not be assigned, but their
modeled structures suggest experimental designs, which
will allow future investigation concerning their function.

Materials and methods

The sequences of 298 proteins belonging to M. hyopneumo-
niae strain 7448, currently annotated as hypothetical in the
Genesul database (http://www.genesul.lncc.br/finalMP/),
were submitted to two threading programs, GenThreader
[13] and Prospect-PSPP [14]. Additionally, these data were
analyzed by InterProScan [15] and COG [16], and the
functional predictions of these four programs were com-
pared. Thirty-four sequences with the same functional
predictions given by at least two of the mentioned programs
were selected for manual analysis, resulting in the further
selection of seven targets for structural investigation. Firstly,
the sequences of these seven proteins were submitted to a
PSI-BLAST search at http://blast.ncbi.nlm.nih.gov/Blast.cgi
against the Protein Data Bank (PDB). To guide the functional
inference of uncharacterized proteins, other bioinformatics
tools were used as described elsewhere [17]. These other
tools suggested scans against sequence pattern, domain, and
family classification databases, as well as structural family
databases, to identify conserved, functional residues and to
extract homologs for post-hoc comparative modeling.

The local alignment between sequences of the seven
selected proteins and their templates provided by threading
results was performed using the EMBL/EBI software
MAFFT [18] with little manual editing. Sequences were
retrieved from NCBI and GeneSul. The BLOSUM30
matrix was used with gap and extension penalties of 1.0
and 0.123, respectively. Afterward, the alignment was used
to model the selected proteins with the Modeller program [19]
(version 9v8). The overall geometric and stereochemical
qualities of the structures were assessed using PROCHECK
through the PDBsum server [20] and PROSA-web [21] and
are listed in Table 1.

Results and discussion

Threading is based on sequence-to-structure alignment. The
target sequence is “threaded” through each template present in
databases that contain all known protein folds. Threading is
performed by using measures for fitness for each type of
amino acid in local structural environments and defined in
terms of solvent accessibility and protein secondary structure.
If a sequence fits well with a given fold, conserved residues
are likely shared suggesting similar functions [22].

The PROSPECT-PSPP threading pipeline showed that 27
(9.06%) of 298 target proteins gave PSI-BLAST hits against
the PDB with an E-value<0.0001, indicating the existence of
homologs. Additionally, 83 (27.85%) of the proteins had hits
against PDB with a Z-score >20, indicating that the fold
recognition confidence level was >99%; the remainder of the
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proteins had hits with confidence levels between 85 and 99%.
The GenThreader results had high confidence levels (certain)
for 84 (32.43%) of 259 proteins (total number of hypothetical
sequences available in 2005). Detailed information analysis
obtained by threading provided interesting and consistent
results, which helped us to select seven proteins having the
same prediction by the both mentioned programs. In addition,
we followed the protocol suggested by Mazumder and
Vasudevan [17], as mentioned in Materials and methods.
The results proposed homologs with 3D structures available,
thereby providing new knowledge to be applied for
comparative modeling.

In the following sections, we will discuss the 3D
structures and functions predicted for the seven proteins
(YP_287866, YP_287786, YP_287675, YP_287559,
YP_288024, YP_287971 and YP_288034). Table 1 lists
the templates used to obtain the 3D structures and
information about the selected protein models.

Completing the NAD biosynthesis pathway

The 3D structure of hypothetical protein YP_287866
exhibits similarity to portions of two different proteins,

i.e., the N-terminal region of nicotinate-nucleotide adeny-
lyltransferase (NadD) and the C-terminal region of an
uncharacterized histidine-aspartate (HD) domain. Although
the steps in NAD biosynthesis and recycling can vary
between species, the enzymes involved in these pathways
are generally the following: 1) nicotinate phosphoribosyl-
transferase (NAPRTase) (EC 2.4.2.11), 2) nicotinate mono-
nucleotide adenylyltransferase (NaMNAT or NadD) (EC
2.7.7.1), and 3) NAD synthetase (NadE) (EC 6.3.1.5)
(Fig. 1). These enzymes are encoded by the conserved
genes pncB, nadD and nadE, respectively. Enzymes
involved in NAD biosynthesis have been considered as
promising drug targets because they are essential for the
viability of most bacteria [23, 24]; however, only nadE is
annotated in M. hyopneumoniae. Because NadD is likely
essential, characterization of this enzyme using a structure-
based approach for M. hyopneumoniae will improve its
annotation and add this enzyme to the list of potential
therapeutic targets.

The sequence similarity between the YP_287866 N-
terminal region and other nicotinate-nucleotide adenylyl-
transferases is low (approximately 30%); however, the
proteins share two highly conserved ATP-binding motifs,

Table 1 Sequence and structure information of the selected proteins and their templates

Protein ID Templatea Identity Evaluation Proposed function

PROSAb Ramachandranc

YP_287866 −7.6 97.9 % Nicotinic acid mononucleotide adenylyltransferase
2H29 35 % −8.66
2O08 23 % −7.28 Putative metal-dependent phosphohydrolase (HD domain)
2OGI 24 % −8.03

YP_287786 −6.17 97 % Nicotinic acid Phosphoribosyltransferase (NAPRTase)
1YTK 25 % −8,93

YP_287675 −7.22 96.5 % Flavin Adenine Dinucleotide (FAD) synthetase
1S4M 20 % −8.68

YP_287559 −4.52 95.1 % Participates in the antitermination process (NusB)
1EY1 21 % −4.59
2JR0 23 % −5.45
1TZT 23 % −6.52
1Q8C 15 % −6.75
1EYV 18 % −4.6

YP_288024 −4.22 96.2 % Key regulator of bacterial transcription initiation (SigE, Sigma-28)
2Z2S 18 % −6.33
1RP3 20 % −7.73

YP_287971 −5.92 100 % Unknown function. Likely binds to nucleic acids (YlxR)
1G2R 29 % −5.47

YP_288034 −5.9 96.6 % Unknown function. Likely binds to nucleic acids (YrdC)
1HRU 18 % −7.4

a PDB ID
b Favored and allowed regions
c Z- score templates
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GXXXPX(T/H)XX and SX(T/S)XXR. The crystal structures
of many NaMNAT proteins [25–29] reveal the residues
involved in their function, such as the following: 1) His20,
Ser162, Arg167 and the essential His17 in the enzymes from
Pseudomonas aeruginosa [30], Escherichia coli [31] and B.
subtilis [28], located in the ATP binding site, 2) Thr87 and
Trp117 that interact with the substrate nicotinic acidyl, and 3)
Arg134 that interacts with the adenosine.

The template selected to obtain the 3D structure of the
YP_287866 N-terminal region was the crystal structure of
nicotinic acid mononucleotide adenylyltransferase from
Staphylococcus aureus [26] (PDB ID: 2H29). The sequence
identity between these two proteins is 35%; however, they
share similar topologies, being composed of eight α-helices, a
six-stranded parallel β-sheet and an additional β-strand.

The model obtained for the YP_287866 C-terminal
region adopted a similar conformation to proteins belonging
to the metal-dependent phosphohydrolase superfamily. These
proteins possess a variety of uncharacterized domains
associated with nucleotidyltransferases from bacteria, archaea
and eukaryotes; YP_287866 also appears to possess one of
these domain architectures. The limitation of low sequence
identity (∼ 25%) between YP_287866 and these proteins was
circumvented by the presence of a metal-binding HD motif
[32] in YP_287866. Crystal structures of HD-domain
proteins have been solved for Bacillus halodurans (PDB
ID: 2O08) and Streptococcus agalactiae (PDB ID: 2OGI);
however, a large number of the HD-domain proteins remains
uncharacterized [33].

Concerning the C-terminal region of YP_287866
(YP_287866C), the template used was the crystal structure
of the putative metal-dependent phosphohydrolase from S.

agalactiae (PDB ID: 2OGI). The resulting model consisted
of an all-alpha structure formed by 13 helices.

YP_287866 is encoded by only one gene; however, it
comprises two distinct domains with different functions.
The complete model showed both domains linked by a
disulfide bond between Cys74 and Cys275 within the N-
terminal and C-terminal regions, respectively. This domain
architecture was also found in another HD-domain protein
fused to a nucleotidyltransferase domain [32]. Because the
binding sites in both domains are not spatially super-
imposed, and the templates form dimers (2H29 and 2OGI),
we can conclude that this architecture is likely to exist.
Moreover, the model has 97.9% of its residues in preferred
and allowed regions of the Ramachandran plot, indicating
good stereochemical quality.

As mentioned above, some enzymes of the NAD
biosynthetic and recycling pathways have not been identified
in M. hyopneumoniae. However, based on structural infor-
mation, we propose that one of the YP_287866 domains is
NadD, and we also suggest that YP_287786 functions in this
same metabolic pathway, thereby completing the NAD
biosynthetic pathway.

The threading programs suggested the crystal structure of
nicotinate phosphoribosyltransferase from Thremoplasma
acidophilum (TmNAPRTase) [34] (PDB ID: 1YTK) as the
best hit for the YP_287786 sequence. Further structural
analysis suggested another homolog with a solved 3D
structure, i.e., NAPRTase (EC 2.4.2.11) from Enterococcus
faecalis (EfNAPRTase) (PDB ID: 2F7F). This enzyme
catalyzes the synthesis of nicotinic acid mononucleotide
(NAMN) from adenine and phosphoribosyl pyrophosphate
(PRPP), regardless of the presence of ATP.

Fig. 1 Simplified NAD biosynthesis pathway proposed for M.
hyopneumoniae. Highlighted in blue circles are the EC numbers of
the enzymes whose 3D structure was predicted in this study.
YP_287786 is proposed to be EC 2.4.2.11, a nicotinate phosphor-
ibosyltransferase. YP_287866 (N-terminal region) is suggested to be a

nicotinate-nucleotide adenylyltransferase, EC 2.7.7.18. EC 6.3.5.1 is
the enzyme NadE, already annotated in M. hyopneumoniae. The 3D
structures were obtained using comparative modeling methodology,
and the structures were rendered with Pymol (www.pymol.org)
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Although the sequence similarities between YP_287786
and its structural homologs TmNAPRTase and EfNAPRTase
showed low overall identity (∼ 25%), many residues were
found conserved, among which were TmNAPRTase residues
Arg224, Asp226, Glu273 and Glu292 involved in NAMN
binding [34]. Two other residues also implicated in NAMN
binding are found in TmNAPRTase and substituted in
YP_287786, i.e., Thr179/Ser166 and Thr293/Val294. The
first substitution, between amino acids having a similar
physicochemical property, may not affect the function of
YP_287786 because NAMN binds TmNAPRTase through a
hydroxyl group.

To transfer the phosphoribosyl group, PRPP must bind to
NAPRTase. Two conserved motifs, 275hSGGh279 (h stands
for hydrophobic residue) and 298GVG301, are responsible
for accommodating the phosphate group of PRPP. Both
motifs are conserved in YP_287786 except for a glycine
residue being replaced by a serine at position 277. The
stereochemical quality of the YP_287786 model was
verified by the Ramachandran plot calculated using
PROCHECK, which showed 97% of the residues in
preferred or allowed positions.

Filling gaps in M. hyopneumoniae pathways

The biosynthesis of flavin adenine dinucleotide (FAD) in
prokaryotes involves bifunctional proteins belonging to the
FAD synthetase family that catalyze both riboflavin (RF)
phosphorylation and flavin mononucleotide (FMN) adeny-
lylation. In our study, the sequence of YP_287675 showed
similarities to the crystal structure of FAD synthetase
(TM379) from T. maritime [35] (PDB ID: 1S4M) and the
in silico model of FAD synthetase from Corynebacterium
ammoniagenes [36] (CaFADS) (PDB ID: 2X0K). Using the
comparative genome tool from Genesul, we noticed that
FAD synthetase was annotated in other mycoplasma
genomes and YP_287675 also belongs to this cluster.

The 3D structure obtained for YP_287675 showed an
overall topology similar to its template 1S4M. As expected,
these proteins are folded in two domains. The N-terminal
domain contains the FMN adenylylation function, catalyzing
the reaction between ATP and FMN to form pyrophosphate
and FAD (EC 2.7.7.2). Structurally, this domain consists of a
typical nucleotide-binding fold (Rossmann fold) containing
an ATP-binding site. The motif V/IXGX1-2GXXGXXXG/A
associated with the Rossmann fold and FMN binding is
present in YP_287675 with a few amino acid substitutions,
i.e., VX3GGX2AX3GX7A. This motif was important in
assigning biological function to proteins with unknown
function from fully sequenced genomes [37]. Moreover,
these residues are located in conserved positions allowing
substrate binding. Similarly, the residues believed to be
involved in ATP-binding are conserved between YP_287675

and its template, except for Glu25 and Phe100 (replaced by
aspartate and tyrosine, respectively, in 1S4M and 2X0K).

The second domain of YP_287675, the C-terminal
domain, folds into a six-stranded, antiparallel β-barrel
architecture, implicated in RF binding. This interaction
also involves a long α-helix and a conserved histidine at
position 233. RF phosphorylation by CaFADS involves
three important residues, Thr208, Asn210 and Asp268 [36].
With respect to sequence, none of these residues are at the
same positions in YP_287675; however, the asparagine is
maintained at the same structural location. Despite lacking
structural information for some regions, the 3D structure of
YP_287675 revealed that 96.5% of the residues are in
favored and allowed regions.

The understanding of mycoplasma metabolism requires
adequate annotation of its proteome. Our structure-based
annotation of the proteins YP_287866, YP_287786 involved
in NAD biosynthesis and YP_287675 implicated in FAD
biosynthesis fills gaps in this annotation. Furthermore,
proteins required in these biosynthetic pathways are being
considered as antimicrobial drug targets.

Two important proteins implicated in transcription
may not be absent from M. hyopneumoniae

The hypothetical protein YP_287559 exhibited structural
similarities to the prokaryotic transcription factor NusB.
NusB participates in the antitermination process, in which
RNA polymerase is prevented from reading specific
RNA secondary structures that usually terminate tran-
scription. In E. coli, antitermination involves at least three
Nus proteins: NusB, NusE (identical to the ribosomal
protein S10), and NusG [38]. NusB, in association with
these other proteins, is believed to bind an RNA motif,
boxA, present in E. coli rrn operons. Mutations in NusB
lower growth rate, which is an evidence for its role in
rRNA synthesis [39]. E. coli has seven rrn operons
whereas M. tuberculosis [40] and M. hyopneumoniae have
only one such operon. Therefore, an efficient antitermination
mechanism is particularly important in these pathogenic
bacteria to ensure the expression of the entire single rrn
operon [41]. Except for NusB, all other proteins required for
efficient antitermination, such as NusA, NusG and S10, have
been annotated in M. hyopneumoniae.

YP_287559 has only 133 residues (of 216) that align
with the NusB sequence annotated in other bacterial
genomes, including other species of mycoplasma. The
remaining sequence (residues 1–82) possesses similarities
to a transposase. As no suitable template was found to build
the 3D structure of this part of the protein, only its C-
terminal region was modeled.

The three dimensional structures of E. coli NusB [42]
(PDB ID: 1EY1) and Aquifex aeolicus NusB [43] (PBD ID:
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2JR0) derived from NMR experiments and the crystal
structures of NusB from Thermotoga maritime [44] (PDB
ID: 1TZT), M. genitalium [45] (PDB ID: 1Q8C), and M.
tuberculosis [46] (PDB ID: 1EYV) were used as templates
to model YP_287559.

The C-terminal portion of YP_287559 displays a
topology composed of only alpha helices. Its structure can
be divided into two subdomains, α1-α3 forming the N-
terminal region and α4-α7 encompassing the C-terminal
subdomain. In the N-terminal region, YP_287559 contains
the conserved, positively charged residues Lys83, Arg84,
Arg85 and Arg88, forming an arginine-rich motif with a
high probability of being the RNA binding site of this
protein. Also, interactions between nucleic acid bases and
RNA binding proteins often involve aromatic residues
essential for stacking [47]. As found in other NusB
proteins, the YP_287559 sequence contains the following
aromatic residues: Tyr96, Trp98, Phe101, Tyr114, Phe115,
Phe127, Tyr132, Phe134, Trp147, Trp149, Phe168, Phe169,
Phe176, Phe186, Phe194, Phe196, Tyr207, Tyr208, and
Phe214 (Fig. 2). These amino acids located on the surface
of the protein are believed to participate in recognition
processes, whereas the remaining residues are probably
involved in protein fold stabilization.

Previous studies have determined that NusB exists as a
homodimer in M. tuberculosis (mtuNusB) [46], as a
monomer in E. coli (ecoNusB) [42], M. genitalium
(mgeNusB) [45], and A. aeolicus (aqNuB) [43], and as a
monomer/dimer equilibrium with a preference for the
monomeric form [44] in Thermotoga maritima (tmaNusB).
We searched the YP_287559 structure for amino acids
important for mtuNusB dimerization. However, two key
residues in mtuNusB, alanine and phenylalanine, are
replaced by serine and tyrosine, respectively, in both M.

hyopneumoniae and E. coli. In mtuNusB, the dimer
interface overlaps the region involved in RNA binding,
which may allow mtuNusB to remain inactive until needed
for transcriptional regulation [46].

We concluded that YP_287559 is composed of two
domains, one similar to a transposase and the other to
NusB. The Ramachandran plot analysis of the model
structure from this last region showed that 95.1% of the
residues are in favored and allowed regions.

The M. hyopneumoniae habitat is the porcine mucosal
surface where amino acids, purines, and pyrimidines are
acquired to compensate for the lack of important metabolic
pathways. Studies suggested that, in mycoplasmas, genes
involved in replication, transcription and translation are
constitutively expressed in constant environments, eliminating
the need for sophisticated genetic control mechanisms [1].
Moreover, M. hyopneumoniae has only one annotated sigma
factor, RpoD [3], a key regulator of bacterial transcription
initiation that is responsible for promoter recognition and
melting [48]. However, the −35 regions ofM. hyopneumoniae
promoters have low sequence conservation, suggesting the
presence of more than one sigma factor to respond rapidly to
environmental changes.

In our structure-based analysis, we found similarities
between the YP_288024 structure and the crystal structures
of Rhodobacter sphaeroides SigE [49] (PDB ID: 2Z2S) and
the flagellar Sigma-28 of A. aeolicus [50] (PDB ID: 1RP3).
These similarities could indicate that mycoplasmas have a
regulatory system not yet identified by traditional tools.
Although gene expression in mycoplasma is not well
characterized, recent work investigating transcriptional
changes has shown that M. hyopneumoniae regulates its
genes in response to environmental changes [51–54], and
93% of its intergenic regions are transcribed [55].

The sequence alignment of the sigma -70 family
revealed the conservation of four regions, divided into
subregions. Highly conserved among all members of this
family are subregions two and four that compose the sigma
factor binding site for the −10 and −35 promoter elements
[56]. Conserved only in a highly related sigma factor,
subregion one is apparently involved in an antagonistic
DNA-binding activity. Subregion three is absent from
YP_288024 and from extracytoplasmic function sigma
factors that allow bacteria to adapt rapidly to environmental
changes. Furthermore, subregion three of extracytoplasmic
function sigma factors interacts with the −10 element of
promoters lacking a −35 element.

The structural alignment between these proteins showed
the complete lack of α-helices four and five and a portion
of α-helix six corresponding to the subregion three. All the
other α-helices are conserved in YP_288024, suggesting
their interaction with the −10 and −35 promoter elements.
This functional prediction was based on a model where

Fig. 2 The 3D structure of YP_287559. Highlighted in green are α-
helices and loops; sticks represent aromatic residues likely involved in
substrate recognition
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96.2% of the residues lie in the most favorable and allowed
regions.

High homology to protein with unknown function

The hypothetical protein YP_287971 exhibited structural
homology to YlxR from S. pneumoniae [57] (PDB ID:
1G2R), a small protein with unknown function, although
the YlxR gene is probably in an operon with the other
well-studied genes nusA, infB, and rbfA. The protein
encoded by rbfA (RbfA) binds to the 30S ribosomal
subunit, perhaps promoting subunit maturation [58].
Crucial for translation initiation, IF2 (the product of infB)
also functions by binding the 30S subunit [59]. NusA is a
highly conserved, essential elongation factor that binds RNA
polymerase as part of the transcriptional antitermination
complex in many organisms [60]. The YlxR-containing
operon has also been studied in E. coli and B. subtilis [61].
The latter presents two additional genes (Ylx-R and Ylx-Q)
between nusA and infB; this order was not found in E. coli
nor in M. hyopneumoniae wherein these genes are adjacent.

The 3D structure of YP_287971 showed a similar
topology to YlxR of S. pneumoniae. Besides a short 310-
helix, no regular secondary structure was found in the N-
terminal region. The central core of the model was
comprised of three antiparallel β-strands followed by two
α-helices, one of which bends at Lys61. The YP_287971
sequence also possesses highly conserved residues, such as
the GRGA(Y/W) motif present in the hydrophobic core
together with Val10, Leu20, Leu24, Ile32, Ile47, Phe63 and
Leu79. At the protein surface several positively charged
residues are conserved (Arg6, Arg22, Asp27, Arg43, Lys60,
Lys61 and Arg65), forming a patch typical of nucleic acid-
binding proteins, as shown in Fig. 3. This region is

proposed to be related in YlxR function, which may
involve an RNA-binding activity found in proteins encoded
by the genes in the nusA/infB operon [57].

YP_287971 is probably a member of a highly conserved
family (DUF448) of unknown function, distributed in many
organisms, including 14 species of mycoplasmas for which
complete genome sequences are available. The stereochemical
quality of YP_287971 was evaluated, resulting in 93.3% of the
residues located in favored regions and 6.7% in additional
allowed regions of the Ramachandran plot. Because it is of
high quality and shows a significant structural resemblance to
YlxR of S. pneumoniae, the model suggests the same function
for YP_287971 and YlxR, and it will aid in the design of
future experiments to verify the function.

Finally, the YP_288034 protein showed structural sim-
ilarities to the crystal structure of YrdC from E. coli [62]
(PDB ID: 1HRU). Members of the yrdC family code for
proteins that fold into a single domain, as in the case of
1HRU, or as a domain in proteins implicated in regulation
process. YP_288034 is probably an example of the latter
because its alignment with E. coli YrdC involves only 164
amino acids out of the YP_288034 total of 287 residues.
Searching for homologs within mycoplasmas, we observed
that this protein clusters with a Sua5-like translation
factor found in six other species. Thus, YP_288034
constitutes a two-domain protein containing a YrdC
domain as found in E. coli and in Sua5 members such as
that from Saccharomyces cerevisiae.

The function of E. coli YrdC is unknown, but its crystal
structure suggested that it possesses a double-stranded
RNA-binding capacity [62]. The Sua5 protein, containing
an YrdC homolog domain in yeast, has been implicated in
the re-initiation of translation [63]. This function is
consistent with the large concave surface of Sua5; this
surface has a positive electrostatic potential akin to that of
the YrdC binding surface, which resembles other nucleic
acid-binding proteins. The geometry of our model shows
96.6% of the residues in the most favored and additionally
allowed regions of the Ramachandran plot.

Conclusions

One of the key challenges in the post-genomic era is the
prediction of function for proteins annotated as hypothetical
proteins. A combination of bioinformatic tools, focused not
only on sequence analysis but also on structural information,
guided us to suggest functions for seven hypothetical proteins
in the M. hyopneumoniae genome. NadD, NAPRTase and
FAD synthetase involved in metabolic processes; NusB and
SigE in transcription; and for YrdC and YlxR, no conclusive
functions were assigned; however, the results obtained
helped us design rational experimental strategies for future

Fig. 3 Probable nucleotide binding site of YP_287971. The electrostatic
potential surface distribution shows an extensive positively charged
region (blue) typical of nucleic acid-binding proteins
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works. Our results suggest that this structure-based approach
provides significant improvements to domain and function
prediction, especially for minimal genomes having poorly
annotated metabolic pathways. Mycoplasma metabolism
requires an adequate annotation of its proteome, and our
results fill significant gaps in this annotation. Each target
protein used in this work was approached from a unique
perspective, taking into account the genomic localization/
organization of its open reading frame, its conserved
structural features, and any biological evidence available in
the literature, even if such evidence was for remote
homologs. The annotation of each target required an intense
effort. However, our results proved to be important for both
structural and biochemical genomics.
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Abstract Ab initio (MP2) and density functional theory
(DFT) methods were used to examine nine isomers of the
doublet BN4 species with the 6-311 + G(d) basis set. To our
knowledge, these nine structures are all first reported here.
Energy analysis indicates that the C2v branched structure is
the global minimum of potential energy surface. Research
results show that the C2v branched, the cis-linear, the C4v

pyramidal, and the CS five-membered ring structures are
likely to be stable and to be observed experimentally.
Among these four kinetically stable species, the last three
are suitable to be used as potential precursors of HEDMs
due to their high dissociation energies. However, the C2v

bent, the trans-linear, the D2 bicyclic, the C2v four-
membered ring, and the C2v cage structures are kinetically
unstable due to their low dissociation or isomerization
barriers. Two synthesis pathways of the C2v branched
isomer were located. It seems more feasible to synthesize
this species by linear NBN and N2.

Keywords Ab initio . BN4
. Boron nitrides . HEDMs .

Potential energy surface

Introduction

Polynitrogen compounds have received considerable atten-
tion for more than 20 years due to their potential use as
prime candidates for “green” high energy density materials
(HEDMs). However, generally, in the search for polyni-

trogen candidates for HEDMs, one faces an apparent
dilemma, i.e., the instability of these species; the low
dissociation barrier in particular appears to be a major
hindrance for these molecules to be useful in a wider
variety of applications. Nevertheless, the recent experimen-
tal progress in the synthesis of nitrogen-rich compounds has
been very encouraging with the N5

+ and N5
− ions produced

[1, 2] in the laboratory. More recently, several salts
containing the CN7

− anion were prepared by deprotonation
of 5-azido-1H-tetrazole using common bases like ammonia,
hydrazine, or alkali as well as alkaline earth metal salts [3].
Experimental successes have stimulated theoretical studies
on other potential nitrogen-rich compounds. To search for
states/structures that may be suitable candidates as precur-
sors of HEDMs, Lee et al.[4] have studied various low-
lying, high- and low-spin electronic states of Al2N4 and
AlNn (n=4 to 7) clusters. They concluded that AlNn

systems are potential precursors of HEDMs. The accurate
enthalpies of formation of gas-phase N3, N3

−
, N5

+ and N5
−

have been calculated by ab initio molecular orbital theory.
The calculations show that neither N5

+N3
− nor N5

+N5
−salt

could be stabilized and this conclusion had also been
experimentally confirmed by low-temperature metathetical
reactions between N5SbF6 and alkali metal azides in
different solvents [5].

In recent years, the group III nitrides have been studied
extensively due to their high-energies, distinctive properties
as precursors for bulk semiconductors and high-power
applications. The wurtzite polytypes of gallium nitride
(GaN), aluminum nitride (AlN), and indium nitride (InN)
are excellent materials for bandgap engineering [6]. AlxNy

clusters have received considerable attention from compu-
tational chemists because of the importance of aluminum
nitride (solid and thin-film AlN) in various industrial
applications [7]. Boron nitride has attracted considerable
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interest in materials science. Boron nitride and carbon, being
isoelectronic, tend to form similar compounds or materials.
The sphalerite-type (or β-crystalline phase) of boron nitride,
isostructural and isoelectronic to cubic diamond, dis-
plays excellent physicochemical properties (e.g., me-
chanical hardness, excellent thermal and chemical
stability, and conductivity) [8, 9]. As it has proven to be
very difficult to obtain pure β-BN as a solid film, mixed
and larger BxNy clusters have attracted much attention as
precursors in the growth of β-BN thin films using
chemical vapor deposition or plasma techniques [8]. In
addition, the existence of boron-nitrogen clusters with
fullerene geometries was postulated. The envisaged boron
nitride fullerenes have been synthesized [10].

Information on the geometry and electronic structure of
boron-nitrogen clusters is essential for their applications.
Several theoretical studies on some small boron-nitrogen
clusters such as BN, BN2, B2N2, B3N, BN3, B3N2 and
B2N3 had been previously performed [11–14]. These
studies mainly focus on cluster’s structures, vibrational,
thermochemical, dissociation, and spectroscopic properties.
Furthermore, some molecules, such as the B2N and BN2,
have been characterized experimentally in pulsed laser
evaporation experiments combined with matrix infrared
spectroscopy. [11–15]. The structure and vibrations of BnNn

(n=3–10) species have been studied with the density
functional theory (DFT) method. The results show that the
BnNn (n=3–10) clusters have Dnh cumulenic monocyclic
structures with θNBN the largest and θBNB the sharpest angle
[16]. The structural, rotational, and vibrational properties of
BnNn

+ (n=3–10) have also been investigated using DFT
method [17]. It has been found that the BnNn

+ clusters
display different behaviors depending on whether they have
an even (n=4, 6, 8, 10) or odd (n=3, 5, 7, 9) number of BN
pairs. The BnNn

+ cations with n even display a Dnh

symmetry as the neutral systems; while the BnNn
+ clusters

with n odd show a lowered symmetry compared to the
neutral form.

In the present report, we extended the study of boron-
nitrogen clusters to BN4 system. One aim of the present
study is to explore the geometries and electronic structures
of BN4 and determinate the global minimum; another is to
explore whether these species are suitable candidates as
precursors of HEDMs. To our knowledge, no theoretical
study has been devoted to the structures, especially kinetic
stabilities of the BN4 species.

Computational methods

All calculations were performed using the Gaussian 03
program package [18]. We initially optimized geometries
and calculated the harmonic vibrational frequencies for

BN4 at the B3LYP/6-311+G* level of theory, where
B3LYP is the DFT method using Becke’s three-parameter
gradient-corrected functional [19] with the gradient-
corrected correlation of Lee, Yang, and Parr [20] and 6-
311+G* is the split-valence triple-ζ plus polarization basis
set augmented with diffuse functions [21]. Then, the
geometries were refined and the vibrational frequencies
were calculated at the level of second-order Møller-Plesset
perturbation theory (MP2) [22] with the 6-311+G* basis
set. Stationary points were characterized as minima
without any imaginary vibrational frequency and a first-
order saddle point with only one imaginary vibrational
frequency. For transition states, the minimum energy
pathways connecting the reactants and products were
confirmed using the intrinsic reaction coordinate (IRC)
method with the Gonzalez-Schlegel second-order algo-
rithm [23, 24]. Final energies were refined at the CCSD
(T) [25]/6-311+G*//B3LYP/6-311+G*+ZPE (B3LYP/6-
311+G*) level of theory.

Throughout this paper, bond lengths are given in
Ångströms, bond angles in degrees, total energies in
Hartrees, relative and zero-point vibrational energies, unless
otherwise stated, in kJ mol-1.

Results and discussion

Our optimized structures for nine BN4 species are illustrated
in Fig. 1. Their total energies, ZPE, relative energies (with
ZPE corrections), and number of imaginary frequencies are
listed in Table 1. Note that the symbol “τ” on the figures
stands for the dihedral angle. As is seen, these BN4 isomers
except the CS chain 5 are all local minima on their potential
energy surfaces (PES) at the above-mentioned two levels.
Regarding structure 5, it is a local minimum at the B3LYP
level of theory, but the optimization directly lead to
dissociation into linear BN2 and one N2 molecule at the
MP2 level of theory. The optimized structures for nine
transition states are shown in Fig. 2. Their total energies,
ZPE, and lowest vibrational frequencies are listed in Table 2.
The energy differences between the minima and their
corresponding transition states are tabulated in Table 3. The
reaction energies for dissociation of the BN4 isomers to B +
2 N2 and linear BN2 + N2 molecules are shown in Table 4
and Table 5.

We performed ab initio calculations on a wide variety
of doublet structures of BN4 by using two different and
sophisticated theoretical methods. As exhibited in Fig. 1,
nine structures were located. To our knowledge, these nine
structures are all first reported here. As seen from Table 1,
according to our calculation, the energetic stability
ordering of the nine isomers is 1 > 2 > 3 > 4 > 5 > 6 >
7 > 8 > 9. It should be noted that the C2v branched 1 is
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energetically higher than the C2v bent 2 by 13.4 kJ mol-1

at the B3LYP/6-311 + G* level of theory, but it is
energetically lower than 2 by 71.1 and 6.2 kJ mol-1 at

the MP2 and CCSD(T) levels, respectively. Results from
CCSD(T) level are generally most reliable among the
three used levels. Accordingly, isomer 1 should be

Fig. 1 Optimized geometries
for nine BN4 species at the
B3LYP/6-311+G* and
MP2/6-311+G* (bold font)
levels of theory

Table 1 Total energies (E),
zero-point energies (ZPE), and
relative energies (RE) for
BN4 species

aTotal energies in Hartree. b

Zero-point energies in kJ mol-1.
The integers in parentheses are
the number of imaginary fre-
quencies (NIMAG). c The rela-
tive energies with ZPE
corrections in kJ mol-1

Species B3LYP/6-311+G* MP2/6-311+G* CCSD(T)/6-311+G*

//B3LYP/6-311+G*

Ea ZPEb REc Ea ZPEb REc Ea REc

1(C2v) −243.82970 46.5 (0) 0.0 −243.16818 57.8 (0) 0.0 −243.22645 0.0

2(C2v) −243.83554 48.6 (0) −13.4 −243.16517 121.0 (0) 71.1 −243.22490 6.2

3(CS) −243.80040 50.2(0) 80.8 −243.14848 67.8(0) 62.0 −243.19311 91.3

4(D2) −243.79135 39.8 (0) 94.2 −243.14665 229.4 (0) 228.1 −243.19590 73.7

5(CS) −243.69537 42.4 (0) 348.7 - - - −243.09530 340.3

6(C4v) −243.65365 47.3(0) 463.4 −243.03829 47.7(0) 331.1 −243.06969 412.7

7(CS) −243.65305 44.8(0) 462.1 −243.03129 51.5(0) 353.3 −243.06472 423.2

8(C2v) −243.62951 36.8 (0) 516.1 −242.95075 40.2 (0) 553.4 −243.04293 472.6

9(C2v) −243.62784 43.5(0) 527.4 −243.00701 44.8(0) 410.2 −243.04531 473.0
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regarded as the most energetically favored for all BN4

species considered here.
As shown in Fig. 1, the C2v branched 1 (N2BNN) seems

to be a complex formed by a BN2 ring and a N2 molecule.
The bond length of N4-N5, 1.137-1.162 Å, is indeed close
to the experimental N≡N triple-bond length 1.098 Å for the
nitrogen molecule N2 [26], but the bond length of N2-N3,
1.260-1.305 Å, is closer to the double-bond length 1.252 Å

of HN=NH [26]. We predicted that the lengthening in the
N4-N5 bond from N2 molecule may be attributed to the
induced polarization from the boron atom. The D2 bicyclic
4 seems to be a complex between the fragments a boron
atom and two equivalent dinitrogen molecules, but the bond
lengths of N2-N3 and N4-N5, 1.233-1.255 Å, are closer to
the N=N double-bond length. Like the case in 1, the B
atom induces the lengthening in the N-N bond lengths from

Fig. 2 Optimized geometries for nine BN4 transition states at the B3LYP/6-311+G* level
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molecular nitrogen. The covalent radius for nitrogen is
0.70 Å [27], the corresponding value for B is 0.88 Å [27].
Obviously, in structure 1, the B1-N2 (N3) bond distances
(1.437-1.446 Å) and B1-N4 bond distances (1.355-

1.379 Å) are all slightly shorter than the sum of covalent
radii of the corresponding B atom and nitrogen atom. In
structure 4, the B-N bond distances (1.494 Å) are also
slightly shorter than the sum of covalent radii of the
corresponding B atom and nitrogen atom. To study the
kinetic stabilities of these two isomers, their dissociation
and isomerization reactions have been investigated. The
schematic potential energy surfaces (PESs) for isomers 1
and 4 are depicted in Fig. 3. Structure TS11 (seen in Fig. 2)
is a transition state (TS) of the dissociation of 1 character-
ized to be a saddle point of index 1 by vibrational
frequency analysis. IRC calculations performed at the
B3LYP/6-311+G* level directly lead to dissociation into a
linear BN2 and one N2 molecule. The barrier for the
decomposition reaction 1 → TS11 → BN2 (linear) + N2 is
predicted to be 99.6 kJ mol-1 at the CCSD(T) level of
theory, indicating the high kinetic stability toward decom-
position. TS12 is another transition state (TS) of the
dissociation of 1. IRC calculations performed at the
B3LYP level directly lead to dissociation into linear NBN
atom and one N2 molecule. The barrier for the decompo-
sition reaction 1 → TS12 → NBN + N2 is predicted to be
132.3 kJ mol-1 at the CCSD(T) level of theory, indicating
the high kinetic stability toward decomposition. In addition,
Fig. 3 shows that the energies of linear BN2 + N2 and linear
NBN + N2 molecules are all higher than 1, and TS11, TS12
are virtually transition structures of synthesis isomer 1. The
synthesis energy barrier heights via TS11, TS12 corrected
by ZPE were predicted to be only 86.2 and 35.6 kJ mol-1 at
the CCSD(T) level, respectively. Therefore, the experimen-
tal synthesis of 1 via TS11, TS12 seems possible theoret-
ically. Furthermore, it seems more feasible to synthesize 1
by linear NBN and N2 via TS12. The possible isomerization
from 1 to 4 was also studied. The two conformers
interconvert through a transition structure TS14 (seen in
Fig. 3). Conformer 1 converts to 4 with a barrier of
66.1 kJ mol-1, and conformer 4 converts to 1 with a barrier
of only −7.5 kJ mol-1. Therefore, conformer 4 is not likely
to be stable, and if it is formed in any process, it will
transform into the C2v branched 1.

The C2v bent 2, the cis-CS linear 3 and the trans-CS

linear 5 are three chain structures. As tabulated in Table 1,
they lie above 1 by 6.2, 91.3 and 340.3 kJ mol-1 at the
CCSD(T) level of theory, respectively. As shown in
Fig. 1, the two terminal N-N bonds (1.130-1.140 Å) in
structure 2 are close to the N≡N triple bond. The bond
length of N2-N3 (1.110-1.124 Å) in structure 3 is also
close to that of N≡N triple-bond, but the bond length of
N2-N4 (1.237-1.250 Å) is closer to that of N=N double-
bond. The bond length of N2-N3 (1.126 Å) in structure 5
is also close to that of N≡N triple-bond, but the bond
lengths of N2-N4 (1.306 Å) and N4-N5 (1.293 Å) are
closer to that of N=N double-bond. Structure 2 is

Table 3 Energy differences (kJ mol-1) of transition states relative to
BN4 isomers (Including ZPE corrections at the B3LYP/6-311+G* level
of theory

Species B3LYP/6-311+G* CCSD(T)/6-311+G*
//B3LYP/6-311+G*

1(C2v) 0.0 0.0

TS11(C1) 123.9 99.6

TS12(CS) 182.1 132.3

TS14(C1) 97.1 66.1

2(C2v) 0.0 0.0

TS2(CS) 93.3 59.9

3(CS) 0.0 0.0

TS3(C1) 297.2 280.9

4(D2) 0.0 0.0

TS14(C1) 3.3 −7.5
5(CS) 0.0 0.0

TS5(CS) −2.5 −2.5
6(C4v) 0.0 0.0

TS69(CS) 135.2 137.7

7(CS) 0.0 0.0

TS78(C1) 79.1 88.7

8(C2v) 0.0 0.0

TS78(C1) 25.1 39.8

9(C2v) 0.0 0.0

TS69(CS) 71.1 77.4

TS9(C1) 23.4 20.1

Table 2 Total energies (E) and zero-point energies (ZPE) for the BN4

transition states

Species B3LYP/6-311+G* CCSD(T)/6-311+G
*//B3LYP/6-311+G*

E ZPE E

TS11(C1) −243.77925 37.7(284i)d −243.18516
TS12(CS) −243.75670 36.8(124i) −243.17250
TS14(C1) −243.79091 41.9(254i) −243.19954
TS2(CS) −243.79560 36.8 (89i) −243.19761
TS3(C1) −243.68425 42.3(537i) −243.08323
TS5(CS) −243.69502 38.9 (387i) −243.09502
TS69(CS) −243.59958 40.6(550i) −243.01477
TS78(C1) −243.62086 39.3(283i) −243.02879
TS9(C1) −243.61847 42.3(347i) −243.03719

d The values in parentheses are the lowest vibrational frequencies
[υl(cm-1)]
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energetically lower than 3 and 5 probably due to having
more N≡N triple-bonds. The B-N distances in 2, 3 and 5
are all slightly shorter than the sum of covalent radii of
the corresponding B atom and nitrogen atom. To further
analyze their kinetic stabilities, we have investigated their
decomposition pathways. The dissociation of 2 proceeds
in a straightforward manner with simple bond fission. The
transition state TS2 (CS) was located on the PES. As
shown in Fig. 2, we can note that, compared with
structure 2, the bond length of B1-N4 in the transition
state is stretched to eliminate one N2 molecule whereas
that of N4-N5 is actually compressed. The barrier for
dissociation is 93.3 kJ mol-1 at the B3LYP level but only
59.9 kJ mol-1 at the CCSD(T) level, indicating that it is
not very stable toward decomposition. Structure TS3 (CS)
is a dissociation transition structure of 3. IRC calculation
performed at the B3LYP/6-311+G* level directly leads to
dissociation into a linear BN2 and one N2 molecule. The
barriers for the decomposition reaction 3 → TS3 → BN2 +
N2 are predicted to be 297.2 and 280.9 kJ mol-1 at the
B3LYP and CCSD(T) levels of theory, respectively. The high
dissociation barriers suggest that species 3 is highly stable

kinetically. Similarly, structure TS5 (CS) is a dissociation
transition structure of 5. IRC calculation performed at the
B3LYP/6-311+G* level directly leads to dissociation into
linear BN2 and one N2 molecule. The barriers for the
decomposition reaction 5 → TS5 → BN2 + N2 are even
negative (−2.5 kJ mol-1) at the B3LYP and CCSD(T) levels.
Such low barriers imply that structure 5 is highly unstable
toward decomposition.

The C4v pyramidal 6, the CS five-membered ring 7, the
C2v four-membered ring 8, and the C2v cage 9 are all high-
energy species. They are higher in energy than the most
stable 1 by 412.7, 423.2, 472.6, and 473.0 kJ mol-1 at the
CCSD(T) level of theory, respectively. As shown in Fig. 1,
in structure 6, the N-N bond distances are all close to that
of N-N single-bond (1.449 Å) [26] and the B-N distances
are slightly longer than the sum of covalent radii of the
corresponding B atom and nitrogen atom, but in structure
7, the case is different. The bond distances between
nitrogen and nitrogen are all between that of N-N single-
bond and N=N double-bond, and the B-N distances are
slightly shorter than the sum of covalent radii of the
corresponding B atom and nitrogen atom. In structure 3,

Table 4 Reaction energies
(kJ mol-1) for dissociation of the
BN4 isomers to B + 2 N2

Species B3LYP/6-311+G* MP2/6-311+G* CCSD(T)/6-311+G*
//B3LYP/6-311+G*

1(C2v) −108.4 44.0 4.2

2(C2v) −121.8 115.1 10.3

3(CS) −27.6 105.9 95.4

4(D2) −14.7 272.1 77.9

5(CS) 240.3 - 344.5

6(C4v) 354.6 375.1 416.9

7(CS) 353.7 397.3 427.4

8(C2v) 407.7 597.8 476.8

9(C2v) 418.6 454.6 477.2

Table 5 Reaction energies
(kJ mol-1) for dissociation of the
BN4 isomers to BN2 (linear) + N2

Species B3LYP/6-311+G* MP2/6-311+G* CCSD(T)/6-311+G*
//B3LYP/6-311+G*

1(C2v) −77.4 −15.9 −13.4
2(C2v) −90.4 55.3 −7.1
3(CS) 3.3 46.0 77.9

4(D2) 16.7 212.2 60.3

5(CS) 271.3 - 326.9

6(C4v) 385.9 315.2 399.3

7(CS) 384.7 337.4 409.8

8(C2v) 438.7 537.5 459.2

9(C2v) 450.0 394.3 459.6
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the bond lengths of N1-N4 and N2-N3, 1.415-1.424 Å, are
all close to that of N-N single-bond, whereas the bond
lengths of N1-N2 and N3-N4, 1.311-1.333 Å, are all
between that of N-N single-bond and N=N double-bond.
The B-N distance is also slightly shorter than the sum of
covalent radii of the corresponding B atom and nitrogen
atom. Structure 9 is interesting. Its lowest frequency, 234
and 203 cm-1 at the B3LYP and MP2 levels, respectively,
is high enough to prove the minimum. As shown in Fig. 1,
the N-N bond distances in this structure are all either close
to an N-N single bond or slightly longer, which is
consistent with those in the tetrahedral N4 (where all N-
N linkages are single bonds). In structure 9, the B1-N3
(N4) distances (2.010-2.011 Å) are far longer than the sum
of covalent radii of the corresponding B atom and nitrogen
atom. While the B1-N2(N5) distances (1.475-1.481 Å) are
slightly shorter than the sum of covalent radii of the
corresponding B atom and nitrogen atom. The schematic
potential energy surfaces for isomers 6, 7, 8 and 9 are also
depicted in Fig. 3, indeed, on the basis of B3LYP
geometries, two transition structures (TS69 and TS78)
have been located connecting 6 and 9, 7 and 8 on the PES,
respectively. The barrier going from 6 to 9 is 137.7 kJ mol-1

and from 9 to 6 is 77.4 kJ mol-1 at the CCSD(T)/6-311+G*//
B3LYP/6-311+G*+ZPE (B3LYP/6-311+G*) level of theory.
The corresponding barrier from 7 to 8 is 88.7 kJ mol-1 and
from 8 to 7 is only 39.8 kJ mol-1. Therefore, the conversion
reactions of 6 to 9, and 7 to 8 are difficult to occur and
structures 6, 7 are stable on kinetics, but species 9 and 8 are
not likely to be stable and if they are formed in any process,
they will transform into 6 and 7, respectively. In addition, we
have located one dissociation transition structure for isomer
9. The barriers for the reaction 9 → TS9 → cyclic BN2 + N2

are predicted to be 23.4 and 20.1 kJ mol-1 at the B3LYP and
CCSD(T) levels of theory, respectively. The low dissociation

barriers also suggest that species 9 is highly unstable
kinetically.

The reaction energies for dissociation of the BN4

isomers to B + 2 N2 molecules are listed in Table 4. On the
other hand, kinetic analysis indicates that it seems very
difficult for BN4 isomers to dissociation into one B atom
and two N2 molecules, while the dissociation products are
generally a linear BN2 and one N2 molecules. According-
ly, the reaction energies for dissociation of the BN4

isomers to linear BN2 + N2 molecules are also listed (see
Table 5). Table 4 and Table 5 show that most dissociation
reactions are exothermic. Furthermore, structures 3, 6 and
7 have high dissociation energies as well as significant
dissociation or isomerization barriers and therefore should
be regarded as suitable precursors of high energy density
materials.

Summary

We have examined nine nitrogen-rich BN4 compounds in
the present study. Among them, the C2v branched structure
is the global minimum. Kinetic analysis shows that the C2v

branched, the cis-linear, the C4v pyramidal, and the CS five-
membered ring structures are all likely to be stable and to
be observed experimentally. However, the C2v bent struc-
ture and the trans-linear are kinetically unstable due to their
low dissociation barriers. The D2 bicyclic, the C2v four-
membered ring, and the C2v cage structures are also
kinetically unstable, and if they are formed in any process,
they will transform into other structures. Therefore, among
the nine BN4 isomers, the cis-linear, the C4v pyramidal ,
and the CS five-membered ring structures may be possibly
used as precursors of HEDMs because of their high
dissociation energies and significant stabilities. Two

Fig. 3 Schematic potential energy surfaces for doublet BN4 isomers
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potential synthesis pathways of the C2v branched isomer
were located. It seems more feasible to synthesize this
species by linear NBN and N2.
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Abstract The Ku70/80 heterodimer is among the first
responding proteins to recognize and bind the DNA double
strand breaks (DSBs). Once Ku is loaded at the DSB, it
works as a scaffold to recruit other repair factors in non-
homologous end joining thereby facilitates the following
repair processes. In this work, we characterized the detailed
interactions and binding free energies between a Ku70
subunit and several DNA duplexes, by using some well-
established computational methods. The results reveal that
the structure of the protein may suffer certain contractions
without the company of Ku80, and may experience large
conformational changes in the presence of different DNA
duplexes. Notably, we observe the closest interactions
between Ku70 and DNA can be easily strengthened to
form H-bonds with the bases in the minor groove, which is
unexpected. However, this finding is supported by the
presence of a similar bond between Ku80 and DNA in the
published crystal structure (PDB code 1JEY). We suggest
that these interactions are responsible for the observed
pausing sites when Ku translocates along DNA and the
subtle difference in binding with AT- and GC-rich DNA
ends. Additionally, simulations indicate the inner surface of
the ring encircling the DNA is not flat, but contains a

delicate clamp like structure, which is ideal to grip the two
strands of DNA in the minor groove and confine the
movement of the duplex in a unique helical path.

Keywords Binding free energy . DNA repair . Ku70 . Ku-
DNA binding .Molecular dynamics simulation

Introduction

Non-homologous end joining (NHEJ) is the primary DNA
double strand break (DSB) repair pathway in multi-cellular
eukaryotes [1, 2]. The first step in NHEJ is the specific
recognition and tethering of the DNA ends at the site of the
lesion. This is carried out by Ku, a heterodimer protein
consisting of the two highly related subunits Ku70 and
Ku80 [3]. Once bound at the DNA ends, Ku works as a
scaffold protein to recruit other repair factors that are
required in NHEJ, which in mammalian cells, include
DNA-PKcs (DNA-dependent protein kinase catalytic sub-
unit), Artemis, polymerase μ and λ, and a complex of XLF
(Cernunnos), XRCC4, and DNA ligase IV, etc. [4]. These
proteins act together in a highly coordinated way to cleave
the incompatible section, fill the gap, and ligate the strands
of DNA [1]. It was reported recently that the recruitment of
these enzymes is not necessarily in the exact order of
nuclease-polymerase-ligation, but can have a wide range of
flexibility disregarding the exact structure of the DNA
broken ends [5]. This observation underscores the key
mediation role that Ku plays in NHEJ pathway.

The crystallographic structure of human Ku heterodimer
reveals that, despite a low level of sequence identity (∼15%),
the two subunits share a common core structure consisting of an
N-terminal α/β domain, a central β-barrel domain, and a
helical C-terminal arm, which together form a pseudo-
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symmetrical ring-like channel that is just large enough to
encircle a DNA duplex [6]. This finding explains many
previous works attempting to identify the interfaces of Ku
subunits in dimerization, DNA binding and repair components
interaction [7]. However, there are certain segments of each
subunit that are undetermined presumably due to experimental
difficulty. The missing parts in Ku70 include residues 1–34,
224–230, and 539–558 [6]. Several studies have indicated
these residues are important in DNA-binding and protein-
protein interactions [8–11]. In Ku80, the most prominent
missing part is the C-terminal region, which extends from
residue 543 to 732 and is about 40% of the total sequence of
this 86 kDa polypeptide [6]. Two separate experiments have
identified the isolated structure of this region, which is
characterized by a hex-helical globular domain flanked with
a long unstructured loop at the N-terminus and a short loop at
the extreme C-terminus [12, 13]. The extreme C-terminal loop
was found to be responsible for the association of Ku with
DNA-PKcs [14]. Though structural modeling of the full
length Ku70/80 aided with advanced detecting technologies
were reported recently [15, 16], due to their low resolutions
and the apparently discrepant results, the structural knowledge
of this domain in Ku heterodimer as well as its precise
functions in the context of Ku protein-DNA and protein-
protein interactions has been limited.

In addition to DNA repair, several investigations suggest
that Ku70/80 play important roles in a number of other
fundamental cellular processes such as telomere maintenance,
transcription, and apoptosis [1]. Since no computational
modeling studies have been reported for this system, it would
be of general interest to utilize the well-established computa-
tional tools to examine the detailed interactions of the various
domains of Ku with DNA ends. Such studies could consider
the conformational and functional implications of these
domains in the monomer and heterodimer forms as well as
in the presence of DNA and other NHEJ factors. In this study,
as a first step of this effort, we singled out the Ku70 subunit
from the crystal structures of Ku heterodimer and its complex
with DNA, and applied classical molecular dynamics (MD)
simulations and binding affinity analysis on the full-length
Ku70 monomer and several Ku70-DNA complexes. Our
goals are: (i) mapping out the flexible versus rigid regions of
Ku70 and monitoring the conformational alterations without
the support of Ku80 and in the presence of different DNA
duplexes; (ii) quantifying the energetic contributions of
different domains of Ku70 in the binding affinity of this
prominent protein-DNA complex; and (iii) examining the
processes of Ku70-DNA association and dissociation in
atomic details and checking the possible forces that drive the
translocation of Ku70 along the DNA duplex.

This paper is divided into three major parts plus Methods
and Conclusions. We first identify the differences between the
structures with and without the support of Ku80, and trace the

time evolution of key interactions between the domains of
Ku70 and DNA duplexes along multi-nanosecond trajectories.
Evidences from this analysis indicate that the structural
integrity of Ku70/80 heterodimer is important if not essential
for its role in the initial recognition and binding of DNADSBs.
Second, we calculate the binding affinity of several Ku70-DNA
complexes and decompose them into each domain of Ku70,
with the help of the well-established MM-GBSA method. This
energetic analysis helps to shed light on the functional
implications of each domain of Ku70 in its interactions with
DNA and with other repair factors. Third, we present results of
two targeted molecular dynamics simulations that mimic the
loading and unloading processes of DNA duplex with respect
to the channel of Ku70; these simulations, along with the
illuminated uneven inner surface of the channel, support the
proposed concept that the movement of Ku along DNA duplex
is constrained to a unique helical path [6].

Methods

Modeling

Coordinates of the Ku70 and Ku70-DNA complex were
extracted from crystal structures with PDB codes 1JEQ and
1JEY [6], as the initial structures for nine simulation
systems to build up (Table S1 of Supporting information).
Missing residues 1–34, 224–230, and 539–558 were added
by using Swiss-PdbViewer [17] (Fig. 1a). For the two
complexes with Ku70 located at the internal site of DNA
(Ku70AT2L and Ku70AT2R), the loop 1–34 was initially
arranged at the left side and right side of the duplex,
respectively, when viewed from the N-terminus to C-
terminus of Ku70 (Fig. 1b). These two models were built
in an effort to examine the possible effect of this loop to the
translocation of Ku70 along a DNA duplex.

After the three-way junction was removed, the crystal
structure of Ku70-DNA complex contains only a 14-bp DNA
duplex, which is of the minimal length of oligonucleotides
that Ku-DNA association could be detected in vitro [18, 19].
To investigate the interaction of Ku70 with a longer DNA
helix, two 10-bp DNA duplexes were added to the ends of
14-bp DNA in Ku70-DNA complex in different ways
(Fig. 1c). One duplex (5′-GCGTTAACGC-3′) was obtained
with PDB code 1CQO [20]. Another duplex was constructed
by the nucgen facility of the AMBER10 software package
[21], with sequence 5′-GCGCGCGCGC-3′. All DNA
duplexes are blunt-ended and in the canonical B-form.

Relaxation of the loops

To help the model of missing residues find their optimal
positions in the monomer and in the presence of different
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DNA duplexes, an extensive relaxation protocol was applied
to each system before putting them into explicit water boxes.
This includes 10,000 steps of constrained energy minimiza-
tion and five rounds of 100 ps simulated annealing. During
this stage, the coordinates of the experimentally determined
residues of Ku70 as well as all nucleotides were restrained
with a force constant of 2.0 kcal (mol Å)-1, while the modeled
residues of Ku70 were kept free. An implicit solvent model
of Hawkins-Cramer-Truhlar [22] was used to represent the
electrostatics of aqueous solution. GB/SA methodology
(igb=1, cut=16.0Å, rgbmax=12.0Å, and surften=0.005 kcal
(mol·Å2)-1) was used with the salt concentration set to 0.2 M,
to represent the solvent and ionic effects, respectively. Each
simulated annealing step was performed by heating the
system from 0 K to 600 K for 10 ps using a heat bath time
coupling constant of 0.2 ps, maintaining the system at 600 K
for another 15 ps. During the remaining 75 ps, the system’s
heat bath was softened with time coupling constant to 4.0 ps
and slowly tightened to 0.05 ps, and the temperature was
simultaneously reduced from 600 K to 0 K. These and the
following MD simulations were performed using the
software package AMBER10 [21], with all-hydrogen ff99SB
protein [23] and ff99bsc0 nucleic acid [24] force fields.

MD simulations

The final structures of relaxation were placed into periodic
boxes of TIP3P water molecules, with counter ions to
neutralize the total charge. The distances between the edges
of the water box and the closest atom of the solute were at least
10Å in all cases (Table S1 of Supporting information). The
particle mesh Ewald method was used to treat the long-range
electrostatic interactions, and bond lengths involving bonds
to hydrogen atoms were constrained using SHAKE. The
time-step for all MD simulations was 2.0 fs, with a direct-
space, non-bonded cutoff of 9.0Å. Translational center-of-
mass motions were removed every 1000 steps. The systems
were minimized by 500 steps of EM with restraints of
2.0 kcal (mol·Å2)-1, followed by 35 ps canonical ensemble
(NVT)-MD. Then five rounds of 600 steps of minimization
were conducted to reduce the solute restraints gradually;
2.0 kcal (mol·Å2)-1 restraints were again used while heating
the entire system to 300 K. Then, with a time constant of
2.0 ps for heat-bath coupling, solute restraints were reduced
gradually over 50 ps, and the systems underwent isothermal
isobaric ensemble (NPT)-MD simulations to adjust the
solvent density. After the equilibration phase, the production

Fig. 1 Modeling scheme
of full length Ku70 and its
complexes with DNA. (a) The
stereo structure of the crystal
structure of Ku70 (PDB code:
1JEQ). The residues at the ends
of three missing loops are
labeled. (b) The schematic
diagram of Ku70AT2L and
Ku70AT2R, viewed from
N-terminal side of Ku70 to
C-terminal side. (c) Five
Ku70-DNA complexes
investigated in this study
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phase without any constraint was followed at 300 K and
1 atm for 20 ns. Structural figures were generated using
VMD [25] and PyMOL [26].

Targeted MD simulations

To examine the dynamical process of DNA loading to and
unloading from Ku70, the 14-bp DNA duplex in Ku70D was
manually translated to a place close to the C-terminal loop,
where the center of the DNA duplex is about 60Å away from
the fully loaded position, with all atomic RMSD 66.9Å from
the crystal structure. Two 1-ns targeted MD (TMD) simu-
lations were conducted, for loading and unloading, respec-
tively. The bound structure was set as the target and the
unbound Ku70-DNA system as the starting system for loading
process, and vice versa for the unloading process. The bound
and unbound systems were placed into periodic boxes of
TIP3P water molecules, with counter ions to neutralize the
total charge, and buffer size were adjusted to ensure the
numbers of water molecules of the two systems are the same.
As a result, the least distance between the edges of the water
box and the closest atom of the solute was 6.82Å for unbound
system and 13.80Å for bound system. The two initial systems
went through the same minimization, heating, and equilibra-
tion steps as the above MD procedure. The time steps for
TMD simulations were all set to be 1.0 fs. During the TMD
steps, the backbone atoms of residues 35–250 of Ku70 (i.e.,
the α/β domain) were fixed in space with constraint 2.0 kcal
(mol·Å2)-1, while all atoms in the 14-bp DNA duplex were
driven by a force constant of 0.01 kcal (mol·Å2)-1, to adjust
the RMSD from 66.9Å to around 0.0Å. In both systems the
direction of the dragging force is approximately along the
helical axis of the DNA duplex. The magnitude of force was
chosen via a trial and error procedure. Larger or smaller
forces were found to render either very rugged trajectories or
much deviated ending structures.

Binding energy calculation

The MM-GBSA approach to calculate the binding free
energy of complexes formation A + B → AB usually uses
the following thermodynamic cycle [27]:

Aaqu þ Baqu
ΔGbinding�! ABaqu

#�ΔGA
solv #�$GA

solv #�ΔGA
solv

Agas þ Bgas
ΔGgas�! ABgas

ΔGbind ¼ ΔGgas �ΔGA
solv �ΔGB

solvþΔGAB
solve

¼ ΔHgas � TΔS �ΔGA
GBSA �ΔGB

GBSA þΔGAB
GBSA

¼ ΔHgas � TΔS þΔΔGGB þΔΔGSA

ð1Þ

ΔHgas � ΔEgas ¼ ΔEintra þ ΔEele þ ΔEvdW ð2Þ

ΔΔGGB ¼ ΔGAB
GB � ðΔGA

GB þ ΔGB
GBÞ ð3Þ

ΔΔGSA ¼ ΔGAB
SA � ðΔGA

SA þ ΔGB
SAÞ: ð4Þ

In Eq. 1 ΔGgas is the interaction energy between A and B
in the gas phase. The enthalpy part (ΔEintra þΔEeleþ
ΔEvdW ) was approximated by the Sander module of
AMBER 10 using an infinite cutoff for nonbonded inter-
actions. As we applied single trajectory approach in which
the protein and DNA structures were taken from the complex
simulation, the ΔEintra term in all systems is consistently

zero. ΔGA
solv; ΔGB

solv; ΔGAB
solve are the solvation free energies

of A, B and AB, which include the electrostatic and non-
polar component [27]. The electrostatic portion was calcu-
lated using the GB/SA method with 0.1 M salt [22]. The
non-polar portion of the solvation energy (i.e., due to cavity
formation and hydrophobicity) was calculated using the Still
equation, GSA ¼ gSA, where γ is an empirical atomic
solvation parameter, 7.2 cal Å-2, and SA is the solvent
accessible surface area calculated with a solvent probe radius
of 1.4Å. The entropic part of the energy, TΔS, is
calculated through normal-mode analysis with the NAB
program of Ambertools [28]. Each solute structure was
minimized using the conjugate-gradient method to an RMS
gradient of 10-4 kcal (molÅ)-1 with a constant dielectric 1.0.
Only five snapshots of each trajectory were considered, due
to the high demanding of such calculations [21].

In order to understand the contributions of the various
domains of Ku70 to the binding affinity of complex,
differences in the energy terms upon formation of the
complexes were calculated. This typically involved calcu-
lation of the difference between a selected term for the
complex and those of the individual molecules comprising
the complex.

Results and discussion

Structural contraction and conformational changes

To examine in detail the biologically critical functional
interactions of Ku70 with DNA broken ends, we carried out
extensive molecular dynamics simulations with the Ku70
monomer as well as several Ku70-DNA complexes. The
simulations reveal significant contraction of the overall
structure of Ku70, particularly the ring structure and the C-
terminal arm, and large conformational shifts exemplified
by the C-terminal SAP domain. Figure 2 shows the
structures of snapshots taken from the end of the simu-
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lations, with comparison of the crystal structures. Though
this is not surprising as a result of losing the support from
Ku80, questions are raised as to how in some experiments
Ku70 could bind DNA in the absence of Ku80 [29], and
how the collapsed ring and arm of Ku70 could be expanded
so as to form heterodimer with Ku80. In the following, we
describe the major structural features of these systems and
detailed interactions of the key residues of Ku70 with DNA
during simulation, and discuss the possible mechanisms of
Ku70-DNA binding and Ku70/80 heterodimerization.

Table 1 shows the average root-mean-squared-deviations
(RMSD) of the various domains of Ku70 as well as DNA

during the last 5 ns MD simulations, as compared with the
crystal structures. In all seven systems, the structures of the
α/β domain, the β-barrel, and the SAP domain (residues in
each domain are denoted in the caption of Fig. 2) are very
stable, while the bridge and C-terminal arm are rather
flexible. The extensions of the 14-bp DNA to 24-bp in all
four cases have increased the flexibility of the duplexes,
reflecting the stronger interplaying between DNA and the
solvent in these systems. If comparisons of the last 5 ns
trajectories with the snapshots at 15 ns are made, much
smaller deviations of the bridge, the C-terminal arm, and
the DNA duplexes can be observed (Supporting informa-

Fig. 2 Structural contraction and conformational shift of Ku70
without the support of Ku80. (a) Experimental structure of Ku70;
(b) snapshot of Ku70 with free N-loop at 20 ns; (c) snapshot of Ku70
with trapped N-loop at 20 ns; (d) experimental structure of Ku70D;
snapshot at 20 ns of (e) Ku70D, (f) Ku70AT, (g) Ku70GC, (h)
Ku70AT2L, and (i) Ku70AT2R. The color scheme of the cartoons is as
follows: SAP domain (560–609), red; C-terminal loop (536–559),

orange; C-terminal arm (440–535), yellow; β-barrel (251–276, 343–
439), green; Bridge (277–342), blue; α/β domain (36–250), cyan; N-
terminal loop (1–35), purple; DNA, magenta. All structures are
viewed from the C-terminus to N-terminus of Ku70, with DNA helix
in the complexes approximately perpendicular to the plane of the ring.
Hairpin 1, 2, 3 discussed in the text are labeled in the crystal structures
(a) and (d)
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tion Table S2). This indicates the overall structures of Ku70
and DNA are well equilibrated and maintained in the later
phase of simulations. Except in the Ku70 monomer with
trapped N-terminal loop (discussed below), the modeled
missing N-loop is as flexible as the bridge and C-terminal
arm. Unexpectedly, the C-terminal loop is relatively stable
in four of seven systems (Supporting information Table S2),
indicating the existence of some persistent contact of this
region with other parts of the systems. In addition, we
found the missing loop 224–230 shares the same stability as
the α/β domain. It appears that the weak electron density
experimentally detected in these regions is not directly
associated with their flexibility [6].

The observed contraction of the overall structure of Ku70 is
caused by the collapse of the ring structure and the C-terminal
arm (Fig. 2). In all systems, while the three hairpins which
sustain the most flexible bridge part of the ring are well
maintained, their relative positions are significantly shifted.
In fact, the collapse/contraction of the bridge is consistently
caused by the positional shift of hairpin 2 in all systems, as
hairpin 1 is supported by its short helix neighbor and hairpin
3 buttressed by the α/β domain and hence both are relatively
stable (Fig. 2). For the C-terminal arm, we observe its
contraction is correlated with the position of the SAP domain
and the extension of the C-terminal loop. This stems from
the easily formed electrostatic association between the loop
440–455 of the arm and the proximate C-terminal loop and
the SAP domain, as there are alternative positively and
negatively charged patches of residues along these two
mobile regions. Such interactions are noted in six
systems, except for Ku70AT2R in which the SAP
domain diffuses far away from the core of the system
(Fig. 2). After dimerization with Ku80, the C-terminal
arm of Ku70 is known to function as a holder for the β-
barrel domain of Ku80, and the SAP domain is positioned
against the base of the α/β domain of Ku80 [6]. Therefore
the diffusion and translocation of the SAP domain can
presumably help to open the collapsed arm.

Diverse results were obtained for the locations as well as
the interaction modes of the N-terminal loop and the SAP
domain in different systems, as in simulations both regions
display large conformational change from their initial
positions (Fig. 2). We find, even in monomer simulations,
the N-terminal loop 1–34 can have two different locations.
It can either stay freely at the N-terminal side, or extend
most of itself into the ring (Fig. 2b and c). The attraction is
obviously due to the overall negatively charges this loop
has (12 out of 35 residues are aspartate or glutamate), a
feature similar to DNA. In the three complexes with DNA
duplexes ending at the N-terminus of Ku70 (Ku70D,
Ku70AT, and Ku70GC), this loop clearly shows an
obstructive effect on the further translocation of DNA. This
is accomplished by the stacking residues 27–35 of the loop
with the end of DNA. This pose is consistent with a
previous proposal for its function in directing the binding
orientation of Ku with DNA [6]. In Ku70AT2L and
Ku70AT2R where such a barrier is overcome, there is
evidence of interactions between the basic residues of this
loop and DNA backbones. The right side binding appears
to be more favored as more residues are involved in this
mode than in the left side binding mode.

The SAP domain was proposed to be a putative DNA
binding domain [8, 30]. In all complex systems, the SAP
domain is initially located far from the DNA (about 30Å in
Ku70AT and Ku70GC, and 37Å in the other three). In
Ku70D and Ku70AT, we found this domain migrates in
solution and forms close contact with DNA toward the end
of the simulation (Fig. 2e and f). In Ku70D, the interactions
involve the ending bases and the basic residues at loop La
which links the first and second α helices of this domain
[10]. In Ku70AT, the interface of contact is composed of
residues along La and Lb of SAP and the minor groove of
DNA. These results are consistent with previous studies of
this region, such as the chemical shift perturbation
experiment [10] and the chemical modification and mass
spectrometry experiment [11]. However, the binding affinity

Table 1 The average RMSDs of the backbone heavy atoms of distinct
regions in Ku70 and Ku70-DNA complexes with respect to their
crystal structures, determined for snapshots over the last 5 ns of
simulation. For residues in each domain refer to the legend of Fig. 2.

The RMSDs are reported in Å, with standard deviation followed. In
each complex system only the 14-bp DNA the same as in the crystal
structure is considered

System α/β domain β-barrel domain Bridge C-terminal arm SAP domain DNA

Ku70(trapped) 1.2±0.1 1.3±0.1 6.3±0.4 7.0±0.3 1.0±0.1

Ku70(free) 1.3±0.1 1.8±0.2 12.1±0.4 10.2±0.5 1.5±0.2

Ku70D 1.8±0.3 1.5±0.2 7.0±0.3 5.9±0.4 1.3±0.2 2.9±0.2

Ku70AT 1.6±0.1 1.4±0.1 6.7±0.5 7.2±0.5 0.9±0.1 6.5±0.6

Ku70GC 1.3±0.1 1.4±0.1 5.4±0.5 6.6±0.7 1.1±0.2 4.4±0.6

Ku70AT2L 2.3±0.1 1.4±0.1 5.8±0.6 7.4±0.2 1.1±0.2 6.2±0.7

Ku70AT2R 1.5±0.1 1.4±0.1 4.1±0.4 9.2±0.3 1.0±0.1 6.8±0.7
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of this domain with DNA may not be strong enough to
overcome all the hurdles along the path, which is
demonstrated in three other complexes (Fig. 2g, h, and i).
Though started from similar positions as in Ku70D and
Ku70AT, the SAP domain fails to form contacts with DNA
in these systems. It is possible that the interactions of the C-
terminal loop or the C-terminal arm with DNA hamper the
association of SAP with DNA, which will be discussed
below in energetic analysis.

Because of the contraction that occurred for the ring
structure, we observe the association of Ku70 with DNA is
significantly tightened in all complex systems. This is
demonstrated not only from the closer interaction of the
bridge with the DNA duplexes (Fig. 2), but also from the
simulation identified direct interactions of nucleotide bases
with the residues of the β-barrel domain. Figure 3 depicts
the close contacts of R403 and R254 to the bases in Ku70D
at the end of simulation. Conformational analysis indicates
some of them are actually strong H-bonds during the most
time of simulation (Table 2). These base touches are rather
dynamic in the process of breaking and formation, with
competition between interactions with neighboring bases
and with the phosphodiester groups of DNA. Since these
features were identified in all five complex systems (Table 2
and Supporting information Table S3A-D), we curiously
examined the reported crystal structure of Ku-DNA
complex as Ku-DNA binding is widely recognized as in a
sequence-independent manner. Unexpectedly, we found an
overlooked close contact between R400 of Ku80 with the
base of adenine group of DNA at level −4, with P-N
distance of 2.59Å (PDB code 1JEY [6]), which is
presumably a strong H-bond. However, in the crystal
structure, the R254 and R403 groups are clearly associated
with the phosphodiester groups of DNA, as their distances
to the closest phosphodiester groups are significantly
shorter than the distances to the bases. As computational
simulations are supposed to reflect a situation closer to
solution phase dynamics while the crystallographic experi-
ments are done under different condition and on a vastly
different timescale, at this point we cannot attribute the

formation of such base touches solely to the structural
contraction of the protein. Further work is needed to
address this issue possibly by carrying out simulations of
Ku70/80 bound to DNA, or developing new detecting
methods to identify the presence of such base interactions
experimentally. Whether these interactions may affect the
prevailing concept of sequence non-specificity for Ku-DNA
binding will be discussed in following energetic analysis.

The seven systems that we simulated in detail indicate
that, without the support of Ku80, the core channel
structure of Ku70 is not stable. This means the celebrated
bolt-nut mode for Ku-DNA binding may not be formed for
Ku70 alone with DNA duplex segments. It is however
highly possible that other binding modes may exist, as has
been demonstrated in a previous protease digestion experi-
ments with Ku binding with different forms of DNA [31].
In these experiments, the authors showed that Ku could
adopt multiple conformations on DNA, each specific for a
particular DNA form. Particularly, there were evidences that
Ku can bind with sequence-specific closed DNA micro-
circles that are without any breaks or nicks [31]. The
structure of Ku70 reveals that the inner surface of the
channel dominated with charged residues is not fully
covered by the narrow bridge but mostly exposed to the
solvent. These residues are therefore still capable of
forming strong association with DNA from the side of the
ring. In addition, other domains of Ku70 such as the SAP
domain and the C-terminal loop may also contribute to the
alternative modes. The controversial issue of whether
individual Ku subunits could bind DNA might be related
to the sensitivity of the detecting methods. It has been
reported that, in DNA immunoprecipitation and southwest-
ern blot assays, Ku70 binds DNA in the absence of Ku80
[29, 32, 33], but in gel shift assays, only the dimer can bind
[8, 34, 35]. In experiments that Ku80-independent binding
were observed, the binding affinities were apparently
reduced as compared to that of the dimer [29]. Neverthe-
less, the bolt-nut mode on which we investigated can yield
a set of peptide-nucleotide interactions that are ideally
complemented to the topological structure of the interfaces

Fig. 3 H-bond network of R403
(a) and R254 (b) formed with
nucleotide bases in the minor
groove. Produced from the
snapshot of Ku70D at 20 ns
with PyMOL [26]. The minor
groove of DNA is displayed in
semi-transparent surface repre-
sentation, while the involved
nucleotides are in stick form.
The same color scheme is ap-
plied for the heavy atoms of
protein and nucleic acid. The
unit of labeled bond length is Å
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of protein and DNA. The maintenance of the channel
structure, particularly of the narrow bridge, is probably
essential to confine the DNA free ends along a path that
further processes of DNA repair can be facilitated. Our data
support the notion that integrity of Ku heterodimer is
important for its function in NHEJ pathway [11].

Binding energies analysis

The dissociation constant of Ku-DNA evaluated in vitro is
in the range of 2.4×10-9 to 5.0×10-10 M [3], indicating a
very strong interaction among the reported protein-DNA
complexes. Considerable progress has been achieved in
recent years using the continuum electrostatics models to
estimate the binding affinities and free energies of macro-
molecular binding processes [36]. In the following, based
on the MM-GBSA method [27], the energetic analysis on
the overall binding as well as contributions of different
regions of Ku70 involved in DNA binding are reported.
This is followed by analyzing the role of key individual
amino acids located at the inner surface of the channel
structure that form close contacts with DNA.

Table 3 lists the free energies of binding and their major
components for the various complexes, among which
ΔG’bind refers to the binding free energy without the
contribution of the configuration entropy TΔS while ΔGbind

includes such contribution. The calculated binding energies
for all systems are extremely exothermic. It should be noted

all these calculations start with structures where the DNA
duplexes are already bound in the channel of the protein.
This scenario is vastly different from the way that macro-
molecules encounter, interact, and form association with
each other in the in vitro or in vivo experimental settings.
What Table 3 shows are actually the energetic contributions
of the Ku70 subunit to the bolt-nut mode interactions of Ku
heterodimer with different DNA duplexes. Previous studies
indicated Ku70 is the major contributor to Ku-DNA
binding [19, 37]. As the magnitudes of the contribution of
the electrostatic and van der Waals as well as the entropy
are also consistent with similar protein-DNA systems in the
literature [38, 39], and the emphasis in this work are placed
on the differences in energies and structures between the
systems rather than the absolute energies, these results
allow for confidence to the following elucidation of atomic
details of events driving Ku70-DNA binding.

In five Ku70-DNA complexes the major components of
binding free energies are stunningly different (Table 3). The
combined electrostatic term (ΔEele+ΔΔGGB) contributes
unfavorably to the binding in Ku70D, but favorably in the
other four systems. This term is usually reported as
destabilizing the protein-DNA complexation in the litera-
ture [39, 40]. How the extension of DNA changes this trend
is an interesting issue, however it is consistent with the
observation that Ku-DNA binding is more efficient for
nucleic acids with bp>20 [41]. In the systems we
considered, the van der Waals interaction (ΔEvdW) is the

Table 2 H-bonds between
R254, R403 and the bases of
DNA in Ku70D during the last
5 ns MD simulation. Donors and
acceptors are reported as
res@atom. Data is sorted
according to occupancy (%).
Distance cutoff is 3.00Å, angle
cutoff is 120.0 degrees. The
distances (Å) are those between
the donor and the acceptor in
each pair, angles (degree) are
180.0-<(donor, acceptor-H, and
acceptor), and standard devia-
tions are in the brackets

Donor Acceptor-H Acceptor Occupancy Distance Angle

T614@O2 403@HH12 403@NH1 69.2 2.84 ( 0.08) 29.5 (12.4)

T612@O2 254@HH22 254@NH2 48.4 2.84 ( 0.09) 30.7 (12.7)

T614@O2 403@HH22 403@NH2 37.6 2.86 ( 0.08) 33.7 (11.0)

A636@N3 254@HH22 254@NH2 16.4 2.90 ( 0.08) 37.8 (13.2)

A634@N3 403@HH12 403@NH1 15.6 2.91 ( 0.06) 36.3 (14.7)

T612@O2 254@HH12 254@NH1 14.4 2.88 ( 0.09) 30.2 (12.0)

A636@N3 254@HH12 254@NH1 4.8 2.90 ( 0.06) 33.7 (10.4)

A634@N3 403@HH22 403@NH2 0.8 2.86 ( 0.11) 42.6 ( 8.0)

A636@N3 254@HH21 254@NH2 0.4 2.87 ( 0.00) 55.7 ( 0.0)

T612@O2 254@HH21 254@NH2 0.4 2.95 ( 0.00) 48.0 ( 0.0)

Table 3 Binding free energy components of Ku70-DNA complexes. All values with standard deviations followed are given in kcal mol-1, which
are averaged over 250 (5 in the case of entropy contribution) snapshots during the last 5 ns of simulations

System ΔEele+ΔΔGGB ΔEvdW ΔΔGSA ΔG’bind TΔS ΔGbind

Ku70D 19.6±13.1 −181.5±12.7 −30.4±1.6 −192.3±14.3 −113.2±12.3 −79.1±18.9
Ku70AT −9.8±18.1 −137.5±12.2 −25.8±1.2 −173.1±11.2 −105.9±19.8 −67.2±22.7
Ku70GC −8.6±15.9 −140.2±12.1 −25.1±1.5 −173.9±11.1 −88.5±17.8 −85.4±21.0
Ku70AT2L −20.1±15.2 −146.7±8.8 −28.0±1.0 −194.8±14.2 −95.2±13.2 −99.6±19.4
Ku70AT2R −17.9±15.0 −169.7±10.3 −29.6±1.3 −217.2±16.0 −100.4±18.8 −116.8±24.7
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major contributor to the binding energies, contributing
the most in Ku70D, followed by Ku70AT2R. The
extensions of the 14mer DNA duplex systematically
diminish such contributions, probably caused by aver-
aging the extended surface of DNA that is not involved
in direct interaction of the protein in these four systems.
The difference of ΔEvdW between Ku70AT2L and
Ku70AT2R is also significant (≈23.0 kcal mol-1), indicat-
ing the N-terminal loop is energetically more favorable to
locate at the right side of DNA when Ku70 binds at
internal site of DNA (Fig. 1). This is supported by the fact
that this loop in Ku70AT2R maintains much more direct
contacts with DNA than in Ku70AT2L, as discussed
above. The non-polar portion of the solvation energy
ΔΔGSA follows a similar trend as ΔEvdW, while the counter
contribution of the entropy term is significantly large in all
the systems. Overall, the magnitudes of the binding free
energies of Ku70AT2L and Ku70AT2R are significantly
larger than Ku70AT and Ku70GC, though the bound DNA
duplexes are of the same length. This suggests that Ku70
sliding to internal positions of the DNA molecule is an
energetically advantageous process, which may provide a
mechanistic basis to rationalize the well-known energy-
independent feature of the translocation of Ku along
DNA [3].

Table 4 shows the contribution of each domain of Ku70
to the binding free energies of five complexes. Though
lacking entropy contributions due to the computational
difficulty, this analysis can help in understanding the
detailed interaction and function of each domain in the
process of DNA binding. The primary contributions
apparently come from the β-barrel domain and the bridge
part, including residues 251–439 that form the channel. The
contributions of β-barrel domain are persistently the largest
and are almost of the same magnitude in five systems. The
contributions from the bridge part show some variations,
which are possibly caused by its flexibility and the different
configurations in different systems (Table 1 and Fig. 2). For
the three systems with DNA duplexes ending at the N-
terminal of Ku70 (Ku70D, Ku70AT, and Ku70GC), the
energetic contribution of the N-terminal loop and α/β
domain are very small. The extension of DNA at this site

(Ku70AT2L and Ku70AT2R) enhances their contributions.
However, the magnitude of the overall contributions of
these two domains suggests that they just play auxiliary
roles in DNA binding [8, 35, 42]. The three domains at the
C-terminal side of Ku70 altogether show more contribution
to DNA binding, but with dependence of their location with
respect to DNA (Fig. 2 and Table 4). The C-terminal arm,
which functions as a holder for the β-barrel domain of
Ku80 in heterodimer, is observed to form an interaction
with the backbone of DNA at the positively charged patch
from K443 to T449 in Ku70D and Ku70AT2R, while in
other systems almost no contribution can be detected
(Table 4). In the C-terminal loop, there are two positively
charged patches that can participate in DNA binding, one
with residues from K539 to H545, the other from K553 to
K556. The contribution of this loop can be as large
as −23.0 kcal mol-1 in the calculation of Ku70GC. The
contributions of the SAP domain are also system-
dependent. This domain has been found in biochemical
studies to be responsible for the Ku heterodimer’s high
affinity binding to DNA [8, 35], and has been proposed to
be a DNA-binding motif in different proteins [30]. Our
analysis indicates, however, this domain is not a major
contributor to bind DNA as compared with the ring part of
Ku70, and competition may exist between this domain and
the proximate C-terminal arm and C-terminal loop (Table 4).

Binding energy partitioning analysis also indicates that the
primary contribution of Ku70-DNA binding comes from the
positively charged residues along the inner surface of the ring
(Table 5). In each of the five Ku70-DNA systems, five
arginine groups R254, R258, R363, R403, and R404 are
consistently among the groups that contribute the most to the
binding affinity, each in the range of −7.1∼−11.2 kcal mol-1

(Table 5). All of them belong to the β-barrel domain and
are located at the inner surface of the cradle. Another
arginine group R252 of this surface demonstrates
enhanced contributions in Ku70GC and Ku70AT2R only
(−5.9 and −8.0 kcal mol-1, respectively). Two arginine
groups R301 and R318 of the bridge region also show
very strong interactions with DNA in some systems
(Table 5). Analysis indicates the contributions from the
lysine groups are systematically smaller than those of the

Table 4 Domain contributions of Ku70 to the Ku70-DNA binding energies. All values with standard deviation followed are given in kcal mol-1,
which are averaged over 250 snapshots during the last 5 ns. Residues in each region of protein are the same as in Fig. 2

System N-terminal loop α/β domain β-barrel domain Bridge C-terminal arm C-terminal loop SAP domain

Ku70D −4.0±1.1 −0.5±1.7 −64.3±4.6 −41.2±4.2 −7.9±2.7 −7.3±2.8 −11.3±2.9
Ku70AT −2.2±1.7 0.6±1.2 −67.1±5.1 −26.8±5.8 −0.9±0.4 −9.3±4.1 −21.2±4.2
Ku70GC −8.0±1.4 −3.2±2.3 −60.5±4.8 −29.2±5.9 −2.8±2.3 −23.0±2.8 0.0±0.0

Ku70AT2L −8.4±2.0 −7.3±3.1 −64.3±3.3 −45.7±5.8 −1.4±2.8 −14.3±4.2 0.3±0.2

Ku70AT2R −11.2±3.7 −7.8±2.4 −65.0±4.6 −44.9±5.6 −14.4±3.9 −0.1±0.0 0.0±0.0
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arginine groups. Though both residues bear one positive
charge in physiological conditions, arginine has three
nitrogen atoms at the tip of its side chain, and therefore
is more advantageous to form direct electrostatic/H-
bonding interactions with neighboring nucleotides. This
difference may have not been fully aware of in current
biochemical studies. The large-scale mutational analysis
based on site-specific mutagenesis conducted on Ku70 did
not consider any change of these spots [35]. In the recent
chemical modification experiment, K331 was identified as
a contact point to DNA [11], which is in agreement with
our simulations (Table 5). However, this study also
focused on the lysine groups and provided no information
of the arginine groups.

According to Table 5, the contributions of R254 and
R403 which interact directly with the nucleotide bases are
not significantly enhanced, as compared to those of three
other arginine groups (R258, R363, and R404) which
associate exclusively with the phosphodiester groups during
simulations. However, for this pair of positively charged
residues, there is a clear correlation of the magnitude of the
calculated contribution to the H-bonding occupancy iden-
tified in simulations (Table 2 and Supporting information
Table S3A-D). The energetic contributions of this pair are
consistently higher in systems with higher H-bonding
occupancy (Ku70D and Ku70AT2R), though the difference
is not very significant (∼1-3 kcal mol-1; see Table 5).
Therefore these base interactions may not significantly
affect the sequence-independence feature of Ku-DNA
binding. However it is possibly related to the early
biochemical study of the preference of Ku’s binding with
AT-rich DNA ends to GC-rich ones [18], and the observed
pausing of Ku at specific DNA sequences [43].

The presence of H-bonds between these two arginine
groups and the DNA bases supports the notion that DNA is
constrained to move inward with a helical path through the
ring of Ku [6]. A close examination of the inner surface of
the cradle tells that the surface is not flat but equipped with
extruded contour perfectly complimented to the minor

groove of DNA (Fig. 4). Along with the two arginine
groups which are deeply wedged into the groove, several
other proximate residues (R258, R363, R404, etc.) also
form strong interactions with the phosphodiester groups of
both strands. The persistent presence of these interactions
indicates that they may work together to confine the
movement of DNA duplex, which could be essential to
structurally support and align DNA ends to maintain the
correct setting of thermodynamically weak base pairing and
stacking interactions [6].

Mimicking the loading and unloading processes

After the introduction of DNA breaks, it has been found that
Ku can load onto the DNA ends very rapidly (within seconds)
in living cells [44]. This is probably due to the extraordinarily
high affinity of Ku for DNA termini [3] and its abundant
presence in the cell nucleus (approximate 5×105 per nucleus)
[45]. The subsequent recruitment of other repair factors such
as DNA-PKcs in higher eukaryotes generally results in
further translocation to the internal site of DNA [3]. After

Table 5 The contributions to
the binding free energy of Ku70-
DNA complexes from residues
of the inner channel with the
largest contributions. All values
with standard deviation fol-
lowed are given in kcal mol-1,
which are averaged over 250
snapshots during the last 5 ns.
Residues of the bridge part are
indicated with “*”

Residue Ku70D Ku70AT Ku70GC Ku70AT2L Ku70AT2R

R252 −0.2±0.0 −0.7±0.3 −5.9±1.3 −0.8±0.1 −8.0±1.8
R254 −9.7±1.6 −7.7±1.2 −8.1±1.2 −8.1±1.4 −9.1±1.8
R258 −9.5±2.7 −11.2±0.9 −10.2±1.2 −11.0±1.1 −9.0±1.8
K297* −0.5±0.7 −0.7±0.5 −3.1±2.1 −4.8±1.6 −6.2±2.1
R301* −0.4±0.0 −5.7±2.5 −10.3±2.3 −6.0±2.4 −4.6±2.8
R318* −8.3±0.9 −6.3±2.1 −4.6±2.4 −11.8±1.5 −12.0±1.9
K331* −6.3±1.2 −3.0±2.8 −1.4±1.1 −4.2±2.9 −8.8±1.8
R363 −10.2±1.9 −10.8±3.6 −7.1±1.2 −7.6±1.0 −9.6±2.3
R403 −10.2±1.1 −10.6±1.0 −8.4±2.6 −7.2±1.2 −10.0±1.1
R404 −8.9±0.8 −9.7±1.7 −9.0±2.4 −9.6±1.0 −8.8±1.6

Fig. 4 Extruded contour of the inner surface of the Ku70 β-barrel (a)
which is perfectly complemented to the minor groove of DNA (b).
Produced from the final snapshot of Ku70D simulation with PyMOL
[26]
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ligation of the break, if no degradation occurs, the Ku70/80
will probably be trapped on the DNA helix, and will present
a challenge to the progression of the replication fork [6]. To
understand in more details the interactions between Ku70
and DNA duplex during the processes of association and
dissociation, two TMD simulations were conducted to
imitate the initial loading of Ku70 onto the DNA duplex
and the unloading process before their departure.

Due to the large size of the systems and short time steps
(see Methods), the two TMD simulations we conducted
were confined to a time frame of 1 ns. This limitation has
shown both pros and cons for our purpose. First, we
observe the Ku70 subunit in these simulations can maintain
their core structure without significant contraction. There-
fore the systems allow the loading and unloading of DNA
duplex with respect to the channel to occur with less steric
block. In the meantime, the effect of losing the support of
Ku80 on Ku70-DNA interaction can be mitigated. Howev-
er, from the MM-GBSA energetic profile depicted in
Fig. 5a, the binding free energies of the bound structures
(the starting structure of unloading and the ending structure
of loading) are significantly smaller than that calculated
from the last 5 ns simulation of Ku70D (Table 4). This is
apparently due to the absence of the effect of structural
contraction. In addition, we observe smaller association
energies for the conformations at the end of loading
simulation as compared to those when the unloading
simulation starts (Fig. 5a). This indicates the loading
process is not fully completed. A careful examination on
the final structures of loading simulation indicates that the
optimal binding pattern observed at the end of 20 ns
simulation is not fully formed. Although the dragging force
applied to the DNA duplex accelerates the diffusion of the
segment to a location in the channel of Ku70, the final

configuration is probably just close to a transition state and
will be subject to further adjustment [46]. The following
results thus only highlight the energetic and structural
features during the courses of loading and unloading.

The results of energetic analysis are consistent with the
observed structural features of Ku70, especially the inner
surface of the ring. For the loading simulation, the system
starts to gain binding energy at around 600 ps (Fig. 5a),
which is the moment that one end of the DNA duplex
reaches the opening of the ring. From this point on we also
observe continuous shortening of the DNA length (Fig. 5b),
and more and more associations formed between the DNA
end and Ku70 residues at the opening of the channel. The
snapshot at 872 ps is a turning point for this process. At this
point, the system experiences the largest gain in binding
free energy and the shortest DNA length (Fig. 5a and b). At
this moment, the DNA end is still at the opening of the ring,
but has formed many strong associations with the basic
residues on the bridge and the inner surface of the cradle
(Fig. 6a). It takes about 172 ps for the DNA end to process
from the first contact at the opening of the ring to the fully
associated configuration. After this snapshot, the DNA end
enters the ring, and the system starts to destabilize for more
than 20.0 kcal mol-1 and cannot regain the loss even at the
end of the simulation (Fig. 5a). This is highly indicative
that it is not an energy favored process to pull the DNA end
from one side of the ring to the other side by the force
applied along the DNA axis. The shape of the cradle
surface suggests that, if the applied dragging forces are not
along the DNA axis but in a direction along the helical path
of DNA, the association would encounter less resistance,
especially from the two extruded arginine groups (Fig. 4).

The helical path of Ku70-DNA translocation is also
suggested from the analysis of the unloading trajectory.

Fig. 5 Energetic profile (a) and the changes of DNA length (b)
during the loading and unloading processes of Ku70D. The binding
free energies are calculated from 250 snapshots extracted evenly from

the two 1 ns TMD simulations with MM-GBSA method, without the
entropy contributions. The lengths of DNA duplex are calculated with
the distance function of the ptraj module of Ambertool [28]
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During the first 100 ps of this trajectory, the strong
interactions between the DNA and the residues along the
inner surface of the Ku70 ring are almost unaltered, and the
DNA end is kept bound in the starting position. Therefore,
the binding free energies do not change much during this
period (Fig. 5a). However, it is observed that the DNA
duplex is continuously elongated (Fig. 5b) and its B-form
structure is gradually deformed. The sudden loss of binding
energy at about 100 ps (Fig. 5a) is most likely caused by
the breakage/adjustment of the strong interactions of DNA
with the residues on the inner surface of the channel, as no
abrupt conformational alterations can be observed for the
protein as well as the DNA duplex at this stage. Figure 5b
shows that, starting from the beginning of the unloading
simulation, the length of the duplex is increased almost
linearly with time, and reaches a plateau after 200 ps. Visual
examination of the trajectory indicates the duplex has
finished its deformation at this point, which leads to a
shrunken diameter, enabling the pulling out of the duplex to
process smoothly. During the following 100 ps simulation,
although there is a significant loss of the binding free
energy, the length of the DNA is almost unchanged (Fig. 5a
and b). Apparently the deformation and the shrinking of
DNA are caused by the combination of the force applied
along the DNA axis and the uneven inner surface of the
narrow channel. A helical path which the Ku protein rotates
around DNA helical structure is therefore a reasonable
concept for the system to maintain the delicate forces of
DNA to base pairing and stacking interactions while
allowing the Ku protein to translocate along the duplex
with minimal expense of energy [6].

Similar to the snapshot at 872 ps of the loading
simulation, the snapshot at 300 ps of unloading
simulation also represents a turning point for this
process. At this stage, the DNA end has already been
pulled out from the channel, but there are still many
strong interactions available between the DNA end and

the basic residues of the inner surface of the channel
(Fig. 6b). The calculated binding affinity is as strong as
the configurations just after 100 ps (Fig. 5a), in which the
end of the DNA duplex is still almost fully trapped in the
channel. The following departure from this position causes
the duplex to elongate another 2.5Å (Fig. 5b), leading to a
most disrupted structure along the whole trajectory.
Interestingly, the calculated binding free energies of these
two structures are very close to each other (Fig. 6).
Though in both structures the end of the DNA is similarly
located at the opening of the ring, the patterns of protein-
DNA interaction are very different. The bridge part
apparently plays a more important role in the loading
process, as there are seven basic groups of this region
forming close contacts with DNA (within 5Å). These
include R301, R318, K279, K282, K287, K297, and K331
(Fig. 6a). By contrast, only two of them (K279 and K297)
closely interact with DNA in the unloading structure
(Fig. 6b). The β-barrel only makes a minor contribution at
this stage of loading, as only two residues (R363 and
R403) form close interactions with DNA; two basic
groups from the C-terminal arm (R444 and K445) also
join these interactions (Fig. 6a). Therefore, the binding
pattern of Ku70-DNA in the loading structure is very
different from the complex analyzed above (Table 5). On
the contrary, despite the significant deformation of the
DNA duplex and a certain translocation of the DNA end
in the unloading structure, the binding network between
Ku70 and DNA at this stage is still similar to the original
structure. The basic groups from the β-barrel (R254,
R258, R403, and R404) are still among the groups
maintaining closest contacts with DNA. This implies that,
once the interactions in Ku-DNA are formed, it is very
hard to break them, which is consistent with the
experimentally measured high affinity of Ku-DNA bind-
ing [3], and the observed vast difference between the
association rate and dissociation rate [37].

Fig. 6 Structures of Ku70D at
872 ps of loading simulation (a)
and 300 ps of unloading simu-
lation (b), which are the turning
points of Ku70-DNA associa-
tion and dissociation (see text).
The calculated binding free
energies are (a) -53.25 and
(b) -53.62 kcal mol-1, respec-
tively. Also the basic groups
(arginine and lysine) of Ku70
within 5Å of the DNA duplex
are shown in sphere representa-
tion. The color scheme is the
same as in Fig. 2
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Conclusions

The Ku protein has undergone many experimental studies
since it was initially identified about three decades ago,
however details of its many functions in DNA repair as
well as in other fundamental cellular processes are still the
subject of much debate. In this study, by utilizing some
well-established computational tools, we analyzed the
unique interactions between a full-length human Ku70
subunit and several DNA duplexes in atomic details. The
results reveal a number of features not previously charac-
terized by using ordinary biochemical or biophysical
techniques, and thereby shed light on some controversial
issues of this protein and its interaction with DNA.

Many previous experiments implied that the two
subunits of Ku need to be dimerized so as to function
properly in DNA repair [47–49]. Our simulations reveal
that, without the support of Ku80, the ring structure and the
C-terminal arm of Ku70 can easily be contracted, and the
N-terminal loop may be attracted into the positively
charged ring due to its overall negative charges. All these
conformational changes most likely preclude the binding of
Ku70 to DNA ends in the bolt-nut mode as identified
experimentally for the Ku heterodimer. However, as the
opening of the ring and other domains such as the C-
terminal loop and the SAP domain also demonstrate DNA-
binding capability in this study, it is possible that some
different modes may exist for Ku70 monomers to bind
DNA. The energetic analysis indicates the binding of DNA
with these regions are significantly weaker than that of the
β-barrel and the bridge domains in the bolt-nut binding
mode, which may provide a basis to resolve the issue of
subunit independent DNA binding of Ku70 or Ku80.
Whether such bindings can be detected is probably
dependent upon the sensitivity of the methods.

It is widely recognized that Ku interacts with DNA in a
sequence-independent manner [3]. However, there have
been reports that, when Ku translocates along DNA, it can
be observed to pause at specific locations [6, 43]. Such
sequence specific interactions are extremely interesting, as
Ku is known to play important roles in the transcription and
other chromosomal regulatory processes. Previous works
proposed the SAP domain, which shows DNA binding
capability, might cause such sequence preference [6].
However to date it seems that no experiment has been
carried out to verify this proposal. Alternatively, we propose
this type of interaction could be related to the base contacts
identified in this study. Interestingly, there is a strong H-
bond between R400 of Ku80 with the nucleotide base in the
published crystal structure, which was overlooked in the
corresponding reference [6]. In our simulations, all these
base interactions are located in AT region. The AT pair have
two donor atoms (N3 of adenine and O2 of thymine) that

are unpaired in the minor groove, which presumably make
it easier for the acceptor atom of the arginine to form H-
bonds. By contrast, it is known that no such atom exists in
GC pair along the minor groove. This analysis is therefore
consistent with the observation that Ku’s binding with AT-
rich DNA ends is preferred to with GC-rich ones [18].

The structural analysis also indicates that the inner
surface of the channel, particularly the surface of the
cradle, is not flat, but is equipped with an uneven
contour composed of positively charged residues, which
is perfectly complemented with the shape of the minor
groove of DNA. The residues that contribute most to
the binding affinity of the complexes form a clamp like
shape, being able to grip both strands of DNA at this
spot. As these interactions are unlikely dissolved during
the translocation of Ku along DNA, the strong associ-
ation of Ku70-DNA may work together with other
domains to confine the movement of Ku along DNA in
a unique helical path. Two targeted MD simulations
conducted to imitate the initial association and the final
dissociation of Ku70 with DNA also indicate that a
direct translation of the DNA duplex along its axis
results in deformation and corruption of the canonical
structure. This finding suggests a helical path for the Ku
protein to rotate around DNA duplex while translocating
internally is essential for the system to maintain the
delicate forces of DNA to base pairing and stacking
interactions.

From this study, all loops and domains of Ku70 appear
to be well designed to work together to carry out its unusual
mode of DNA binding. The C-terminal region contains one
flexible loop with DNA-binding capability and one special
DNA-binding motif (SAP domain) that has also been
identified in other protein families. Since the Ku protein
approaches DNA free ends from this side, it is highly
possible that this region may work as the first functional
group to interact with DNA. In the loading and unloading
simulations, we found, when the DNA duplex is close to
Ku70, the opening of the ring can form interactions with
the DNA end that are as strong as the nearly loaded
conformation. The ring along with the cradle which serve
as the core of this protein contribute the most to the binding
affinity to associate with DNA; its inner surface contains a
delicate clamp like structure to grip the strands of the minor
groove of DNA that could confine the duplex to move in a
unique helical path. At the N-terminal side, some residues
at the acidic loop can stack with the DNA end, thus
providing some hindrance to the further translocation of
DNA. Though the α/β domain apparently does not
participate in DNA-binding, its presence is important to
buttress the narrow bridge of the channel. A previous study
indicated that, after deleting either some or all amino acids
of this domain, Ku70 can still heterodimerize with Ku80,
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but none of the truncated mutants maintains the capability
of binding DNA ends [32]. Due to the structural similarity,
we believe the counterpart Ku80 may contain some similar
or different structural features that are also suitable for
DNA binding, enabling the heterodimer to play its unique
role in DNA repair and other prominent cellular processes.
In future work, we will use the results of the current
analysis to develop approaches to further dissect the
interactions of Ku70/80 heterodimer with DNA, which will
be an extremely challenging computational problem.
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Abstract Amodel is presented for the translocation dynamics
of the strand displacement DNA synthesis by DNA poly-
merases such as polymerase I family. (i) The model gives an
explanation to the experimental results which showed that the
rate of strand displacement DNA synthesis is nearly consistent
with that of single stranded primer extension synthesis,
although the two are expected to have substantial differences
in their energetics. (ii) During strand displacement DNA
synthesis, the pausing at the specific sequence is considered
to be due to an affinity of the fingers subdomain for the specific
sequence of dsDNA downstream of the single strand. The
theoretical results on the sequence-dependent pausing dynam-
ics such as the mean pausing lifetimes and the distribution of
the pausing lifetime are consistent with the experimental data.
Moreover, predicted results are presented for the binding
affinity of the fingers subdomain for the specific sequence of
dsDNA and the dependence of the mean sequence-dependent
pausing lifetime on the external force acting on the polymerase.

Keywords DNA replication .Model . Molecular motor .

Sequence-dependent pausing . Translocation

Introduction

Replicative DNA polymerases exhibit high speed and high
fidelity in replicating DNA to ensure the fast and faithful
transfer of genetic information to daughter cells. During the

replication, the polymerases are able to move processively
along the DNA template accompanied by a processivity
factor. In the case of the DNA polymerase I family, the enzyme
can also displace the template strand as a helicase as it
translocates down the template strand. This strand displace-
ment DNA synthesis is an essential process in the removal and
replacement of RNA primer moieties of Okazaki fragments
[20]. Although this function requires both the polymerase
domain and the 5′-nuclease domain of polymerase I, it has
been known that the 5′-3′ polymerase activity and the strand
separation activity resides in the polymerase domain [20,
27], with the O1-helix present in the fingers subdomain
playing a role in the strand separation activity [36].

It has been known that the DNA replication by the DNA
polymerases is not a uniform process. The replication can
be slowed or paused by template tension [28, 42]. The
DNA-binding ligands [37], stalled RNA polymerase [22] or
DNA-bound proteins [4, 39] can block the replication
elongation. The DNA polymerases can also pause due to
specific DNA sequences such as palindromic DNA capable
of forming hairpin secondary structure [1, 23, 24], slow
zones [2], trinucleotide repeats of (CGG)n (CCG)n or
(CTG)n (CAG)n [16, 32] and novel sites such as Pyr-G-C
[29]. Recently, by using single-molecule techniques, the
non-uniform polymerase activity and sequence-dependent
pausing during the strand displacement DNA synthesis
were demonstrated directly and their dynamics was studied
quantitatively [35]. The pauses at the specific sequences
have been proposed to be caused by difficulties in the
polymerase fingers-closing conformational change, since
this transition was thought to be rate-limiting and the most
sensitive to changes in temperature [29]. However, a later
experiment [15] showed that the slow prechemistry step is
not the fingers-closing transition. Thus, another proposal
was that the pauses are associated with an earlier DNA
template rearrangement step that might be sequence
dependent [35].
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In this work, on the basis of available structures [7–11, 17–
19, 21, 25, 26, 38, 49], a model is presented to describe the
translocation dynamics of strand displacement DNA synthe-
sis by DNA polymerases such as polymerase I family. The
model is built up by modifying the previous model for the
single stranded primer extension synthesis by replicative
DNA polymerases [43, 45]. With the present model, the
calculated moving times of the polymerase along the DNA
during an incorporation cycle for both the strand displace-
ment synthesis and the single stranded primer extension
synthesis are much shorter than the chemical reaction time of
the phosphodiester bond formation. This thus gives a good
explanation to the experimental results which showed that
the DNA synthesis rates for both cases are nearly consistent
although they have substantial differences in energetics. The
sequence-dependent pausing is considered to be due to an
affinity of the fingers subdomain for the specific sequence of
double-stranded DNA (dsDNA) downstream of the active
site. The theoretical results on the sequence-dependent
pausing dynamics such as the mean pausing lifetimes and
the distribution of the pausing lifetime are in agreement with
the experimental data. Moreover, we present predicted results
for the binding affinity of the fingers subdomain for the
specific sequence of dsDNA and the dependence of the mean
sequence-dependent pausing lifetime on the external force
acting on the polymerase.

Methods

Interaction of polymerase with DNA substrate

Before dNTP binding

Previous experiments on Klenow fragment and bacteriophage
T4 DNAP showed that their fingers subdomains show a high
binding affinity for 5′-single-stranded DNA (5′-ssDNA)
overhang [5, 6, 40]. In addition, it was shown that the
fingers subdomains of DNA polymerase I from Bacillus
subtilis and E. coli have significant structural similarity with
a novel DNA-binding motif found in transcription factor
Mrf-2 [49]. On the other hand, the Mrf-2 DNA-binding
domain can bind with a high affinity to specific sequences of
dsDNA [49]. Thus, it is inferred that the fingers subdomain
of polymerase I may also have an affinity for the specific
sequences of dsDNA1 while it shows very weak binding
affinity for the nonspecific sequence of dsDNA. It is
generally believed that the site-specific binding is mainly
driven by the hydrogen bonding interactions between the

protein and the specific site of the DNA lattice. Based on the
above, we make the following hypothesis for the interaction
of polymerase I with the DNA substrate. The fingers
subdomain shows a high affinity for ssDNA template, with
the interacting zones on the fingers drawn in pink in Fig. 1a.
Although having very weak binding affinity for the
nonspecific sequence of dsDNA, the fingers subdomain
shows an affinity for the specific sequences of dsDNA, with
the interacting zones on the fingers drawn in gray in Fig. 1a.
Besides the interactions of the fingers subdomain with DNA
substrate, it is hypothesized that other subdomains in the
polymerase domain such as palm and thumb subdomains
have a high affinity for dsDNA, with the interaction
independent of the DNA sequence.

After dNTP binding

The available experimental evidence indicated that the dNTP
binding to the active site involves (at least) two substeps, E �
DNAþ dNTP ! E � DNA � dNTP ! E»� DNA � dNTP,
where E represents the DNA polymerase [14]. The transition
from the unactivated E · DNA · dNTP ternary complex to
activated E* · DNA · dNTP ternary complex induces the
closing of the fingers subdomain, activating the chemical
reaction of nucleotide incorporation. Similarly, the PPi
releasing from the active site also involves (at least) two
substeps, E» � DNA � PPi ! E � DNA � PPi ! E � DNAþ
PPi, where the transition from the activated E* · DNA · PPi
ternary complex to unactivated E · DNA · PPi ternary
complex results in the opening of the fingers subdomain. Here
it is hypothesized that the closing of the fingers subdomain
enhances the interactions of the polymerase with both DNA
substrate and dNTP, while the opening of the fingers
subdomain reduces the interactions of the polymerase with
both DNA substrate and PPi. Since in the activated E* · DNA
·dNTP (or E* · DNA · PPi) complex the polymerase has a
stronger interaction with its DNA substrate and nucleotide
than in the unactivated E · DNA · dNTP (E · DNA · PPi)
complex, for simplicity of analysis, it is considered that in the
activated state the polymerase is unable to move relative to
the DNA substrate and the dNTP or PPi bound to the active
site has a negligible probability to release.

Model for polymerase translocation

Based on the hypotheses for the interaction between the
polymerase and the DNA substrate, as presented above, the
model for the movement of the polymerase along DNA
template during one incorporation cycle is described as follows.

We begin with the fingers subdomain of the polymerase
binding the ssDNA template near the replication fork, as
shown in Fig. 1a, with the active site being nucleotide free.
In the nonspecific sequence, the fingers subdomain has no

1 Due to slight structural differences, the fingers subdomain of DNA
polymerase I and the novel DNA-binding motif of Mrf-2 could bind to
different specific sequences of dsDNA
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affinity for the downstream dsDNA, whereas in the specific
sequence the fingers subdomain can also bind the down-
stream dsDNA. In this nucleotide-free state, either a
matched or a mismatched dNTP can bind to the active site,
although a matched dNTP has a much larger probability to
bind. Thus we consider the two cases separately.

Incorporation of a matched base

After a matched dNTP binds to the active site, the transition
from the unactivated E · DNA · dNTP ternary complex to
activated E* · DNA · dNTP ternary complex induces the
closing of the fingers subdomain, enhancing the interac-
tions of the polymerase with both DNA substrate and dNTP
and activating the chemical reaction of nucleotide incorpo-
ration (Fig. 1b). After the completion of the nucleotide
incorporation, the transition from the activated E* · DNA ·
PPi ternary complex to unactivated E · DNA · PPi ternary
complex results in the opening of the fingers subdomain,
reducing the interactions of the polymerase with both DNA
substrate and PPi. Then, the fingers subdomain will bind to
new nearest unpaired base of the ssDNA template because
the previous base where the fingers subdomain has just
bound has disappeared due to base pairing and, at the same
time, PPi is released from the active site (Fig. 1c). Note
that, as the polymerase moves downstream to the next
position, the O1-helix (refer to Ref. [36]) present in the

fingers subdomain pushes on the non-template strand of the
downstream dsDNA, thus breaking the base pair. Besides,
the movement requires overcoming the binding affinity of
the palm and thumb subdomains for the upstream dsDNA
in the nonspecific sequence. In the specific sequence, it is
required to overcome both the binding affinity of the palm
and thumb subdomains for the upstream dsDNA and that of
the fingers subdomain for the downstream dsDNA. Note
here that, during either the closing or opening of the fingers
subdomain, the polymerase has not moved relative to the
DNA. The binding of the fingers subdomain to the new
unpaired base on the ssDNA template makes the polymer-
ase move forward relative to the DNA by one base pair.

Incorporation of a mismatched base

We still begin with Fig. 1a. After a mismatched dNTP binds,
the transition from the unactivated E � DNA � dNTP ternary
complex to activated E» � DNA � dNTP ternary complex
induces the closing of the fingers subdomain, enhancing the
interactions of the polymerase with both DNA substrate and
dNTP and activating the chemical reaction of nucleotide
incorporation (Fig. 1a’). After the completion of the
nucleotide incorporation (Fig. 1b’), the transition from the
activated E» � DNA � PPi ternary complex to unactivated E �
DNA � PPi ternary complex results in the opening of the
fingers subdomain, reducing the interactions of the polymer-

Fig. 1 Schematic illustrations
of the model for processive
translocation of DNA polymer-
ase during strand displacement
DNA synthesis (see text for
detailed description). The green
circles in (a), (c) and (c’) repre-
sent the open conformation of
the fingers subdomain, while the
ellipsoids (b), (a’) and (b’)
represent the closed conforma-
tion. For clarity, the mismatched
dNTP is drawn in blue while the
matched dNTP in black

J Mol Model (2012) 18:1951–1960 1953



ase with both DNA substrate and PPi. Then PPi is released
(Fig. 1c’). However, although the sugar-phosphate backbone
of the mismatched dNTP was connected to the backbone of
the already formed dsDNA, the mismatched base is not
paired with the sterically corresponding base on the ssDNA
template. Thus, the fingers subdomain is still binding to the
same unpaired base of the ssDNA template and the
polymerization cannot proceed (Fig. 1c’). In other words,
the polymerase becomes stalled. In Fig. 1c’, after the
mismatched base is excised by the 3′-5′ exonuclease active
site [45], the polymerization proceeds again (Fig. 1a).

Equations for polymerase translocation

We denote V1 the interaction potential of the palm and thumb
subdomains with the dsDNA segment upstream of the
polymerase active site, V2 the interaction potential of the
fingers subdomain with the ssDNA template, and V3 the
interaction potential of the fingers subdomain with the specific
sequence of dsDNA segment downstream of the active site.

Considering that the residues interacting with dsDNA on
palm and thumb subdomains cover N1 base pairs, the
interaction potential V1(x1) can be approximately shown in
Fig. 2a (middle).2 Here, E1 is the binding affinity for the
sugar-phosphate backbones connecting N1 base pairs on the
dsDNA, E’1 is the binding affinity for the backbones
connecting only (N1-1) base pairs on the dsDNA, and x1
represents the coordinate of the point on the dsDNA-binding
residues that is nearest to the active site along the x1
direction. This point is assumed to be L1=mp away from the
active site, where p=0.34 nm is the distance between two
successive base pairs (here we draw m=2). Note that the
binding affinity E’1 that corresponds to binding (N1-1) base
pairs is smaller than E1 that corresponds to binding N1 base
pairs. Considering that the interaction is mainly via the
electrostatic force, with the interaction distance approximate-
ly equal to the Debye length (of about 1 nm) in solution
larger than p=0.34 nm, it is thus expected that the value at
maxima of V1(x) increases as the dsDNA-binding site on the
palm and thumb subdomains deviates away from the
upstream dsDNA segment along the x1 direction. Moreover,
as the available structures of the polymerase complexed with
the DNA substrate indicated, the primer 3′ terminus, due to
the structural restriction, is not allowed to move forward
relative to the polymerase when its active site is located at
the primer 3′ terminus, implying that the polymerase is not
allowed to move backward in this case. This feature is also

represented in the form of the potential V1(x1) [as seen below,
it is also represented in the form of the potential V2(x2)].

Considering that the residues interacting with the ssDNA
template on the fingers subdomain covers N2 bases, the
interaction potential V2(x2) can be approximately shown in
Fig. 2a (bottom). Here E2 is the binding affinity for all N
unpaired bases on the ssDNA template (N<N2), E’2 is the
binding affinity for only (N-1) unpaired bases, and x2
represents the coordinate of the point on the ssDNA-
binding residues that is nearest to the active site along the
x2 direction. The point is coincident with the active site along
the x2 direction. Note that different points on the ssDNA-
binding residues should have different binding affinities for
the unpaired base (see Supporting information).

Fig. 2 Interaction potentials of polymerase with DNA substrate at
nonspecific sequence (see text for detailed description). (a) Potentials
V1(x1) and V2(x2) as a function of different coordinates on the
polymerase. The potentials represent forms at the moment after the
incorporation of the (n-1)th base but before the incorporation of the nth
base, with the corresponding DNA substrate shown in the top of (a). (b)
The potentials V1(x) and V2(x) shown in (a) as a function of the fixed
coordinate x on the polymerase. (c) The potentials V1(x) and V2(x) as a
function of the fixed coordinate x on the polymerase after the
incorporation of the nth base but before the incorporation of the (n+1)
th base, with the corresponding DNA substrate shown in the top of (c)

2 As it is known, the dynamics for a Brownian particle to escape from one
potential well depends mainly on the well depth of the potential while it is
insensitive to the form of the potential (see. e.g., Ref. [12]). Thus, the
calculated results presented in this work depend mainly on values of the
well depth of the potential while forms of the potential are not important.

1954 J Mol Model (2012) 18:1951–1960



In our analysis, we represent the position, x, of the
polymerase by that of its active site along the template.
Then, after the incorporation of the nucleotide complemen-
tary to the (n-1)th base but before the incorporation of the
nucleotide complementary to the nth base, the potential
V1(x) is obtained by shifting V1(x1) toward the x direction
by L1=mp, as shown in Fig. 2b (top), while the potentials
V2(x) is in the same position of V2(x2) (bottom of Fig. 2b).
After the incorporation of the nucleotide complementary to
the nth base but before the incorporation of the nucleotide
complementary to the (n+1)th base, V1(x) and V2(x)
become those shown in Fig. 2c.

In the nonspecific sequence, the movement of the polymer-
ase along the x direction in the over-damped environment can
be described by the following Langevin equation

Γ
dx

dt
¼ � @V ðxÞ

@x
� FU þ xðtÞ; ð1Þ

where V(x)=V1(x)+V2(x), with V1(x) and V2(x) being shown
in Fig. 2b after the incorporation of the nucleotide comple-
mentary to the (n-1)th base but before the incorporation of the
nucleotide complementary to the nth base. FU is the force
resulting from the unwinding of the (n+2)th base pair as
shown in the top of Fig. 2a, which is approximately
calculated by FU ¼ Ebp p= , where Ebp is the free energy
change required to unwind one base pair. Using parameters
for the nearest-neighboring thermodynamic model for DNA-
DNA duplex stability [33, 41], it is estimated that the mean
free energy change is about Ebp=3kBT, which gives FU=36.3
pN. Γ is the frictional drag coefficient on the polymerase and

ξ(t) is the fluctuating Langevin force with x tð Þh i ¼
0 and x tð Þx t 0ð Þh i ¼ 2kBTΓd t � t0ð Þ. The drag coefficient
Γ ¼ 6phR ¼ 9:4� 10�11kg � s�1, where the viscosity of
the aqueous medium is η=0.01 g · cm-1 · s-1 and the
polymerase is considered as a sphere with radius R=5 nm.
The Fokker-Planck equation corresponding to Langevin
equation (Eq. 1) has the form

@Pðx; tÞ
@t

¼ 1

Γ
@

@x

@ V ðxÞ þ FUxð Þ
@x

Pðx; tÞ
� �

þ D

� @2Pðx; tÞ
@2x

; ð2Þ

where P(x,t) represents the probability of the polymerase
positioned at x at time t and D ¼ kBT Γ= .

From Eq. 2, the mean moving time Tm, i.e., the mean
first-passage time, for the polymerase to move from the
(n-1)th site (Fig. 2a) at position x=0 to the next nth site at
position x=p=2 l=0.34 nm can be calculated by [12]

Tm ¼ 1

D

Z2l

0

exp
V ðyÞ þ FUyð Þ

ΓD

� �
dy

Zy

0

exp � V ðzÞ þ FUzð Þ
ΓD

� �
dz:

ð3Þ

From Eq. 3, the mean moving time Tm is obtained as
follows

Tm ¼ l2ΓkBT
E0 þ FUlð Þ � exp

E0 þ FUl

kBT

� �
� 1

� �
� l2Γ

E0 þ FUl
þ l2ΓkBT

E0 þ FUlð Þ E � FUlð Þ
� exp

E0 þ FUl

kBT

� �
� exp

E0 � E þ 2FUl

kBT

� �� �
� 1� exp � E0 þ FUl

kBT

� �
1þ E0 þ FUl

E � FUl

� �� �

þ l2Γ
E � FUl ;

ð4Þ

where E0 ¼ E1 þ E
0
2 and E ¼ E1 þ E2 (see Fig. 2b). Note

that, for the single stranded primer extension synthesis, the
mean moving time Tm is still calculated by using Eq. 4 but
with FU=0.

Results

Moving time

From Eq. 4 it is noted that the mean moving time Tm is
insensitive to the value of E, which can be seen from

Fig. 3a, where we show the results of Tm versus E for a
fixed value of E’. The results of Tm versus E’ with a fixed
value of E are shown in Fig. 3b. From Fig. 3b, it is seen
that, although the strand displacement synthesis and the
single stranded primer extension synthesis have substantial
differences in their energetics, the difference of the mean
moving time Tm between the two cases is not very large.
Even for a very large value of E’=20kBT (see Supporting
information), which is equivalent to an equilibrium disso-
ciation constant Kd � 2 nM, the mean moving time Tm is
only 5.96 ms and 1.46 ms for the strand displacement
synthesis and single stranded primer extension synthesis,
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respectively. These values of Tm are much smaller than the
mean dwell time, Td �71.43 ms, between two successive
nucleotide incorporations, which is obtained from the
incorporation rate of about 14 s�1 for polymerase I at
saturating concentration of dNTP [35]. This implies that the
incorporation rate is mainly determined by the chemical
reaction rate of the nucleotide incorporation or phosphoryl
transfer rather than the moving time. Thus, it is expected
that the incorporation rate for the strand displacement
synthesis is nearly consistent with that for the single
stranded primer extension synthesis, because after the
polymerase is moved to the potential well of deeper depth
E (i.e., the nth site at Fig. 2a) the polymerase has the same
chemical reaction rate at saturating concentration of dNTP
for the two cases. This is in agreement with the experi-
mental data [3, 35, 36].

Sequence-dependent pausing

At specific sequences of dsDNA, besides the presence of the
interactions with potentials V1(x) and V2(x), another interac-
tion between the polymerase and dsDNA is present. This
site-specific interaction potential V3(x) is shown in Fig. 4a,

with E3 being the binding affinity. Since the site-specific
interaction is mainly driven by the short-ranged hydrogen
bonding, we take the interaction distance equal to p. The
movement of the polymerase along the x direction is still
described by Langevin Eq. 1 but with V ðxÞ ¼ V1ðxÞ þ V2ðxÞ
being replaced by V ðxÞ ¼ V1ðxÞ þ V2ðxÞþ V3ðxÞ. Thus the
mean moving time Tm at specific sequences is still calculated

by Eq. 4 but with E0 ¼ E1 þ E
0
2 þ E3 and E ¼ E1 þ E2.

The results of Tm versus E3 for two values of E1 þ E
0
2 are

shown in Fig. 4b. It is seen that, for a given value of E1 þ E
0
2,

Tm increases exponentially with the increase of E3. The curve

of Tm versus E3 for E1 þ E
0
2 ¼ 18kBT can be obtained by

shifting the curve for E1 þ E
0
2 ¼ 20kBT along the horizontal

axis by 2kBT (20kBT - 18kBT). From the figure it is also seen

that, for E1 þ E
0
2 ¼ 18kBT 20kBTð Þ, at E3 = 10.18kBT

(8.18kBT), Tm=13.2 s, which is consistent with the measured
value of polymerase I for the sample DNA substrate at 23 °C
in Schwartz and Quake [35]. Note that the experiment data
showed that the pausing position occurs at +15 or +16 bp (see
Fig. S1 in Supporting information), implying that the specific

Fig. 3 Calculated results of mean moving time Tm at nonspecific
sequence of dsDNA. (a) Tm versus E E ¼ E1 þ E2ð Þ for a fixed value
of E0 E0 ¼ E1 þ E

0
2

� �
. (b) Tm versus E’ with a fixed value of E Fig. 4 Calculated results of mean moving time (or mean pausing

lifetime) Tm at specific sequences of dsDNA. (a) Potentials V1(x),
V2(x) and V3(x) as a function of the fixed coordinate x on the
polymerase. (b) Tm versus E3 for two different values of E1 þ E

0
2
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sequence corresponds to several downstream base pairs
starting from +16 or +17 bp. Our above calculated results
indicate that the total affinity of the polymerase I for the

sample dsDNA substrate at the specific sequence is E1 þ
E

0
2 þ E3 ¼ 28:18kBT (equivalent to Kd≈5.8×10-4nM) and

the binding affinity of the fingers subdomain for the specific
sequence of the sample dsDNA substrate is around 10kBT
(equivalent to Kd≈45 μM).3 It is interesting to note that the
value of mean moving time Tm=13.2 s at the specific
sequence is much larger than the mean dwell time Td≈
71.43 ms. Thus, the sequence-dependent pausing lifetime is
mainly determined by the moving time Tm rather than the
nucleotide-incorporation time, in contrast to the case at the
nonspecific sequence, as shown in the above section.

Moreover, it is seen from Fig. 4b that, for E1 þ E
0
2 ¼

18kBT 20kBTð Þ, at E3=10kBT (8kBT), Tm=11.1 s, which is
consistent with the measured value for the sample DNA
substrate at 37 °C in Schwartz and Quake [35]. This
indicates that the increase of the heat from 23 °C to 37 °C
reduces the total affinity for the sample dsDNA substrate at
the specific sequence from 28.18kBT (equivalent to Kd≈
5.8×10-4nM) to 28kBT (equivalent to Kd≈6.9×10-4nM) or
reduces the site-specific binding affinity by only 0.18kBT,
implying that the increase of the heat melts the dsDNA
slightly. Similarly, from the comparison of the theoretical
results (Fig. 4b) with the experimental data [35], we obtain
that the addition of 1 M betaine at 23 °C reduces the total
affinity at the specific sequence from 28.18kBT (equivalent
to Kd≈5.8×10-4nM) to 27.8kBT (equivalent to Kd≈8.5×10-
4nM) that gives Tm=9.2 s. In other words, the addition of
1 M betaine reduces the site-specific binding affinity by
28.18kBT-27.8kBT=0.38kBT. Betaine is a zwitteronic osmo-
protectant that has been found to alter dsDNA stability so
that GC-rich regions melt at temperatures more similar to
AT-rich regions [31]. This implies that the addition of 1 M
betaine melts the dsDNA slightly at GC-rich sequences.
The melting effect by adding 1 M betaine at 23 °C is
stronger than by heating the solution to 37 °C but without
the addition of betaine.

In addition, it is expected that different specific sequences
should have slightly different binding affinities. From Fig. 4b, it

is seen that, at E1 þ E
0
2 þ E3 ¼ 27:62kBT (equivalent to Kd≈

1×10-3nM), Tm=7.7 s, which is consistent with the measured
value for the controlled DNA substrate at 23 °C [35]. This
indicates that the site-specific binding affinity difference
between the sampled and the controlled DNA substrates (see
Fig. S1 in Supporting information) is about 0.56kBT.

Furthermore, it is expected that the pausing efficiency (or
probability) for the specific sequence with a small E3 that
gives a short mean lifetime should be smaller than that with a
large E3 that gives a longmean lifetime. This is also consistent
with the experimental data for polymerase I [35].

To see the distribution of pausing lifetimes, we resort to the
numerical solution of Eq. 1, with the Stochastic Runge-Kutta

Fig. 5 Calculated results for distributions of pausing lifetime at
specific sequences of dsDNA. Lines are fittings to C exp �t t=ð Þ,
where C is constant. (a) E0 ¼ E1 þ E

0
2 þ E3 ¼ 28:18kBT and τ=

13.2 s. (b) E’=27.62kBT and τ=7.7 s

3 Besides different specific dsDNA sequences for the fingers sub-
domain of polymerase I and for Mrf-2, the binding affinities of the two
proteins for their specific sequences are also very different, with an
equilibrium dissociation constant Kd≈10 nM for Mrf-2 bound to its
target DNA sequence [49].

Fig. 6 Predicted results of mean pausing lifetime Tm at specific
sequences of dsDNA as a function of external force Fext acting on
polymerase
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algorithm as used elsewhere [44, 48]. In Figs. 5(a) and (b)
we show the calculated distributions of pausing lifetime for

E0 ¼ E1 þ E
0
2 þ E3 ¼ 28:18kBT (equivalent to Kd≈5.8×10-

4nM) and 27.62kBT (equivalent to Kd≈1×10-3nM), respec-
tively. It is seen that the lifetime distribution for a given E’
has the single-exponential form, which is in agreement with
the experimental results of Schwartz and Quake [35].

Next, we give some predicted results on sequence-
dependent pausing lifetimes at saturating concentration of
dNTP. Consider an external force, Fext, acting on the
polymerase for the fixed DNA substrates with the same
specific sequences as used in Schwartz and Quake [35]. Here
it is defined that the backward force has the positive value
while the forward force has the negative value. Then, in Eq.
4, FU is replaced by FU+Fext. As shown above, at 23 °C, we

have E0 ¼ E1 þ E
0
2 þ E3 ¼ 28:18kBT (equivalent to Kd≈

5.8×10-4nM) for the specific sequence of the sample DNA
substrate, which gives Tm=13.2 s, and E’=27.62kBT (equiv-
alent to Kd≈1×10-3nM) for that of the controlled DNA
substrate, which gives Tm=7.7 s. The results of Tm versus Fext
for E’=28.18kBT and E’=27.62kBT are shown in Fig. 6. It is
seen that the mean pausing lifetime increases with the
increase of the backward force while decreases with the
increase of the forward force. For example, under the
backward force of 20 pN, the mean pausing lifetimes increase
to 29.6 s and 17.4 s for the sample and controlled DNA
substrates, respectively; while under the forward force of 20
pN, the mean pausing lifetimes decrease to 2.9 s and 3.7 s for
the sample and controlled DNA substrates, respectively.

Discussion

In previous works [43, 45], we have presented the model
for translocation of replicative DNA polymerases along the
DNA template during single stranded primer extension
synthesis. In the current work, we modify the previous
model to describe the strand displacement synthesis for
polymerases such as polymerase I. In the present model, the
downstream base pair is unwound by the O1-helix present
in the fingers subdomain as the polymerase moves forward.
The sequence-dependent pausing is considered to be due to
a binding affinity of the fingers subdomain for the specific
sequences of dsDNA downstream of the active site. With
the model, the available experimental results on the
sequence-dependent pausing dynamics such as the mean
pausing lifetimes and the distribution of the pausing
lifetime are well explained. Moreover, due to the very high

binding affinity E0 ¼ E1 þ E
0
2 þ E3 at specific sequences,

the polymerase has a very small probability to detach from
the DNA substrate. Thus, the polymerase can pause at the

specific sequences for a very long time (e.g., 13.2 s)
without detaching, which is also in agreement with the
experimental data. A speculation for the biological function
of the sequence-dependent pausing during strand displace-
ment replication might imagine that it is purposed to
increase the probability to cleave the displaced non-
template strand by the 5’ nuclease domain [48].

Similar sequence-dependent pausing behavior has also
been observed for other enzymes such as RNA polymerase
[13] and lambda exonuclease (λ-exo) [30]. It is thus
expected that similar pausing behaviors for the DNA
polymerase, RNA polymerase and λ-exo may share the
same mechanism, i.e., the short pauses result from the
sequence-dependent binding affinities for DNA substrates
[44, 46]. Moreover, different dsDNA sequences should
have slightly different binding affinities, resulting in
different short pausing lifetimes.

It is argued here that the polymerases capable of strand
displacement replication have the binding affinity for
specific sequences on dsDNA downstream of the active
site. It is interesting to note that the X-family polymerases,
which are mainly involved in base excision repair and
repair of double-strand breaks, also have the binding
affinity for the downstream dsDNA [34, 47]. However,
the two types of the polymerases show the following
distinctions. (i) The former polymerase only shows the
binding affinity for specific sequences of the downstream
dsDNA, while it shows no or very weak binding affinity for
the nonspecific sequence of the downstream dsDNA. The
latter polymerase always shows the binding affinity for the
downstream dsDNA, independent of the sequence. (ii) For
the former polymerase, the sequence-dependent interaction
is via the fingers subdomain. For the latter polymerase, the
sequence-independent interaction is via another domain –
the 8-kDa domain.

Finally, we mention that, to verify the present model, it is
hoped to test the following predictions: (i) the about 10kBT
difference in the binding affinity (equivalent to Kd≈45 μM)
of the polymerase I for DNA substrate used in Schwartz
and Quake [35] at the specific sequence and that at the
nonspecific sequence of downstream dsDNA difference, (ii)
the dependence of the mean sequence-dependent pausing
lifetime on the external force (see Fig. 6).
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Abstract Density functional theory (DFT) methodology
was used to examine the structural properties of linear
metal string complexes: [Ru3(dpa)4X2] (X = Cl−, CN−,
NCS−, dpa = dipyridylamine−), [Ru5(tpda)4Cl2], and hypo-
thetical, not yet synthesized complexes [Ru7(tpta)4Cl2] and
[Ru9(ppta)4Cl2] (tpda = tri-α-pyridyldiamine2−, tpta = tetra-
α-pyridyltriamine3−, ppta = penta-α-pyridyltetraamine4−).
Our specific focus was on the two longest structures and on
comparison of the string complexes and unsupported
ruthenium backboned chain complexes, which have weaker
ruthenium–ruthenium interactions. The electronic structures
were studied with the aid of visualized frontier molecular
orbitals, and Bader’s quantum theory of atoms in molecules
(QTAIM) was used to study the interactions between
ruthenium atoms. The electron density was found to be
highest and distributed most evenly between the ruthenium
atoms in the hypothetical [Ru7(tpta)4Cl2] and [Ru9(ppta)4Cl2]
string complexes.

Keywords Ruthenium . Density functional theory .

Quantum theory of atoms in molecules . Extended metal
atom chain . Linear metal string complex

Introduction

Structures that incorporate one-dimensional metal atom
chains attract interest for a variety of reasons, such as their
conductivity [1, 2], luminescence [3–5], vapochromism [6–
8], and magnetic [9–11], and catalytical [12–15] properties.
Some of these properties are linked directly to the
interacting metal atoms in the metal chain, while others
can be attributed to metal–ligand interactions of single units
in the chain.

One-dimensional metal atom chains are found in many
different kinds of structures. Square planar metal complexes
can form stacks where the metal atoms are lined up, as is
the case with Magnus’ Green salt, Vauquelin’s salt,
Krogmann’s salt, and derivatives thereof [16–18]. [Ru
(CO)4]n, [Ru(bpy)(CO)2]n, and {[Rh(MeCN)4](BF4)1.5]}n
are examples of polymeric unsupported chains, where the
chain is formed without the aid of supporting ligands [19–
21]. Platinum, iridium, and rhodium blues are formed from
ligand-supported dimers that combine into tetranuclear or
longer chain structures [22]. Finally, in extended metal atom
chains (EMACs), which are also known as linear metal
string complexes, the metal chains are formed with the aid
of surrounding ligands [23].

In a typical metal string complex, the linear chain of
transition metals is surrounded and supported by four
oligo-α-pyridylaminen− ligands [24] in a helix (Fig. 1).
Other surrounding ligands, such as the oligo-α-
naphthyridylpyridylaminen− ligands that result in mixed-
valence complexes [25, 26] can be used as well. Axial
ligands (X in Fig. 1a) vary from small anions, such as Cl−,
CN−, and NCS− to larger arylacetylide ligands [27].
Overall, the versatile ligand structure provides an easy
tool for tuning the structures. The benefits of the metal
string complexes include the relative ease with which
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different transition metals can be trapped inside the helical
surrounding ligands, and also the short metal–metal
distance that is forced by these same ligands. The
challenges posed by metal string complexes lie in the
synthesis of longer complexes. Metal string complexes up
to a size of nine metal atoms have been synthesized with
first row transition metals [28], and up to five metal atoms
with second row transition metal atoms [29, 30]. Metal
string complexes provide a promising approach for the
creation of nano-scale electrical wires [1]. The electric
conductivity of metal string complexes correlates qualita-
tively with the strength of the metal–metal interaction in the
complex, and can be tuned by the choice of transition metal,
its oxidation state, and the ligands used [27]. Metal string
complexes also have interesting magnetic properties, such as
the spin-crossover behavior of [Co3(dpa)4Cl2]

+ [9, 31].
Studies of ruthenium EMACs began from the synthesis

and structure of a triruthenium metal string complex
published in 1996 [32]. Later, a synthesis with a better
yield [33] and triruthenium metal string complexes with
different axial ligands [27, 33, 34] were reported. Moreover,
it was noted that the terminal ligands affected the electronic
configurations on triruthenium metal string complexes,
causing, for example, a singlet state in [Ru3(dpa)4Cl2] and
a triplet state in [Ru3(dpa)4(CN)2] [33]. The first pentar-
uthenium metal string complex was reported in 2008 [30].

Bader’s quantum theory of atoms in molecules (QTAIM)
[35] has seen increasing use in bonding studies of various
molecules. The method is based on a topological study of
the electron density, ρ(r), where a search is made for critical
points. The critical points are located where the gradient of
electron density, ∇ρ(r), vanishes, and are classified as (3,−3)
critical points, i.e., the local maxima of electron density
found in nuclear positions; (3,−1) critical points, i.e., the
bond critical points that are saddle points of the electron
density between the nuclei that share an interatomic
surface; and subsequently into (3,+1) ring critical points
and (3,+3) cage critical points.

Information about bonding is obtained through the
properties pertaining at the bond critical points (bcp).
Commonly reported values are the electron density and its
Laplacian. A negative Laplacian means that the charge is
concentrated locally and is typical in shared shell inter-
actions, whereas a positive Laplacian suggests a locally
depleted charge and is typical of closed shell interactions.
The bonding can be further assessed with the aid of the
potential energy density V(rbcp) and kinetic energy density
G(rbcp) at the bcp. If |V(rbcp)|/G(rbcp) > 2, the interaction is
classified as a pure shared shell interaction between the
nuclei; if |V(rbcp)|/G(rbcp) < 1, the interaction is classified as
a pure closed shell interaction; and when 1 < |V(rbcp)|/G
(rbcp) < 2, the interaction is classified as a closed shell
interaction with some covalent nature. Additional informa-
tion may also be gained from the bond degree, which is
the relationship between the total energy density H(rbcp)
and the electron density ρ(rbcp) at the bond critical point,
H(rbcp)/ρ(rbcp) [36].

Our group has previously studied unsupported ruthenium
chains, such as [Ru(CO)4]n and [Ru(bpy)(CO)2]n which are
formed via direct Ru–Ru bonding [37, 38]. In the current
study, our aim was to investigate the geometry and M–M
interactions of ruthenium string complexes, especially the
as yet not synthesized [Ru7(tpta)4Cl2] and [Ru9(ppta)4Cl2],
and to compare the string complexes and unsupported
ruthenium chains. The metal–metal interactions were
examined using the QTAIM approach.

Computational methods

The calculations were conducted using the Gaussian 03
program package [39]. The density functional theory (DFT)
methodology was used with the PBE0 hybrid density
functional [40]. The standard all-electron basis set 6-31 G
(d) was used for non-metal atoms, while Huzinaga’s all-
electron basis set [41] with an additional p-polarization
function (433321/4331/421) was used for ruthenium.

Fig. 1 a Schematic illustration
of a typical metal string com-
plex. b Structure of Ru3(d-
pa)4Cl2, showing the helical
ligands
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Huzinaga’s all-electron basis set has been found in earlier
studies to be stable and also to describe ligand-unsupported
ruthenium systems reliably [37, 38, 42]. However, to verify
the reliability of the AE basis set, we performed tests with a
relativistic ECP basis set (LANL2DZ). The results for the
structures and molecular orbitals in triruthenium and
pentaruthenium complexes were similar with both basis
sets (see Supplementary material), suggesting that relativ-
istic effects do not play an important role in these
ruthenium string complexes.

Where possible, we took the initial geometries of the
metal string complexes under study from crystal structures
and optimized the structures in C1 symmetry. All of the
complexes were calculated in singlet state in order to
facilitate comparison of the different models with different
lengths and axial ligands. Since the experimentally obtained
spin states for Ru3 complexes have been found to vary with
the nature of the axial ligands [27, 33], we optimized the
spin state for the trimetallic complexes. Triplet ground state
was predicted for all the Ru3 complexes regardless of axial
ligand. However, the effect of the spin state on the
properties of the metal–metal bonding and the appearance
of the molecular orbitals was found to be minimal and
therefore we chose to conduct all succeeding calculations
for the singlet state only. Frequencies were calculated for up
to the pentametal complexes to ensure that all of the
optimizations yielded minima. Bonding and electron den-

sity were studied using Bader’s QTAIM [35], as imple-
mented in AIM2000 [43]. The bonding interactions were
further studied by calculating Mayer bond orders [44] for
selected bonds.

Results and discussion

Structures and geometry

To verify the performance of the selected modeling method
in the context of ruthenium metal string complexes, the
structures of Ru3(dpa)4X2 (X = Cl−, CN−, or NCS−) were
computed. The geometries obtained were compared with
the experimental X-ray data. The comparison is presented
in Table 1. The computed Ru–Ru and Ru–N distances are
only slightly longer than had been experimentally deter-
mined, but the bonding of axial ligands is overestimated.
Some of the differences may arise from the effects of crystal
packing. The trend for the Ru–Ru distances is the same in
our molecular calculations as in the X-ray data, showing
that Cl− as the axial ligand causes the shortest Ru–Ru
distances, while CN− leads to the longest Ru–Ru distances.
A similar trend in Ru–Ru distances was also obtained in a
previous computational study of Ru3(dpa)4X2 (X = Cl−,
CN−) [33], and X = ( NCS−) [27]. The longer Ru–Ru
distance for X = CN− was explained as originating from the

Table 1 Selected geometrical data for Ru3(dpa)4X2 (X = Cl−, CN−, or NCS−). Values given are averages

Cl− CN− NCS−

Computed Experimental [32] Computed Experimental [33] Computed Experimental [27]

Ru-Ru 2.303 2.254 2.445 2.377 2.314 2.282

Ru-X 2.498 2.596 1.995 2.057 2.103 2.240

Ruterminal-N 2.147 2.108 2.124 2.108 2.138 2.080

Rucentral-N 2.091 2.066 2.032 2.066 2.091 2.120

angle Ru1-Ru2-Ru3 165 171 172 171 165 166

dihedral N-Ru-Ru-N 21.0 21.7 16.2 21.7 20.0 22.2

Table 2 Ru–Ru distances for Ru5(tpda)4Cl2, Ru7(tpta)4Cl2, Ru9(hpta)4Cl2 and unsupported chains [Ru(CO)4]8H2, Ru(bpy)(CO)2]8H2

(bpy = 2,2′-bipyridine)a

Ru5(tpda)4Cl2 Ru7(tpta)4Cl2 Ru9(hpta)4Cl2 [Ru(CO)4]8H2 [Ru(bpy)(CO)2]8H2

Computed Experimental [30] Computed Computed Computed [38] Computed [38]

Ru1-Ru2 2.288 2.283 2.259 2.263 2.877 2.919

Ru2-Ru3 2.253 2.276 2.230 2.250 2.848 2.878

Ru3-Ru4 - - 2.259 2.245 2.849 2.888

Ru4-Ru5 - - - 2.232 2.849 2.893

a The atoms are labeled inwards from the terminal Ru; Ru1 is connected to the axial ligand
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better ability of the cyanide ligand to form a π back-
bonding interaction with the ruthenium centers, therefore
reducing the strength of the metal–metal interaction.

On the other hand, it is likely that the effect of axial ligands
on the properties of the metal chain decreases as the chain
length increases. Therefore, we chose to investigate the effect
of the chain length on the geometry of the ruthenium metal
string complexes by computing longer complexes with
chloride axial ligands: experimentally known Ru5(tpda)4Cl2
and hypothetical Ru7(tpta)4Cl2 and Ru9(hpta)4Cl2. Table 2
shows the ruthenium–ruthenium distances of the optimized
complexes, and also the distances for selected optimized
unsupported ruthenium chains.

For Ru5(tpda)4Cl2, the computed and experimentally
obtained Ru–Ru distances are closer than in the case of the
corresponding triruthenium complex, although the Ru–Cl
bonding is still overestimated. The Ru–Ru distances inside
the Ru-chains are slightly shorter than at their edges. The
ruthenium backbone forms a linear chain, although the
terminal ruthenium atoms were displaced slightly from
linearity to form a ∼172° Ru–Ru–Ru angle at the ends of
the complex, which can also be observed in the experi-
mental structures of the triruthenium complexes. Moreover,
the helical ligands bonded unevenly, as has also been noted
with respect to the experimental X-ray structures of
triruthenium complexes. Typically, two of the nitrogen
atoms from two of the helical ligands had a longer Ru–N
bond distance, while the other two in the different ligands
had shorter Ru–N distances in alternating sequence along
the chain.

Compared to the unsupported chains, the metal string
complexes displayed substantially shorter Ru–Ru distances.
The differences can be explained in terms of the effect of
the supporting ligands and also the formal oxidation states
of the ruthenium atoms, which are Ru(II) in the metal string
complexes and Ru(0) in the unsupported chains.

Electronic structures

Attention was also paid to the effect of the axial ligand and
chain length on the electron structure of the ruthenium
string complexes. The qualitative molecular orbital (MO)
and MO diagrams for idealized Ru3(dpa)4Cl2 in D4

symmetry have been studied previously [27, 33, 45].
However, the ruthenium atoms do not form a perfectly
linear trimetal system in either the crystal structures or in
our optimized geometry, as can be seen from the Ru1–Ru2–
Ru3 angles in Table 1. This causes slight changes in the
MOs compared to the idealized case.

Presuming the direction of the z-axis along the rutheni-
um atoms in the complex, the dxz and dyz orbitals are no
longer equal in energy. Moreover, atomic orbital combina-

tions resembling a combination of d2z � dxz � d2z were
found in the triruthenium complexes. Selected frontier
orbitals for the triruthenium complexes can be seen in
Figs. 2 and 3.

The frontier molecular orbitals of Ru5(tpda)4Cl2, Ru7(tp-
ta)4Cl2, and Ru9(hpta)4Cl2 were also visualized. The
HOMO and LUMO for these complexes are presented in
Fig. 4. In all cases, both LUMO and LUMO + 1 were

Fig. 3 Frontier orbitals of Ru3(dpa)4(CN)2

Fig. 2 Frontier orbitals of Ru3(dpa)4Cl2. The frontier orbitals of Ru3(dpa)4(NCS)2 are almost identical
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antibonding dxz or dxy (π*) orbitals, while both HOMO and
HOMO-1 were antibonding dxy (δ*) orbitals, similar to
those in Ru3(dpa)4Cl2. Slight differences can be observed
due to alternation of the pyridyl and amine segments as the
ligand part that bonds to the centermost ruthenium as the
chain size increases. Differences in the nature of the frontier
MOs were observed when the string complexes were
compared with unsupported ruthenium chains. While the
frontier MOs in string complexes exist more clearly either
on metal atoms or ligands, in the case of unsupported
ruthenium chains, the orbitals are often delocalized both to
the ligands and to the metals (Fig. 5). Lengthening of the
string complex did not have a noticeable effect on the
filling order of the MOs. However, longer complexes
resulted in a sharply decreasing HOMO–LUMO gap, as
shown in Table 3. Compared to the unsupported chains, the
HOMO–LUMO gaps were smaller in the metal string
complexes.

Electron density and QTAIM studies

To gain additional information about metal–metal interac-
tions in the string complexes, the topology of the electron
density was studied using Bader’s QTAIM. Bond critical
points were found between all of the adjacent ruthenium
atoms, and the properties of the electron density at bcps
were analyzed to assess M–M interactions. Mayer bond
order [45] was also calculated to aid further in the
assessment. The results can be seen in Table 3.

In Ru3(dpa)4X2 (X = Cl−, CN−, NCS−), the Cl− and
NCS− complexes had similar electron densities at the Ru–
Ru bcps, while in the CN− complex the Ru–Ru bonding
was considerably weaker, as could be expected from the
longer Ru–Ru distance. The strong π back-bonding ability
of the CN− ligand is reflected by the smaller electron
density between Ru atoms in the Ru3(dpa)4(CN)2 string
complex compared to that of the Cl− and NCS− substituted

Fig. 5 a HOMO, b LUMO obtained for [Ru(bpy)(CO)2]8H2

Fig. 4 The HOMO and LUMO obtained for a Ru5(tpda)4Cl2, b Ru7(tpta)4Cl2, and c Ru9(hpta)4Cl2. Enlarged figures are available as
Supplementary material
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complexes. This can also be seen in the substantially
smaller Ru–Ru Mayer bond order with the triruthenium
complex with axial CN− ligands. In the case of the longer
Ru metal string complexes, the total electron density at
bcps between ruthenium atoms slightly increased and was
distributed more evenly, even to terminal ruthenium and its
neighbor in string complexes of seven and nine ruthenium
atoms. This suggests strong metal–metal interactions along
the ruthenium backbone, and also the reduction of the effect
of axial ligands on the electron density between Ru atoms.
Furthermore, the Mayer bond orders converge to a value
around 1 with the longer chain lengths—again an indication
of evenly distributed metal-metal interactions. Compared to
the unsupported chains, the metal string complexes have a
much higher electron density at the Ru–Ru bcps as well as
higher MBO values.

At bcps, metal–metal bonds typically have a low
electron density, ρ(rbcp), a low and positive Laplacian of
electron density, ∇2ρ(rbcp), and negative and close to zero
total energy density, H(rbcp). The metal–metal bonds can be
further assessed on the basis of the ratio of potential and
kinetic energy densities (|V(rbcp)|/G(rbcp)), which is typi-

cally between 1 and 2 for transition metals, and also on the
basis of the bond degree H(rbcp)/ρ(rbcp), which indicates the
strength of the interaction: a greater negative value means a
stronger interaction [36].

A comparison between Ru–Ru bcps in [Ru(bpy)
(CO)2]8H2 and Ru7(tpta)4Cl2 is presented in Table 4. The
metal string complex has a higher electron density at M–M
bcps and also a surprisingly high Laplacian compared to
bcps of unsupported chain. We can also see that the bcps
differ in |V(rbcp)|/G(rbcp) and H(rbcp)/ρ(rbcp), the former
meaning that the string complex is topologically closer to
the border between the pure closed shell and the transit
closed shell regions (|V(rbcp)|/G(rbcp) = 1), but still well
within the transit-closed shell region. The H(rbcp)/ρ(rbcp)
bond degree suggests that the string complex has stronger
Ru–Ru interactions. The reasons for the differences can
probably be found from the different oxidation states and
the bond distances of ruthenium atoms in their
corresponding complexes.

It has been suggested that, in linear metal string
complexes, the conductivity and bond order correlate
qualitatively [1, 27, 30]. Following this idea, it can be

Table 4 Properties of electron density at selected bond critical points (bcp) in Ru7(tpta)4Cl2 and [Ru(bpy)(CO)2]8H2

Ruthenium string
complexa

Distance (Å) e-density (e Å-3) Laplacian (e Å-5) |λ1|/λ3 (-) H, Etotal density
(Hartree Bohr-3)

|V|/G (-) H/ρ (kJ mol-1)

[Ru(bpy)(CO)2]8H2

bcp1: Ru1-Ru2 2.919 0.2410 1.029 0.22 −0.00823 1.44 −604.7
bcp2: Ru2-Ru3 2.877 0.2709 1.037 0.25 −0.00927 1.46 −606.5
bcp3: Ru3-Ru4 2.889 0.2685 0.948 0.26 −0.00937 1.49 −618.4
bcp4: Ru4-Ru5 2.893 0.2659 0.936 0.26 −0.00929 1.49 −618.9
Ru7(tpta)4Cl2
bcp1: Ru1-Ru2 2.260 0.7648 9.921 0.18 −0.03142 1.23 −727.8
bcp2: Ru2-Ru3 2.229 0.7759 12.78 0.15 −0.03163 1.19 −722.3
bcp3: Ru3-Ru4 2.258 0.7456 10.67 0.17 −0.02953 1.21 −701.8

a Atoms are labeled inwards from terminal Ru; Ru1 is connected to the axial ligand

Table 3 Electron density at Ru–Ru bond critical points (e Å−3) and HOMO–LUMO gapsa

Ruthenium string complexa Ru1-Ru2 Ru2-Ru3 Ru3-Ru4 Ru4-Ru5 MBOb HOMO-LUMO gap [eV]

Ru3(dpa)4Cl2 0.692 1.22 1.88

Ru3(dpa)4(CN)2 0.470 0.70 1.76

Ru3(dpa)4(NCS)2 0.668 1.09 1.76

Ru5(tpda)4Cl2 0.696 0.756 0.99 1.73

Ru7(tpta)4Cl2 0.765 0.775 0.744 0.99 1.18

Ru9(hpta)4Cl2 0.753 0.737 0.772 0.777 0.96 0.98

[Ru(CO)4]8H2 0.265 0.287 0.287 0.287 0.70 3.75

[Ru(bpy)(CO)4]8H2 0.241 0.271 0.269 0.266 0.65 1.52

a Atoms are labeled inwards from terminal Ru; Ru1 is connected to the axial ligand
b Average Mayer’s bond order between the ruthenium atoms
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expected that the conductivity and electron density will also
correlate. The experimental conductances of Ru3(d-
pa)4(CN)2 and Ru3(dpa)4(NCS)2 have been reported to be
approximately 2.04 × 10−3 G0 and 9.81 × 10−3 G0, respec-
tively (G0 = 2e2/h), which means that the CN axial ligands
reduces the conductivity [27]. In the longer string com-
plexes, the higher electron density between the metal atoms
suggests good conductivity along the Ru chain. The
conductivities and calculated electron density are in
agreement, although additional experimental data would
be needed to see how well the electron density and
conductivity correlate.

Conclusions

Ruthenium metal string complexes were studied using DFT
methodology and QTAIM. The experimental geometries
were reproduced reliably with the methodology used. In the
absence of symmetry restrictions, we observed a slight
displacement of the terminal ruthenium atoms from the
idealized 180° Ru–Ru–Ru angle and also uneven bonding
of surrounding ligands to the ruthenium atoms. Both effects
are also visible in the experimental crystal structures of
triruthenium complexes. The electronic structures of the
complexes under study were similar, except for Ru3(d-
pa)4(CN)2, where the nature of HOMO and LUMO were
interchanged. QTAIM studies revealed that, in the longest
studied complexes, the electron density between the
ruthenium atoms was both the highest and most evenly
distributed, suggesting strong ruthenium–ruthenium inter-
actions. Unsupported ruthenium backboned chain com-
plexes, such as [Ru(bpy)(CO)4]n, have a much lower
electron density and weaker ruthenium–ruthenium interac-
tions than the ruthenium metal string complexes under
study. The structures of hypothetical [Ru7(tpta)4Cl2] and
[Ru9(ppta)4Cl2] seem feasible to synthesize, although the
synthesis itself would no doubt have its difficulties.

Acknowledgment We are grateful for financial support (grant
129772) provided by the Academy of Finland.

References

1. Tsai TW, Huang QR, Peng SM, Jin BY (2010) Smallest electrical
wire based on extended metal-atom chains. J Phys Chem C
114:3641–3644. doi:10.1021/jp907893q

2. Anderson BM, Hurst SK, Spangler L, Abbott EH, Martellaro P,
Pinhero PJ, Peterson ES (2006) Growth and characterization of
partially oxidized platinum polymers in nanoscale templates. J
Mater Sci 41:4251–4258. doi:10.1007/s10853-005-5429-3

3. Heyduk AF, Krodel DJ, Meyer EE, Nocera DG (2002) A
luminescent heterometallic dirhodium–silver chain. Inorg Chem
41:634–636. doi:10.1021/ic015562d

4. Stender M, White-Morris RL, Olmstead MM, Balch AL (2003)
New structural features of unsupported chains of metal ions in
luminescent [(NH3)4Pt][Au(CN)2]2•1.5(H2O) and related salts.
Inorg Chem 42:4504–4506. doi:10.1021/ic034383o

5. Yeh TT, Wu JY, Wen YS, Liu YH, Twu J, Tao YT, Lu KL (2005)
Luminescent silver metal chains with unusual μ4-bonded 2,2′-
bipyrazine. Dalton Trans 2005:656–658. doi:10.1039/b416703a

6. Buss CE, Anderson CE, Pomije MK, Lutz CM, Britton D, Mann
KR (1998) Structural investigations of Vapochromic Behavior.
X-ray single crystal and powder diffraction studies of [Pt(CN-iso-
C3H7)4][M(CN)4] for M = Pt or Pd. J Am Chem Soc 120:7783–
7790. doi:10.1021/ja981218c

7. Grate JW, Moore LK, Janzen DE, Veltkamp DJ, Kaganove S,
Drew SM, Mann KR (2002) Steplike response behavior of a new
vapochromic platinum complex observed with simultaneous
acoustic wave sensor and optical reflectance measurements. Chem
Mater 14:1058–1066. doi:10.1021/cm0104506

8. Drew SM, Smith LI, McGee KA, Mann KR (2009) A platinum(II)
extended linear chain material that selectively uptakes benzene.
Chem Mater 21:3117–3124. doi:10.1021/cm900401u

9. Pantazis DA, Murillo CA, McGrady JE (2008) A re-evaluation
of the two-step spin crossover in the trinuclear cation
[Co3(dipyridylamido)4Cl2]

+. Dalton Trans 2008:608–614.
doi:10.1039/b715021k

10. Cotton FA, Murillo CA, Wang Q, Young MD (2008) Unusual
magnetism of an unsymmetrical trinickel chain. Eur J Inorg Chem
5257–5262. doi:10.1002/ejic.200800808

11. López X, Rohmer MM, Bénard M (2008) DFT modeling of the
[M-Pd-M]6+ metal atom chains (M = Ni, Pd); structural electronic
and magnetic issues. J Mol Struct 890:18–23. doi:10.1016/j.
molstruc.2007.12.007

12. Chardon-Noblat S, Deronzier A, Ziessel R, Zsoldos D (1998)
Electroreduction of CO2 catalyzed by polymeric [Ru(bpy)(CO)2]n
films in aqueous media: parameters influencing the reaction
selectivity. J Electroanal Chem 444:253–260. doi:10.1016/
S0022-0728(97)00584-6

13. Chardon-Noblat S, Deronzier A, Hartl F, van Slageren J,
Mahabiersing T (2001) A novel organometallic polymer of
osmium(0), [Os(2,2′-bipyridine)(CO)2]n: its electrosynthesis and
electrocatalytic properties towards CO2 reduction. Eur J Inorg
Chem 613–617. doi:10.1002/1099-0682(200103

14. Oresmaa L, Moreno MA, Jakonen M, Suvanto S, Haukka M
(2009) Catalytic activity of linear chain ruthenium carbonyl
polymer [Ru(CO)4]n in 1-hexene hydroformylation. Appl Catal
A 353:113–116. doi:10.1016/j.apcata.2008.10.028

15. Kontkanen ML, Oresmaa L, Moreno MA, Jänis J, Laurila E,
Haukka M (2009) One-dimensional metal atom chain [Ru(CO)4]n
as a catalyst precursor—hydroformulation of 1-hexene using
carbon dioxide as a reactant. Appl Catal A 365:130–134.
doi:10.1016/j.apcata.2009.06.006

16. Caseri W (2004) Derivatives of Magnus’ green salt; from
intractable materials to solution-processed transistors. Platinum
Metals Rev 48:91–100. doi:10.1595/147106704X1504

17. Bremi J, Brovelli D, Caseri W, Hähner G, Smith P, Tervoort T
(1999) From Vauguelin’s and Magnus’s salts to gels, uniaxially
oriented films, and fibers: synthesis, characterization, and proper-
ties of tetrakis(1-aminoalkane)metal(II) tetrachlorometalates(II).
Chem Mater 11:977–994. doi:10.1021/cm9806376

18. Krogmann K (1969) Planare Komplexe mit Metall-Metall-Bindungen.
Angew Chem 81:10–17. doi:10.1002/ange.19690810103

19. Masciocchi N,MoretM, Cairati P, Ragaini F, Sironi A (1993) Solving
simple organometallic structures solely from X-ray powder diffrac-
tion data: the case of polymeric [{Ru(CO)4}n]. J Chem Soc Dalton
Trans 1993:471–475. doi:10.1039/DT9930000471

20. Maschiocchi N, Sironi A, Chardon-Noblat S, Deronzier A (2002)
X-ray powder diffraction study of organometallic polymers: [Ru

J Mol Model (2012) 18:1961–1968 1967

http://dx.doi.org/10.1021/jp907893q
http://dx.doi.org/10.1007/s10853-005-5429-3
http://dx.doi.org/10.1021/ic015562d
http://dx.doi.org/10.1021/ic034383o
http://dx.doi.org/10.1039/b416703a
http://dx.doi.org/10.1021/ja981218c
http://dx.doi.org/10.1021/cm0104506
http://dx.doi.org/10.1021/cm900401u
http://dx.doi.org/10.1039/b715021k
http://dx.doi.org/10.1002/ejic.200800808
http://dx.doi.org/10.1016/j.molstruc.2007.12.007
http://dx.doi.org/10.1016/j.molstruc.2007.12.007
http://dx.doi.org/10.1016/S0022-0728(97)00584-6
http://dx.doi.org/10.1016/S0022-0728(97)00584-6
http://dx.doi.org/10.1002/1099-0682(200103
http://dx.doi.org/10.1016/j.apcata.2008.10.028
http://dx.doi.org/10.1016/j.apcata.2009.06.006
http://dx.doi.org/10.1595/147106704X1504
http://dx.doi.org/10.1021/cm9806376
http://dx.doi.org/10.1002/ange.19690810103
http://dx.doi.org/10.1039/DT9930000471


(L)(CO)2]n (L=2,2′-bipyridine or 1,10-phenantroline). Organo-
metallics 21:4009–4012. doi:10.1021/om020298x

21. Finniss GM, Canadell E, Campana C, Dunbar KR (1996)
Unprecedented conversion of a compound with metal–metal
bonding into a solvated molecular wire. Angew Chem Int Edn
Engl 35:2771–2774. doi:10.1002/anie.199627721

22. Tejel C, Ciriano MA, Oro LA (1999) From platinum blues to
rhodium and iridium blues. Chem Eur J 5:1131–1135. doi: 10.1002/
(SICI)1521-3765(19990401)5:4<1131::AID-CHEM1131>3.0.
CO;2-3

23. Berry JF (2010) Metal–metal bonds in chains of three or more
metal atoms: from homometallic to heterometallic chains. Struct
Bond 136:1–28. doi:10.1007/978-3-642-05243-9_1

24. Yang MH, Chou CC, Lee HC, Lee GH, Leung MK, Peng SM
(1997) New oligo-α-pyridylamido ligands and their metal com-
plexes. Chem Commun 1997:2279–2280. doi:10.1039/A706439J

25. Liu IPC, Wang WZ, Peng SM (2009) New generation of metal
string complexes: strengthening metal–metal interaction via
naphthyridyl group modulated oligo-α-pyridylamido ligands.
Chem Commun 2009:4323–4331. doi:10.1039/b904719k

26. Hua SA, Liu IPC, Hasanov H, Huang GC, Ismayilov RH, Chiu
CL, Yeh CY, Lee GH, Peng SM (2010) Probing the electronic
communication of linear heptanickel and nonanickel string
complexes by utilizing two redox-active [Ni2(napy)4]

3+ moieties.
Dalton Trans 39:3890–3896. doi:10.1039/b923125k

27. Shih KN, Huang MJ, Lu HC, Fu MD, Kuo CK, Huang GC, Lee
GH, Chen CH, Peng SM (2010) On the tuning of electric
conductance of extended metal atom chains via axial ligands for
[Ru3(μ3-dpa)4(X)2]

0/+ (X = NCS-, CN-). Chem Commun
46:1338–1340. doi:10.1039/b916677g

28. Peng SM, Wang CC, Jang YL, Chen YH, Li FY, Mou CY, Leung
MK (2000) One-dimensional metal string complexes. J Magn
Magn Mater 209:80–83. doi:10.1016/S0304-8853(99)00650-2

29. Huang GC, Liu IPC, Kuo JH, Huang YL, Yeh CY, Lee GH, Peng
SM (2009) Further investigations of linear trirhodium complexes:
experimental and theoretical studies of [Rh3(dpa)4Cl2] and
Rh3(dpa)4Cl2]BF4 [dpa = bis(2-pyridyl)amido anion]. Dalton
Trans 2009:2623–2629. doi:10.1039/b820060b

30. Yin C, HuangGC, KuoCK, FuMD, LuHC, Ke JH, Shih KN,Huang
YL, Lee GH, Yeh CY, Chen CH, Peng SM (2008) Extended metal-
atom chains with and inert second row transition metal: [Ru5(μ5-
tpda)4X2] (tpda

2- = tripyridylamido dianion, X = Cl and NCS). J
Am Chem Soc 130:10090–10092. doi:10.1021/ja8016818

31. Clérac R, Cotton FA, Dunbar KR, Lu T, Murillo CA, Wang X
(2000) A new linear tricobalt combound with di(2-pyridyl)amide
(dpa) ligands: two-step spin crossover of [Co3(dpa)4Cl2][BF4]. J
Am Chem Soc 122:2272–2278. doi:10.1021/ja994051b

32. Sheu JT, Lin CC, Chao I, Wang CC, Peng SM (1996) Linear
trinuclear three-centered metal–metal bonds: synthesis and crystal
structure of [M3(dpa)4Cl2] [M = RuII or RhII, dpa = bis(2-pyridyl)
amido anion]. Chem Commun 1996:315–316. doi:10.1039/
CC9960000315

33. Kuo CK, Liu IPC, Yeh CY, Chou CH, Tsao TB, Lee GH, Peng SM
(2007) Oxidation of linear trinuclear ruthenium complexes

[Ru3(dpa)4(CN)2]: synthesis, structures, electrochemical and mag-
netic properties. Chem Eur J 13:1442–1451. doi:10.1002/
chem.200601219

34. Kuo CK, Chang JC, Yeh CY, Lee GH, Wang CC, Peng SM (2005)
Synthesis, structures, magnetism and electrochemical properties of
triruthenium–acetylide complexes. Dalton Trans 2005:3696–3701.
doi:10.1039/b506267e

35. Bader RFW (1990) Atoms in molecules: a quantum theory.
Clarendon, Oxford

36. Gervasio G, Bianchi R, Marabello D (2004) About the topological
classification of the metal–metal bond. Chem Phys Lett 387:481–
484. doi:10.1016/j.cplett.2004.02.043

37. Niskanen M, Hirva P, Haukka M (2009) Computational DFT study
of ruthenium tetracarbonyl polymer. J Chem Theor Comput
5:1084–1090. doi:10.1021/ct800407h

38. Niskanen M, Hirva P, Haukka M (2010) The effect of N-ligands
on the geometry, bonding, and electronic absorption properties of
ruthenium carbonyl chains. Phys Chem Chem Phys 12:9777–
9782. doi:10.1039/c0cp00189a

39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC,
Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi
M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M,
Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima
T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE,
Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R,
Stratmann E, Yazyev O, Austin AJ, Cammi R, Pomelli C,
Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P,
Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain
MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K,
Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski
J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I,
Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY,
Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen
W, Wong MW, Gonzales C, Pople JA (2004) Gaussian 03,
Revision C.02. Gaussian Inc, Wallingford CT

40. Adamo C, Barone V (1999) Toward reliable density functional
methods without adjustable parameters: the PBE0 model. J Chem
Phys 110:6158–6170. doi:10.1063/1.478522

41. Huzinaga S (ed) (1984) Gaussian basis sets for molecular
calculations, physical sciences data 16. Elsevier, Amsterdam

42. Hirva P, Haukka M, Jakonen M, Moreno MA (2008) DFT tests for
group 8 transition metal carbonyl complexes. J Mol Model
14:171–181. doi:10.1007/s00894-007-0259-7

43. Biegler-König F, Schönbohm J (2002) Update of the AIM2000-
program for atoms in molecules. J Comput Chem 42:1489–1494.
doi:10.1002/jcc.10085

44. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothert J (2001) The
Mayer bond order as a tool in inorganic chemistry. J Chem Soc
Dalton Trans 2001:2095–2108. doi:10.1039/B102094N

45. Berry JF, Cotton FA, Daniels LM, Murillo CA, Wang X (2003)
Oxidation of Ni3(dpa)4Cl2 and Cu3(dpa)4Cl2: nickel–nickel
bonding interaction, but no copper–copper bonds. Inorg Chem
42:2418–2427. doi:10.1021/ic0262740

1968 J Mol Model (2012) 18:1961–1968

http://dx.doi.org/10.1021/om020298x
http://dx.doi.org/10.1002/anie.199627721
http://dx.doi.org/10.1002/(SICI)1521-3765(19990401)5:4<1131::AID-CHEM1131>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1521-3765(19990401)5:4<1131::AID-CHEM1131>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1521-3765(19990401)5:4<1131::AID-CHEM1131>3.0.CO;2-3
http://dx.doi.org/10.1007/978-3-642-05243-9_1
http://dx.doi.org/10.1039/A706439J
http://dx.doi.org/10.1039/b904719k
http://dx.doi.org/10.1039/b923125k
http://dx.doi.org/10.1039/b916677g
http://dx.doi.org/10.1016/S0304-8853(99)00650-2
http://dx.doi.org/10.1039/b820060b
http://dx.doi.org/10.1021/ja8016818
http://dx.doi.org/10.1021/ja994051b
http://dx.doi.org/10.1039/CC9960000315
http://dx.doi.org/10.1039/CC9960000315
http://dx.doi.org/10.1002/chem.200601219
http://dx.doi.org/10.1002/chem.200601219
http://dx.doi.org/10.1039/b506267e
http://dx.doi.org/10.1016/j.cplett.2004.02.043
http://dx.doi.org/10.1021/ct800407h
http://dx.doi.org/10.1039/c0cp00189a
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1007/s00894-007-0259-7
http://dx.doi.org/10.1002/jcc.10085
http://dx.doi.org/10.1039/B102094N
http://dx.doi.org/10.1021/ic0262740


ORIGINAL PAPER

Combinatorial screening of polymer precursors
for preparation of benzo[α] pyrene imprinted polymer:
an ab initio computational approach

Muntazir S. Khan & Prateek S. Wate &

Reddithota J. Krupadam

Received: 28 May 2011 /Accepted: 9 August 2011 /Published online: 30 August 2011
# Springer-Verlag 2011

Abstract A combinatorial screening procedure was used
for the selection of polymer precursors in the preparation of
molecularly imprinted polymer (MIP), which is useful in
the detection of the air pollution marker molecule benzo[a]
pyrene (BAP). Molecular imprinting is a technique for the
preparation of polymer materials with specific molecular
recognition receptors. The preparation of imprinted poly-
mers requires polymer precursors such as functional
monomer, cross-linking monomer, solvent, an initiator of
polymerization and thermal or UV radiation. A virtual
library of functional monomers was prepared based on
interaction binding scores computed using HyperChem
Release 8.0 software. Initially, the possible minimum
energy conformation of the monomers and BAP were
optimized using the semi-empirical (PM3) quantum meth-
od. The binding energy between the functional monomer
and the template (BAP) was computed using the Hartree-
Fock (HF) method with 6-31 G basis set, which is an ab
initio approach based on Moller-Plesset second order
perturbation theory (MP2). From the computations, meth-
acrylic acid (MAA) and ethylene glycol dimethacrylate
(EGDMA) were selected for preparation of BAP imprinted
polymer. The larger interaction energy (ΔE) represents

possibility of more affinity binding sites formation in the
polymer, which provides high binding capacity. The
theoretical predictions were complimented through adsorp-
tion experiments. There is a good agreement between
experimental binding results and theoretical computations,
which provides further evidence of the validity of the
usefulness of computational screening procedures in the
selection of appropriate MIP precursors in an experiment-
free way.

Keywords Molecularly imprinted polymer . Computer
simulation . Combinatorial screening . Polymer precursors .

Molecular recognition

Introduction

The development of polymer receptors capable of recog-
nizing traces of environmental toxins represents a challenge
in chemical/physical science today. Many approaches are
used currently to produce synthetic receptors; however,
molecular imprinting has been studied intensively in recent
years [1–3]. The concept of molecular imprinting was put
forward by Wulff in 1972 [4–6] and has developed rapidly
since 1997 when a molecularly imprinted polymer (MIP)
using theophylline as template was reported [7]. In general,
the synthesis of MIP can be summarized as follows. Firstly,
the template and the monomer are mixed in a rational ratio
to form a pre-polymerization complex. Cross-linking
monomer and an initiator are then added to the mixture.
Polymerization is carried out by heat treatment or UV
radiation. After polymerization, the template molecule is
removed, leaving cavities in the polymer matrix that are
complementary both in size and functional arrangement to
those in the template molecules (Fig. 1). Therefore, the MIP
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can selectively recognize the template molecule from
structurally similar compounds. A vast number of papers
have been published to describe MIP preparation formats
and to present new application areas for these materials
[8–16]. MIPs have advantages such as an excellent
predetermined selectivity and easy preparation. These
advantages over other methods have drawn extensive
attention in recent years in the field of the preparation of
synthetic receptors for sensing explosives, and biological
and environmental toxins.

Although the synthesis of MIPs is easy, a large
library of functional monomers and the presence of
cross-linking monomers make the task of screening out
the best polymer precursors quite difficult. In practice,
standard formulations using chemical intuition are
usually employed, and attempts aiming at modifying
the properties of polymers are based mainly on trial-
and-error methods. The selection of appropriate func-
tional monomers using simulated annealing (molecular
dynamics) was reported for the preparation of ephedrine
and cyanotoxin-imprinted polymers [17–21]. In an
interesting study, Takeuchi et al. [22] demonstrated the
stability of the pre-polymer complex formed between
template (biotin) and functional monomer (MAA) using
Monte Carlo simulations. A library of functional mono-
mers was prepared for template (cyanotoxin; microcystin-
LR) with the aid of computer simulation using SYBYL
6.7 software [23–25]. Dumitru et al. [26] applied a state-
of-the-art computational tool (Cerius2 simulation tool) to
achieve an understanding of intermolecular interactions in
molecular imprinting of theophylline into complex poly-
meric systems. Dong et al. [27] used high level density

functional theory (DFT) to calculate the binding energy
and interaction energy (ΔE) between a template and
functional monomers as a measure of their interaction,
which facilitated the selection of monomers for MIP
synthesis. The above cited research findings demonstrate
that a combinatorial approach can provide experiment-free
(trial-and-error methods) selection of the best polymer
precursors for MIP preparation. However, there are no
reports aimed at understanding the weak interactions in a
template with no functional groups (such as benzo[α]
pyrene, BAP) during pre-polymerization in MIP preparation,
or the subsequent adsorption properties of MIPs.

In this paper, the authors prepared a virtual library of
functional monomers for template-BAP (this template has
no functional groups) using HyperChem Release 8.0
software [28]. BAP is an air pollution marker molecule
and a probable human carcinogenic pollutant [15]. Due to
the lack of functional groups in the template, it is quite
difficult to generate interaction energy scoring of a
template–functional monomer complex in a given solvent
system. The interaction energy computed between func-
tional monomers and the template, followed by combina-
torial screening, was used to prepare selected MIPs. The
adsorption capacity was determined experimentally and
compared with theoretically predicted internal energy
scoring. These computer simulations aided in the selection
of the most appropriate polymer precursors for MIP
preparation. The approach presented in this article shows
that computer simulations reduce experimental time and
also provide useful information about functional monomers
that can express strong imprinting effects with the targeted
molecule.

Fig. 1 Schematic representation of the molecular imprinting of benzo
[α]pyrene. specific binding sites are generated using methacrylic acid
as a functional monomer. After polymerization (step 1) and removal of

the template (step 2), binding sites containing template-specific shapes
are left in the polymer
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Materials and methods

Computational methods

Hardware and software

The workstation used to simulate functional monomer–
template interactions was an Intel (R) Pentium IV running a
Windows XP operating system, CPU 2.80 GHz, and 1 GB
of RAM (memory), and 160 GB hard disk. This system was
used to execute the software package HyperChem Release
8.0 [28] (http://www.hyper.com/).

Geometry optimization and energy calculation

Geometric optimization In the first step, 2-D chemical
structures of the functional monomers (a virtual library of
24 monomers is shown in Table 1), template, and cross-
linking monomers were prepared using HyperChem Re-
lease 8.0 software. Then, using the molecular builder
option, the 2-D structure was converted to a 3-D structure.
A schematic of the computational steps followed is given in
Fig. 2. Geometric optimization was then carried out by
the semi-empirical (SE) quantum mechanical approach
(PM3 method) to obtain minimum energy structures.
This SE method is a quantum mechanical method that
uses approximations to solve the Schrödinger equation
(see HyperChem user’s manual). SE method uses only
pre-calculated data from empirical studies, ignoring the
core electrons and considering only valence electrons,
which are of special interest to the chemistry of the
molecule. SE also neglects or parameterizes two-electron
integrals. The SE method generates relatively standard
information about molecules and executes faster than
other quantum mechanical methods. Hence, the SE
method was used for geometrical optimization of
polymer precursors. In this method, the Polak-Ribiere
algorithm was chosen, which is a conjugate gradient
method used for specially aromatic or conjugated
organic compounds. The molecular structures were
optimized using the Polak-Ribiere algorithm until the
root mean square gradient was 0.01.

Interaction energy calculations The binding scores of the
monomer, and interaction energies of the monomer–
template complex were then calculated using Hartree-Fock
(HF) method with 6-31 G basis set and Moller-Plesset
second order perturbation theory (MP2), which is an ab
initio method. Binding score is defined as the amount of
energy required to disassemble a molecule into its atoms. In
this method, it is possible to apply an electronic structure
package capable of predicting molecular properties such as
stable conformation, vibrational frequencies of atoms,

molecules, and reactive systems. The ab initio calculation
has the additional advantage of high accuracy level of
information, reliability, and provides better results for weak
interaction systems. It is a two-electron integral system,
which gives more accurate binding scores. The binding
score calculations between functional/cross-linking mono-
mers and template were performed using HF method with
6-31 G basis set and MP2 levels of theory.

The minimum binding energies between the opti-
mized conformations of 1: N ratio of template–monomer
complexes are listed in Table 2. Using conformation
optimization, the most stable template–monomer com-
plexes were screened based on interaction energy, ΔE.
The ΔE values were calculated using the following
equation:

ΔE ¼ E template�monomerð Þ � E templateð Þ
�
X

E monomerð Þ ð1Þ

QSAR (quantitative structure-activity relationships)
are used to correlate molecular structure, or properties
derived from molecular structure, with a particular kind
of chemical activity. The QSAR calculations of the
template and functional monomers studied are presented
in the Electronic supplementary material (S-I.1). The
calculations are empirical and generally faster than other
methods. The QSAR Properties calculated were: atomic
partial charges (Gasteiger-Marsili method), van der Waals
and solvent-accessible surface areas, hydration energy, van
der Waals-surface-bounded molecular volume, solvent-
accessible surface-bounded molecular volume, log P (the
log of the octanol-water partition coefficient), molar
refractivity, polarizability and molecular mass.

Experimental methods

Benzo[a]pyrene (BAP), methacrylic acid (MAA) and 4-vinyl
pyridine (4-VP) were purchased from Sigma-Aldrich (Tauf-
kirchen, Germany). Ethylene glycol dimethacrylate
(EGDMA) (washed successively with 15% NaOH, saturated
with NaHCO3 and NaCl solutions, dried with CaH2 and
distilled before use) was obtained from Fluka (Steinhiem,
Germany). 2, 2′-Azobis (2-isobutyronitrile) (AIBN), and
acetonitrile (ACN) for synthesis were obtained from Merck
(Darmstadt, Germany). In addition to these two polymers
(MAA-EGDMA and 4-VP-EGDMA), 74 polymers were
prepared using different polymer precursors for BAP and the
functional and cross-linking monomers of analytical grade
were purchased from different vendors and used as procured.
All solutions were prepared using ultrapure water, obtained
by reserved osmosis including UV treatment (Milli-RO 5
Plus, Millipore, Singapore).
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Table 1 A virtual library of functional monomers for preparation of benzo[a]pyrene imprinted polymer

S.No 
Functional monomers 

(FM) 

Simulated 

structures 

Acidic or 

basic 

property of 

FM 

Binding score 

ΔE(kcalmol−1) 

1 1-Vinylimidazole 
Basic 

monomer 
−9.21 

2 2 (5)-Vinylimidazole 
Basic 

monomer 
−8.36 

3 2-Vinylpyridine 
Basic 

monomer 
−23.43 

4 4-Ethylstyrene 
Neutral 

monomer 
2.37 

5 4-Vinylpyridine 
Basic 

monomer 
−27.84 

6 Acrylamide 
Neutral 

monomer 
−7.94 

7 
Acrylamido-2-methyl-1-

propane- sulfonic acid 

Acidic 

monomer 
−1.96 

8 Acrylic acid 
Acidic 

monomer 
−7.65 

9 Acrylonitrile 
Neutral 

monomer 
−5.92 

10 Allylamine 
Basic 

monomer 
−12.31 

11 Itaconic acid 
Acidic 

monomer 
−19.99 

12 Methacrylamide 
Neutral 

monomer 
−11.78 

13 Methacrylic acid 
Acidic 

monomer 
−33.14 
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Preparation of molecularly imprinted polymers

The procedure followed for preparation of MIP was as
follows: in a 30 mL glass vial, the template BAP (1 mmol)
was dissolved in 10 mL ACN; the functional monomer

MAA (4 mmol) was added and the contents mixed in a
shaker for 5 min. Next, 4 mmol of the functional monomer
MAA was added, and the solution was mixed well for 5 min
by placing it in a shaker. Then, 40 mmol cross-linking
monomer EGDMA and 0.5 mg AIBN were added to the

Table 1 (continued)

14 Methyl Methacrylic acid 
Neutral 

monomer 
−10.11 

15 

N,N'-diethyl aminoethyl 

methacrylamide 

(DEAEM) 

Basic 

monomer 
−2.33 

16 
N,N'-diethyl-4-

styrylamidine 

Basic 

monomer 
−7.32 

17 
N,N,N,-trimethyl 

aminoethylmethacrylate 

Basic 

monomer 
5.63 

18 
N-(2-aminethyl)-

methacrylamide 

Basic 

monomer 
−4.23 

19 
N-vinylpyrrolidone 

(NVP) 

Basic 

monomer 
−10.78 

20 p-Vinylbenzoic acid 
Acidic 

monomer 
−16.87 

21 Styrene 
Neutral 

monomer 
1.67 

22 
Trans-3-(3-pyridyl)-

acrylic acid 

Neutral 

monomer 
−6.78 

23 
Trifluoro methacrylic 

acid 

Acidic 

monomer 
−17.84 

24 Urocanic ethyl ester 
Basic 

monomer 
−3.41 

S.No 
Functional monomers 

(FM) 

Simulated 

structures 

Acidic or 

basic 

property of 

FM 

Binding score 

ΔE(kcalmol−1) 

}
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solution. The sealed glass vial containing the reaction
mixture was freeze-thaw degassed by submerging the tube
in liquid nitrogen and holding the frozen tube under a
vacuum of 100 mTorr for a period of 5 min. The tube was
then sonicated for 10 min in order to mix the solution
uniformly, then placed in water bath at 60°C for 24 h. Upon
completion of polymerization, the tube was taken out of the
water bath and crushed. The polymer monolith was ground
in a ball mill to polymer particles sized 75 μm or less (200
mesh). The BAP was extracted in batch mode, using
acetonitrile on a Soxlet distillation assembly for 24 h. The
washing procedure was repeated (10 times) until BAP in
the extraction solvent could not be detected by GC-MS.
Finally, the particles were dried under vacuum for further
use. MIPs with different polymer precursors were prepared
[76 and free (F) guest molecules in heterogeneous systems
and free (F) guest molecules in heterogeneous systems

MIPs] using various combinations, and then their binding
capacity determined using equilibrium adsorption studies.

The adsorption capacity of BAP onto MIPs was deter-
mined by contacting 10 mg polymer with 5 mL standard BAP
solutions of different concentrations (1–10 mgL−1). The
samples were then kept in a shaker at 25°C for 3 h.
After sedimentation of the adsorbents, the supernatant
was decanted and the concentration of BAP was
measured using gas chromatography/mass spectrometry
(GC/MS). The analytical protocol followed is presented
in the Electronic supplementary material. The amount of
BAP adsorbed was calculated by subtraction using a
calibrating curve obtained from the same experiment
leaving out the adsorbent. The experiment was repeated
at least twice for each adsorbent. The imprinting factor
was calculated as the ratio between the adsorption
capacity of MIP and its corresponding NIP.

Batch rebinding experiments

BAP adsorption studies were performed in batch mode. The
dry adsorbents (MIP or NIP) were weighed in 5 mL glass
vials, and 0.1, 0.2, 0.3, 0.4, and 0.5 ml BAP standard
solution (B) was added followed by addition of acetonitrile
to a final volume of 5 mL. The samples were then stirred in
a circularly shaking water-bath at 25°C for 2 h. After
sedimentation of the adsorbents, the concentration of BAP
was measured using GC/MS. The amount of BAP adsorbed
was calculated by subtraction using a calibrating curve
obtained from the same experiment leaving out the
adsorbent. The experiment was repeated at least twice for
each adsorbent. Three adsorption isotherm models were
chosen to represent experimental data. Model parameters
were determined by nonlinear, least-squares regression of
these data. Regression was done using the solver function

Fig. 2 Flow-chart representing the steps followed for molecular
energy computations using HyperChem software [28]

Table 2 Computationally derived binding energies for fixing tem-
plate/monomer (T/M) molar ratio. MAA Methacrylic acid, 4-VP 4-
vinyl pyridine, BAP benzo[a]pyrene

Template Functional
monomer
(MAA)

ΔE
kcal mol−1

Functional
monomer
(4-VP)

ΔE
kcal mol−1

BAP 1 −87.77 1 −74.84
2 −93.87 2 −81.34
3 −134.23 3 −117.42
4 −178.39 4 −147.80
5 −171.31 5 −148.21
6 −164.87 6 −143.71
7 −160.37 7 −150.33
8 −175.07 8 −157.07
9 −177.12 9 −161.74
10 −180.54 10 −172.93
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in Microsoft Excel 2000 to minimize the standard error by
varying the model parameters. The experimental data were
then calculated to obtain the corresponding standard
deviations.

Results and discussion

Selection of the proper functional monomer

The selection of suitable functional monomers is a key
factor in the preparation of MIPs. An interesting aspect of
this study is the use of a template having no functional
groups. The template BAP contains electron-rich polycyclic
aromatic hydrocarbons with five condensed benzene struc-
tures. Based on the interaction energy between BAP and the
functional monomer, a virtual library of BAP-functional
monomer complexes was prepared. From the simulation
results, it was found that the functional monomers MAA
and 4-VP showed the highest interaction energy (ΔE)
scoring with BAP to form the most stable complexes in the
equilibrium state. The functional monomers, namely 2-
vinylpyridine, itaconic acid, p-vinylbenzoic acid, and
trifluoro methacrylic acid, are also fairly good candidates
for imprinting monomers based on interaction energy
scoring. N-(2-aminethyl)-methacrylamide, urocanic ethyl
ester and 2-acrylamido-2-methyl-1-propanesulfonic acid
forms the least stable structures based on lowest interaction
energy scoring. In fact, 4-ethylstyrene, styrene and N,N,N,
trimethyl aminoethyl methacrylate also showed low
interaction energy with BAP.

Identification of interaction type between template
and monomer

The monomer simulations were analyzed further to deter-
mine which part of the monomer comes closest to the
template (molecule orientation), and the magnitude of these
distances in vacuum and in a virtual solvent box were
determined. The results of this analysis are presented in
Fig. 3. In most cases, it was found that the functional group
of monomers interacting with template tends to be –COOH
or CH2=CH–. The two most stable complexes of BAP
were found to be MAA and 4-VP, the simulated closest
distance of approach was approximately 2.8 and 4.5 Å, and
the binding was predominantly with –COOH (in the case of
methacrylic acid, –OH was also involved). This indicates
clearly that the presence of weak H-bonding and π–π
interaction is involved between the template and the
functional monomer. The binding distances or simulated
closest distance between the template and the monomer
ranged from 2 to 10 Å in solvent, while in a vacuum the
distance was between 5 and 13 Å for all monomers. A

closer view of the possible optimized configuration in
vacuum and solvent is presented in Fig. 4.

From the observations, a weak correlation can be noted,
namely distances between 3 and 5 Å tend to correspond to
greater negative interaction energies, indicating that this is
roughly the distance of closest approach required for the
formation of stable complexes between BAP-monomers. In
vacuum, the binding distance between monomer and
template is more than that of the solvent. These distances
are consistent with the 3-D structures of the template and
the monomers as determined from their total electronic
charge distributions (densities). The total electronic charge
distribution data provides information about the possible
interactions between the monomer and the template.
Generally, total electronic charge density plots represent
the electron density function for the molecular valence
electrons, in units of e/a0

3. This property is associated with
the surface of a molecule. It describes the probability of
finding an electron at a point in space. The value is the sum
for each electron of Ψi2, where Ψ is the molecular orbital
occupied by the ith electron. For a closed-shell system this
is 2 Ψi2, summed over the occupied orbitals. In the present
case, functional monomer and template, BAP interactions
were computed for total charge density; the results are
depicted in Fig. 5. The simulated electronic charge
distribution of BAP electronic charge distribution extends
1–2 Å outside the O or H nucleus. A similar case applies to

Fig. 3 Binding distance between benzo[a]pyrene (BAP) and functional
monomers computed in vacuum and in a virtual solvent box
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the other monomers, hence the minimal contact distance
must fall between 3.0 and 5.0 Å for an appropriate and
attractive interaction to occur.

Template-monomer mole ratio

The interaction energies of the stable complexes of BAP
with each of the monomers at a molar ratio of 1: 1, 1: 2, 1:
3……., 1: N were calculated by applying the conformation
optimization to these complexes (Table 2). In theory, a
monomer giving a high binding energy with the
template molecule would interact strongly with template
molecules. In addition, when ΔE is higher, more active
sites are expected to form in MIPs and the sites are
more regular, which help MIPs to recognize the
template, leading to good molecular recognition. There-
fore, monomers with high binding energy are the best
candidates for the preparation of MIPs. The binding energy of
one MAA with BAP was calculated as −87.77 kcal mol–1,

while that of four MAA with BAP was calculated as
−178.39 kcal mol–1. This suggests that, in BAP–MIP,
binding sites of high affinity should have four MAA
molecules interacting with BAP, while binding sites of
low affinity should have one MAA interacting with BAP.
The results indicate clearly that at least four functional
monomers are required to saturate all the binding sites of
BAP. Therefore, a 1:4 ratio of template–monomer (T/M)
was used for synthesis of MIP. The same ratio was found
in the case of the BAP–4-VP complex.

To complement computational predictions, a series of
MIPs was prepared by changing the amount of functional
monomer (MAA) and keeping 1 mmol of template (BAP).
The binding capacity of the resulting MIPs is given in
Fig. 6. As can be seen, with increasing monomer portion of
the T/M ratio, the binding capacity of MIPs increased
gradually up to a ratio of 1:4. Thereafter, further increase in
the functional monomer portion showed a downward trend.
This could be because the functional monomer has

Fig. 4 Examples of two possible optimized configurations (a, c) and (b, d) for two molecules of methacrylic acid (MAA) and 4 vinyl pyridine (4-VP)
with one molecule of BAP in vacuum and in acetonitrile solvent box, respectively
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insufficient template to form stable pre-polymer complex at
low and high template ratio. In addition to this, there could
be interactions between monomer–monomer (self-associa-
tion) resulting in the formation of non-specific binding
sites. These two factors are critical for preparation of
selective molecular recognition sites in MIP. Hence,
selection of the optimal T/M ratio plays a dominant role
in preparation of MIPs. The optimum T/M ratio chosen
from the experimental results is 1:4, and same was
confirmed from the computational predictions.

Selection of cross-linking monomer

The cross-linking monomer in MIP provides mechanical
stability and formation of the appropriate template archi-
tecture. In the present study, computer simulations were
performed using three cross-linking monomers, namely N,
N-methylene bisacrylamide (NNMB), trimethylolpropane
trimethacrylate (TRIM), and ethylene glycol dimethacrylate
(EGDMA). From the computational results it was found
that the cross-linker ethylene glycol dimethacrylate
(EGDMA) showed the highest interaction energy towards
many T, and M forms the most stable pre polymer complex
in the equilibrium state in the polymer matrix. In summary,
the template (BAP) interaction energy with 24 functional

monomers was computed, and then the best 5 functional
monomers were selected for further computations using
three cross-linking monomers. Pre-polymer complex stabil-
ity in different solvents is also reported. The data obtained
from computations is presented in Christmas tree form
(Fig. 7).

Adsorption capacity

The adsorption capacity of all 15 MIPs prepared in this
study was also determined following batch adsorption
experiments (Fig. 7). The MIPs demonstrated the same
correlation between the calculated binding energy and the
binding affinity for the few polymers shown in Fig. 8.
MIP–BAP and its NIP were synthesized using assisted
computational design. The Langmuir-Freundlich isotherm
was used to determine the binding capacity of MIPs. As
shown by Eq. 2, the LF model describes the relationship
between the equilibrium concentrations of bound (B) and
free (F) guest molecules in heterogeneous systems [29].

B ¼ NtaFm

1þ aFm
ð2Þ

where Nt is the binding capacity (μg mL−1 solute/mass
polymer) in the polymer matrix, which is related to the
binding affinity constant (K0) via K0=a

1/m, and m is the
heterogeneity index. The heterogeneity index values varies
from 0 to 1 (m=1 means the mediaumis homogeneous).
Equation 2 was used to fit the adsorption isotherm by non-
linear least square fitting, and the results are shown in
Table 3. The adsorption isotherms ofMIP and NIP represent a
more homogeneous distribution of binding sites for BAP than
NIP (Fig. 9). This would be due to the shape-specific
memory of the template in the polymer formed during
imprinting. In the case of NIP, the polymerization is
performed without the template BAP and thus there are no

Fig. 6 Binding capacity of MIPs with different ratio of BAP:MAA

Fig. 5 Electronic charge density of a benzo[a]pyrene molecule, and b
MAA and BAP
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Fig. 7 Christmas tree representing the combinatorial screening procedure for selection of appropriate polymer precursor; right panel
experimentally derived binding capacities of the MIPs
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specific binding sites in the NIP. The adsorption capacity of
MIP is Nt=97 μg mg−1 whereas for NIP, Nt is 37 μg mg−1,
clearly indicating the formation of a greater number of
binding site for BAP. It is clear from Table 3 that MIP has a
more homogeneous distribution of binding sites for BAP
than NIP. This may be due to the formation of cavities for
BAP, which were 80–90% homogeneous in size. In contrast,
when polymerization was performed in the absence of BAP,
no specific binding sites for BAP were formed. The binding
affinity (a) of MIP is 1.99 whereas for NIP the value of a is
0.52. The nonlinear regression (R2) values of the LF model
for MIP and NIP are 0.997 and 0.941, respectively.

The MIPs, namely, MIP8 and MIP5, prepared using
polymer precursors (MAA and 4-VP) were screened
from the virtual library of functional monomers based
on interaction energy criteria. MAA and 4-VP were the
best functional monomers on ΔE value. The adsorption
capacity of the MAA-MIP was higher than that of 4VP-
MIP. The computational predictions and experimental

results were in good agreement based on the parameters
ΔE and Nt derived from computation and experiment,
respectively.

Simulations in solvents

The pre-polymer complex formed between BAP-MAA and
BAP-4-VP is influenced significantly by the nature of the
solvent [30]. Therefore, the stability, ΔEsol, of BAP, MAA
and 4VP in the different solvents, namely acetonitrile

Fig. 9 Langmuir-Freundlich adsorption isotherm of MIP and NIP

Table 3 Langmuir–Freundlich fitted coefficients for MIP1 and NIP1.
Nt Binding capacity (μg mg−1), m heterogeneity index, Ko binding
parameter in Langmuir isotherm (mL mg−1), a affinity for
corresponding model systems (MIP and NIP)

Adsorption model-parameters MIP8 NIP8

Nt 97 37

a 1.99 0.52

m 0.781 1.13

R2 0.997 0.941

Fig. 8 Correlation between
experimental binding
capacity and
interaction energy
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(ACN), chloroform (CHCl3), dichloromethane (DCM) and
toluene (TUL), was computed to determine the energy
scoring, where ΔEsol is defined as:

ΔEsol ¼ E solutionð Þ � E vacuumð Þ ð3Þ
The ΔEsol of BAP in the four different solvents, ACN,

CHCl3, DCM and TUL, was then computed according to
Eq. 3 by means of the PBC (periodic box calculation)
method implemented in HyperChem software [28]. The
ΔEsol of BAP in TUL was the largest, indicating the
strongest interaction between BAP and functional mono-
mers, while ACN resulted in the smallest values of ΔEsol.
The energy scoring of two MIPs in different solvents is
given in Table 4. The decreasing order of energy scoring
between BAP and the functional monomers is as follows:
|ΔEsol (TUL)| > |ΔEsol(CHCl3)| > ∣ΔEsol (DCM)| >
∣ΔEsol(ACN)|. TUL is expected to have the highest
affinity to the template molecule and the monomers. As
has been noted in the literature [31], this affinity could
acts as a shield or may reduce the interaction between
BAP and MAA or BAP and 4-VP that is required in the
formation of the pre-polymerization complexes. ACN has
the least effect on complex formation, as indicated by its
smallest ΔEsol. Therefore, MIP synthesized in ACN will
have the highest binding capacity because of the minimal
interference of the solvent with the interaction between
BAP and MAA or 4-VP.

In order to evaluate the adsorption capacity of the
synthesized MIPs, a parameter known as imprinting factor,
α, was calculated as follows:

KD ¼ CP

CS
ð4Þ

a ¼ KDðMIPÞ
KDðNIPÞ ð5Þ

where Cp (μmol g−1) is the concentration of template
molecule on the polymer, CS (μmol mL−1) the equilibrium
concentration of template molecule in solution, and KD the
partition coefficient of template molecule between polymer
and solution. The imprinting factor (α) is the ratio between
the binding capacity of imprinted and non-imprinted
polymers. This factor represents the precise template

imprints formed in the MIPs. Imprinting factor values
depend primarily on the solvent system used in the
preparation of MIPs. For example, in the present study,
four solvents were used and the binding capacity and
imprinting factors are given in Table 4. It can be seen that
the MIP synthesized in acetonitrile has the best imprinting
factor to BAP, while the MIP synthesized in toluene showed
the least. The reasons for such imprinting factor variations
can be explained based on the stabilization energy of both
the template and the functional monomer in solvent
systems. The polarity of the solvent plays an important
role in molecular imprinting. The interaction between
solvent and BAP/MAA increased with increasing polarity
of solvent. MIP prepared in solvents with the highest
dielectric constant showed high imprinting factors (Fig. 10).
The reason for this could be that the polarity of the solvent
favors the formation of H-bonds or electrostatic interactions
between the template and the monomer. In other words,
polar solvents facilitate stronger interaction between the
template (BAP) and the monomer (MAA or 4-VP), and
prevent self-association of monomers. This leads to the
formation of imprinting sites in MIP and increases the
MIP’s adsorption selectivity and capacity.

Fig. 10 Imprinting factors (α) of MIPs prepared in different solvents

Table 4 ΔEsol of BAP, MAA, and 4-VP in different solvents

Solvent ΔE of BAP
(kcal mol−1)

ΔE of MAA
(kcal mol−1)

ΔE of 4-VP
(kcal mol−1)

KD (MIP) (μg g−1) KD (NIP) (μg g−1) Imprinting
factor (α)

Dielectric
constant

ACN −10.63 −8.51 −6.47 126 40 3.15 37.5

CHCl3 −14.12 −8.97 −7.65 160 60 2.66 9.1

DCM −17.34 −9.45 −8.83 137 63 2.17 4.8

TUL −19.21 −12.99 −10.60 121 89 1.36 2.4
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Conclusions

A computational (ab-initio quantum mechanical) approach
developed for the rational design ofMIPs, predicts that MAA/
acetonitrile is the combination of functional monomer/solvent
that leads to the most stable pre-polymerization adducts with
BAP as template. A library of 25 monomers and their
corresponding polymers has been established, and the
interaction energies and closest approach distances computed.
The simulated functional monomers and polymers with
template indicated that the functional groups interacting with
template tends to be either –COOH or CH2=CH– with π–π
interaction, and the binding distances between the ligand and
the monomer or polymer in the most stable cases are between
3.0 and 5.0 Å. To validate the computational procedure, the
adsorption capacity of the MIPs was determined experimen-
tally and compared with theoretically predicted interaction
energies. The computational screening procedure described in
this paper will be useful in the selection of appropriate MIP
precursors for BAP.
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Abstract A theoretical study was performed using
density functional theory (DFT) to investigate hydrogen
bonding interactions in signature complexes formed
between keto-9H guanine (Gua) and aspartic acid (Asp)
at neutral pH. Optimized geometries, binding energies and
the theoretical IR spectra of guanine, aspartic acid and
their corresponding complexes (Gua-Asp) were calculated
using the B3LYP method and the 6-31+G(d) basis set.
Stationary points found to be at local minima on the
potential energy surface were verified by second deriva-
tive harmonic vibrational frequency calculations at the
same level of theory. AIM theory was used to analyze the
hydrogen bonding characteristics of these DNA base
complex systems. Our results show that the binding motif
for the most stable complex is strikingly similar to a
Watson-Crick motif observed in the guanine-cytosine base
pair. We have found a range of hydrogen bonding
interactions between guanine and aspartic acid in the six
complexes. This was further verified by theoretical IR
spectra of ω(C-H—O-H) cm−1 stretches for the Gua-Asp
complexes. The electron density plot indicates strong
hydrogen bonding as shown by the 2pz dominant HOMO
orbital character.

Keywords Aspartic acid . Guanine . Hydrogen bonding . IR
spectrum

Introduction

Interactions between proteins and DNA occur regularly in
biological systems and they are a fundamental part of the
ecological process. However, at the molecular level the
recognition protein and DNA mechanisms are not fully
understood in great detail. Therefore, the study of DNA
bases and proteins are still the subject of many theoretical
and experimental investigations [1–6]. In a recent experi-
mental study conducted by deVries et al. [7], it was found
that the binding motif in the guanine-aspartic acid (Gua-
Asp) complex closely resembles a Watson-Crick motif
displayed in the guanine-cytosine base pair.

This is significant because, although the keto form was
not observed in experiment, it is theorized that the specific
bonding pattern facilitates the observation of the keto form
of guanine. Free guanine is completely unobservable in its
keto form due to a shortened excited state lifetime [7].
Because of these factors, protein-DNA complexes, and the
observation of the base-amino acid interaction are essential
to the understanding of specific recognition of DNA target
sites by regulatory proteins [8, 9] because they control
complex spatial and temporal patterns of gene expression in
higher organism.

Furthermore, studies have shown that the base-amino
acid interactions are formed primarily through hydrogen
bonds and hydrogen bonding interactions are used heavily
to predict the folding of biological complexes such as
proteins [10]. Its importance stems from it directionality
and modest bonding energies midway between strong and
weak Van der Waals bond. For this reason, the hydrogen
bond is characterized by a certain amount of charge transfer
interaction, which could be determined and measured in a
particular complex of DNA base pairs. Undeniably, hydro-
gen bonding plays a crucial role in maintaining the three-

P. T. Harris :G. A. Hill (*)
Interdisciplinary Nanotoxicity Center, Department of Chemistry,
Jackson State University,
1400 J. R. Lynch Street,
Jackson, MS 39217, USA
e-mail: glakeh@ccmsi.us

J Mol Model (2012) 18:1983–1991
DOI 10.1007/s00894-011-1163-8



dimensional structure of proteins and is equally central in
numerous aspects of biological functions. These hydrogen
bonding interactions make substantial contributions to the
specificity of protein-nucleic acid complexes [11]. Achiev-
ing a substantial understanding of the underlying chemistry
that contributes to hydrogen’s abilities to bond and
exploiting this theoretically can lead to future understand-
ing of sophisticated protein-DNA complex studies.

Since many prior studies of protein-base interactions
have been completed in order to determine how certain
sequences of amino acids can recognize DNA target
sequences, the complex of Gua-Asp seems to be a synthetic
depiction of a real model system interaction occurring
between base pairs and amino acids that can be modeled
theoretically. In our findings, aspartic acid is shown to bind
to the major groove of the Watson-Crick or the edge of the
guanine. At the same time, the carboxylic acid and NH2

groups of the aspartic acid remain accessible to form
peptide bonds with other amino acids. This is a unique
contradiction in that the protein data bank (www.pdb.org)
shows 2,318 structures containing a protein and a nucleic
acid, 208 of the structures have contacts between guanine
and aspartic acid within a distance of 3 Å. However, 34.6%
of the cases show aspartic acid is bound to the Watson-
Crick edge of guanine; 47.1% of the contacts are between
aspartic acid and phosphate groups, 11.5% are between
aspartic acid and sugar, and the remaining 5.3% show
aspartic acid being bound to the sugar edge of guanine.

In our study, we have evaluated possible complex
structures of keto-9H guanine and the zwitterionic form of
aspartic acid with the -NH3 group where the R groups are
negatively charged, (at neutral pH) to establish optimal
hydrogen bonding patterns between the two interacting
molecules. The guanine has six potential binding sites for
aspartic acid where hydrogen bonding can form between
the two monomers. We have obtained the most stable
complex and verified hydrogen bond formation by relative
energetic, IR spectrum analysis, and thermochemical data
of Gua-Asp complex formation. The aim of this work is to:
(1) obtain the most stable complex of Gua-Asp formed by
hydrogen bonds, (2) show that our artificial optimized
complexes are similar to the Watson-Crick motif that can be
displayed in the guanine-cytosine base pair, and (3) provide
insight into the underlying chemistry of nucleic acids and
proteins through hydrogen binding sites by analyzing
thermochemical properties ΔH and ΔG and the theoretical
IR spectra.

Theoretical methods and computational details

The Gua-Asp complexes investigated were modeled with
GaussView 3.0 [12] and Chemcraft [13] visualization

programs. Using the Gaussian 03 program package [14],
the electron correlation effects were described by density
functional theory (DFT) [15] using the B3LYP method [16–
18] in combination with the 6-31+G(d) basis set. Geome-
tries were optimized followed by harmonic vibrational
frequency calculations at the same level of theory to
confirm all structures were at local minima on the potential
energy surface. B3LYP/6-31+G(d) level calculations were
performed because it has been cited for its reliability and
accuracy of predicting hydrogen bonding interactions at
minimal computational cost [19–22].

Interaction energies [23] including effects of basis set
superposition error [24] (BSSE) were calculated to correct
for any significant major energy differences caused by the
basis functions of the complex formed by hydrogen bond
interacting with monomers that are different from those
employed for the isolated systems. Single point calculations
of the optimized complexes were carried out in aqueous
medium utilizing the polarizable continuum model (PCM)
[25, 26] to observe solvent impact on our Gua-Asp
complexes. To understand the nature of the interactions
involved in our study, the “atoms in molecules” (AIM)
program [27] was used in analyzing the bonding character-
istics of the six systems studied in this work. Analyses of
the HOMO-LUMO (ΔEH-L) gaps reveal the energy
difference from one orbital to another in each of the six
Gua-Asp systems (Fig. 1).

Results and discussion

Geometry and selected vibrational frequencies

Figure 2a-f shows the optimized geometries of the guanine-
Asp systems obtained by modeling all possible hydrogen-
bonding interaction between the carboxylic acid group of
aspartic acid and the functional groups of the keto-9H
guanine. No symmetry constraints were imposed during the
optimization of each complex. A conformational analysis of
the guanine-Asp complexes illustrates that the interactions
between the two species contribute four functional groups,
two from each molecule, to the hydrogen bond interactions.
The distance between the C=O—OH group and N-H-–C=O
group of the Gua-Asp complex differ between 1.6 and
2.8 Å, respectively. As one can see, our results clearly show
formation of hydrogen bonding between guanine and
aspartic acid. The hydrogen bond interaction distances are
listed in Table 1. Further confirmation of this concept is
illustrated by two coexisting systems with an energy
difference of ∼0.5 kcal mol−1, complexes (b) and (a), as
shown in Table 2. The most stabilized complex (b) has three
hydrogen bond interactions, C=O—H-O with a bond length
of 1.658 Å, N-H-–O=C with a bond length of 2.238 Å , and
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N-H-–O=C with a bond length of 2.008 Å. Complex (a) has
two hydrogen bond interactions, C=O—H-O with a bond
length of 1.633 Å and N-H-–O=C with a bond length of
1.814 Å, respectively. Although the bond lengths in
complex (b) are much longer than complex (a), the three
hydrogen bond interactions occurring in the system actually
make the complex a more stabilized unit since there is one
more hydrogen bond interaction occurring in the system,
which greatly contributes to the overall stability of complex
(b). This is very significant because formal DNA structures
display hydrogen bonds that contribute to the overall
stability of the double helix structure, and three hydrogen
bonds occur between the guanine-cytosine base pairs [28].
Likewise, our predicted structures bear a resemblance to the
guanine-cytosine base pair.

IR spectra

To validate our study and for future interpretation of
experimental work the theoretical IR spectra reveals that
there is substantial interaction and complex formation
occurring between guanine and aspartic acid via specific
significant shifts. Figure 3a corresponds to complex (a) and
Fig. 3b corresponds to complex (b), our lowest energy
complex. The theoretical IR spectra exhibit both monomers

and the complex formed. As seen in both of the complexes’
spectra, there are additional peaks in the area between
2800 cm−1 and 3300 cm−1, and no peaks are found in this
area for guanine or aspartic acid. In the hydrogen bonding
formation of complex (a), the frequency of ω(C=O)
stretching shifted slightly to the left in the spectrum to
1758 cm−1 with an increase of intensity from 737 km mol−1

in pure guanine to 1251 km mol−1 in complex (a) as well as
a strong intensity of 2255 km mol−1 of ω(C-O—H-O)
stretching occurring at 2940 cm−1. The ω(C=O—H-O)
stretching of complex (a) is blue shifted about 500 cm−1

when compared to pure Asp theoretical IR spectrum.
Formation of ω(N-H—O) stretching occurring at
3279 cm−1 is confirmed by a higher intensity at
1516 km mol−1, which is a blue shifted peak of ω(N-H)
stretching at 3580 cm−1 in the pure Gua region which has a
weak intensity of 44 km mol−1. In complex (b) the
frequency of ω(C=O) stretching shifted to 1743 cm−1 with
an intensity of 807 km mol−1, while the ω(C=O—H-O)
stretching occurred at 3040 cm−1 with a high intensity of
1921 km mol−1, giving some indication of formation. In the
ω(N-H—O) stretch occurring at 3544 cm−1, the intensity
drastically decreased to 574 km mol−1 as compared to
complex(a) ω(N-H—O) stretching that occurs at
3279 cm−1, with a strong intensity of 1516 km mol−1.

Fig. 1 IR hole-burning spec-
trum of isomer I, 9KN. Stick
spectra show anharmonic fre-
quencies calculated for the low-
est energy keto structures. Color
coding indicates modes as
shown in the 9KN structure at
the top. The spectrum in the
inset is from protonated aspartic
acid fragments [7]
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There is also a blue shifted peak of the ω(N-H) stretching
in the pure Gua theoretical IR spectrum indicating a
decrease in frequency for complex (b) for ω(N-H—O)
stretching and the same for complex (a).

Relative energies

The relative energies are shown in Table 2. The energy
difference between our two lowest energy complexes (b)
and (a) is only 0.5 kcal mol−1. The energy difference
between the two lowest energy complexes and the third
complex is significantly higher, almost 6 kcal mol−1. On the

other hand, complex (e) exhibits an extremely higher
energy relative to complex (b) by 13 kcal mol−1. This can
be rationalized by acknowledging that this area of binding
is the particular site where the five-carbon sugar binds to
the guanine and requires a substantial amount of energy.
Therefore, since this is the area where the sugar binds, there
will be no hydrogen bond interaction between the base and
the amino acid in this vicinity of the guanine.

When the solvent effect is introduced, this changes the
order of relative stability, as shown in Table 2. Complex (c) is
lowest in energy, while complex (f) is the second lower
energy, by 0.3 kcal mol−1. However, complex (e), as in the

Fig. 2 Complexes (a-f) of keto-9H guanine-aspartic acid at B3LYP/6-31+G(d) interactions between keto-9H guanine and aspartic acid
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gas phase has an extremely higher energy of 3.98 kcal mol−1.
Overall, the energies decreased drastically when solvent
effect is introduced to the systems, with the exception of
complex (e). Water readily competes with itself for hydrogen
bonding. As a result, these hydrogen bonded systems in the
solvent make it more difficult for the existing hydrogens to
bond to the Gua-Asp complexes. Therefore, according to the
relative energies, the solvent’s effect does have an adverse
effect of stabilizing the formation of complexes. This is a
very important finding because now our results show that the
hydrogen bond is not the only force that contributes to
stability, since many of these reactions occur in our bodies in
solvent conditions.

Interaction energies

The complex of k9H-guanine and aspartic acid indicate a
few binding sites as previously discussed. The calculated
interaction energies of the six modeled interactions are
presented in Table 3. The energy of interaction are defined
as ΔE ¼ EAB � EA þ EB, where EAB is the energy of the
complex (gua-Asp) and EA and EB are the energies of the
monomers, keto9H-guanine and aspartic acid. According to
our calculated interaction energies, the strongest level of
interaction occurs in complex (b) with interaction energy of
−19.50 kcal mol−1. The next strongest interaction occurs in
complex (a) with interaction energy of −19.00 kcal mol−1

and the energy differs by 0.50 kcal mol−1. The energies of

these complexes are in very close proximity of each other.
The explanation for this strikingly small energy difference
between complexes (a) and (b) is that both complexes are
formed with aspartic acid bonding to the C=O and N-H
bonds of guanine and this makes sense given that oxygen
and nitrogen are more electronegative, thus pulling electron
density away from the hydrogen.

Interestingly enough, we found that there were no
significant proton transfers between the interacting mono-
mers of Gua-Asp. There was only proton transfer in the
zwitterionic form of aspartic acid, the NH3 donated a proton
to the negatively charged R group, C=O, which resulted in
the aspartic acid transforming from the zwitterionic state to
an unionized state.

The BSSE corrected energies (calculated as the differ-
ence between the total energy of the dimer minus the sum
of the total energies of the two monomers), were calculated
to account for energy difference. Based on our calculations,
there was no significant energy loss/gain. For example, in
complex (a) the interaction energy calculated without BSSE
is −19.00 kcal mol−1 and with BSSE counterpoise
corrections, the interaction energy is −17.81 kcal mol−1,
which is 1.19 kcal mol−1 difference, and therefore, the
BSSE corrections are negligible for each system given the
small ΔEBSSE.

Electron density and HOMO-LUMO gap

In order to understand the nature of the hydrogen-bonding
interactions occurring in our systems of interest, we utilized
the atoms in molecules (AIM) theory to evaluate the
bonding characteristics. This theory allows one to quanti-
tatively evaluate the nature of bonding in a molecule on the
basis of the topological analysis of the electron charge
density. Table 1 shows the hydrogen bond distances, the
electron density, ρ(BCP), which is the Rho for the bond
critical points and tells where the electrons are concentrated
and the HOMO-LUMO gaps analyzed. According to our

Complex HB distance( Å) ρ (BCP) (a.u.) ΔE HOMO-LUMO (eV)

A d(O···H-O)=1.633 0.156 5.18
d(N-H···O)=1.814 0.112

B d(O···H-O)=1.658 0.155 4.62
d(N-H···O)=2.238 0.044

d(H-N-H···O)=2.008 0.075

C d(H-N-H···O)=1.883 0.095 5.08
d(N···H-O)=1.727 −1.42

D d(N···H-O)=1.755 0.116 5.05
d(N-H···O)=1.908 0.092

E d(C-H···O)=2.872 0.017 4.35
d(N-H···O)=2.092 0.602

F d(N···H-O)=1.776 0.116 5.37
d(C-H···O)=2.385 0.042

Table 1 Hydrogen bond distan-
ces, electron density, and
HOMO-LUMO gap

Table 2 Relative energies of Gua-Asp complexes (a-f) (kcal mol−1) at
B3LYP/6-31+G(d)

a b c d e f

ΔE(gas) 0.49 0.00 5.72 5.61 13.58 6.82

ΔE(solv) 0.71 1.90 0.00 1.59 3.98 0.27

*Relative energies have 0.00 for gas phase

*Relative energies have 0.00 for solvent phase
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hydrogen bond distances, the shorter bond lengths indicate
that there are more electrons centrally located at that
particular bonding site, indicating a strong interaction
occurring between guanine and aspartic acid. Regarding
the characteristics of the electron density, in complex (a) for
the O–-H-O bond, the electron density is 0.156 a.u.
indicating that there are more electrons concentrated at this
bonding site. The hydrogen bond length is shorter, and the
interaction is stronger than the N-H-–O bonding site of
complex (a), with an electron density of 0.112 a.u. In
complex (b), for the O–-H-O bond, the electron density is
0.155 a.u. indicates more electrons are concentrated at this
bond critical point, as well as a shorter bond length, and
stronger interaction than the N-H-–O bond. This was found
to be the weakest interaction compared to the O–-H-O bond
and H-N-H—O bond, which has an electron density of
0.075 a.u. of complex (b). In complex (e) the N-H-–O bond
has the strongest interaction and more electrons concentrat-
ed at its’ bond critical point than any of the N-H-–O bond
interactions which occur in complexes (a) and (b). The

AIM calculations revealed that our interactions are not
covalent in nature and that they exhibit more van der Waals
bonding properties. More specifically, the complexes favor
an electrostatic type of interaction. The suitable balance of
hydrogen bonding and van der Waals interactions is needed
for the creation of three-dimensional structures and other
hydrogen bonded systems [29]. Major advances in both
theoretical and experimental methods for studying van der
Waals in the last two decades have been reviewed
extensively.

Figure 4 shows pictures of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) models of the Gua-Asp com-
plexes (a) and (b). The HOMO is the part of the molecule
that is capable of absorbing a photon and it is also the σ
(sigma) and bonding molecular orbital which is located on
the guanine. Once the photon is absorbed the electron
density migrates to other parts of the complex, normally to
the LUMO which is the σ* (sigma star) and antibonding
orbital located on the aspartic acid. According to the

Fig. 3 (a) Complex A theoreti-
cal IR spectra of aspartic acid,
guanine, Gua-Asp at
B3LYP/6-31+G(d). (b) Complex
B Theoretical IR spectra of
aspartic acid, guanine, Gua-Asp
at B3LYP/6-31+G(d)
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HOMO-LUMO analysis in Table 1, complex (E) required
the least amount of energy for the electron to transfer back and
forth between the highest occupied molecular orbital, and the
lowest unoccupied molecular orbital. According to our
calculated interaction energies in Table 3, complex (E) has
the weakest interaction and therefore it requires the least
amount of energy for hydrogen bonding to occur according to
the ΔEHOMO-LUMO difference. At the same time, complex (B)
also requires a small amount of energy for the electron to
transfer back and forth between the two orbitals, hence our
lowest energy complex. However, complex (F) at 0.199 a.u.,
requires more energy than any of the complexes for an
electron to transfer between the HOMO and LUMO orbitals,
indicating a larger gap and electrostatic interaction.

Conclusions

In the present article, we have shown that our artificial
complexes are similar to the Watson-Crick motif displayed
in the guanine-cytosine base pair and we have obtained the
most stable complexes of Gua-Asp that are verified
hydrogen bond formations by relative energetic, theoretical
IR spectra analysis and thermochemical data. DFT calcu-
lations provide reliable means of determining the strength
of the hydrogen-bonding interactions and to demonstrate
that our complexes of guanine and aspartic acid exhibit
hydrogen bond activity. The electron density at the bond
critical points of each system determined strong hydrogen
bonding interactions. Our results show that the interactions

Fig. 3 (continued)

a b c d e f

Eint(gas) −19.00 −19.50 −13.77 −13.89 −5.91 −12.67
BSSE (kcal/mol) 1.19 1.54 1.21 1.23 0.68 0.98

Eint(solv) −2.23 −1.04 −2.95 1.35 1.02 −2.67
ΔH(gas) −0.39 0.00 5.44 5.49 −13.55 −6.81
ΔG(gas) 0.00 −0.42 −4.66 −4.85 −3.28 −5.47

Table 3 Interaction energies,
BSSE corrections, enthalpies,
and free energies of complexes
(a-f) (kcal mol−1) at
B3LYP/6-31+G(d)
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are more van der Waals type bonding rather than a strong
dipole-dipole interaction. Major advances in both theoret-
ical and experimental methods for studying van der Waals
in the last two decades have been reviewed extensively
[30–32]. Significant hydrogen bonding has been observed
and proven to be an interaction that can stabilize these
systems as well as the reorientation of the functional
groups. B3LYP/6-31+G(d) results predict complex (b) and
complex (a) are our lowest energy systems in the gas phase
and they both bind the guanine at the C=O and N-H sites.
The electronegativity of the oxygen contributes to both of
these complexes having relatively low energies. At the
same level of theory, single point calculations performed in
the solvent phase exhibit no effect on stabilization energies.
Moreover, solvent phase calculations contributed to a
decrease in energy and changed the order of stability for
the complexes, making (c) the lowest energy complex,
rather than (b) as predicted in the gas phase. This was very
notable to highlight in our study because our results now
show that the hydrogen bond is not the only force that
contributes to stability. The BSSE counterpoise correction
had no discernible effect on the calculated interaction
energies for the systems because the differences in all
complexes were very minute. The optimized structures of
complexes (b) and (a) resembles the guanine-cytosine
Watson Crick base pairing in DNA very closely. The
hydrogen bond patterns in complexes (b) and (a) are
similar to the hydrogen bonding pattern in the G-C base
pair. The aspartic acid is making contact on the Watson-
Crick edge of guanine. As much as 34.6% of these contacts
where the aspartic acid binds to the edge of the guanine
accounts for this particular contact. The overall stability of

complexes (b) and (a) can be of some contribution from the
electronegativity of the oxygen on the guanine since it is
the most electronegative atom and the best proton acceptor.
Calculations of interaction energies revealed that complexes
(b) and (a) were our lowest energy systems, although there
was no significant proton transfer in any of the two
systems. The theoretical IR spectra showed that there is
electrostatic type of interaction occurring in the complexes.
The HOMO-LUMO difference investigation allowed us to
analyze the size of the gaps for each system to see how
much energy was being utilized for the transfer of the
electron from one orbital to another and complex (E) used
the least amount of energy to transfer. Most importantly, our
observations show that the binding motif in our complexes
is similar to a Watson-Crick motif that can be seen in a
guanine-cytosine base pair and other molecules such as
amino acids are able to form complexes with DNA bases.
In the absence of experimental data, a study such as this can
aid in future interpretation experimental works. Addition-
ally, this work may also have some future medicinal
applications that can help gain insight into the mechanisms
of an amino acid formation on a particular base as it may
provide insight on ways to detect, prevent, and treat modern
diseases.
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Abstract This work presents a computational study on
the molecular structure and tautomeric equilibria of a
novel Schiff base L derived from pyridoxal (PL) and
o-phenylenediamine by using the density functional
method B3LYP with basis sets 6-31 G(d,p), 6-31++G(d,p),
6-311 G(d,p) and 6-311++G(d,p). The optimized geometrical
parameters obtained by B3LYP/6-31 G(d,p) method showed
the best agreement with the experimental values. Tautomeric
stability study of L inferred that the enolimine form is more
stable than its ketoenamine form in both gas phase and
solution. However, protonation of the pyridoxal nitrogen
atom (LH) have accelerated the formation of ketoenamine
form, and therefore, both ketoenamine and enolimine forms
could be present in acidic media.

Keywords DFT. Pyridoxal . Schiff base . Tautomeric
equilibria . Vitamin B6

Introduction

The vitamin B6 cofactor pyridoxal-5′-phosphate (PLP)
plays an important role in various enzymatic transforma-

tions of amino acids such as racemization, decarboxylation
and transamination [1–6]. In such transformations, PLP
initially forms a Schiff base with the ε-amino group of a
lysine residue of the enzyme that subsequently evolves to
the end-products. During the process, the Schiff base of
PLP undergoes deprotonation of its Cα atom to give a
carbanionic intermediate and on further protonation gives a
ketoimine that is hydrolyzed to pyridoxamine-5′-phosphate
(PMP) and the corresponding ketoacid (Scheme 1). This
process finishes with the condensation of another ketoacid
with PMP to form a carbinolamine which undergoes
dehydration to a new Schiff base (a ketoimine). Finally,
the Schiff base release a new amino acid and PLP is
recovered [1–8]. Apart from the above mentioned general
functions, vitamin B6 can also play a crucial role in
protecting cells from oxidative stress because the vitamin
has been shown to exhibit antioxidant activity [9, 10].
Furthermore, the antioxidant activity of vitamin B6 is found
to be greater than that of vitamin C and E, though it is not
classified as an antioxidant compound [9, 10].

Based on the above crucial biological processes, there is
burgeoning interest for both theoretical [11–20] and
experimental [21–23] chemists to explore the tautomerism
in vitamin B6 cofactors. On the theoretical aspect, Munoz
and coworkers [11–13] have studied the Schiff base
formation of vitamin B6 analogues with B3LYP/6-31+G*
method. Based on their DFT calculations on the electron
charge distribution and ‘electron-sink’ effect, they proposed
that protonation of the pyridoxal nitrogen atom promotes
the conversion of enolimine to ketoenamine [12], and also
the Schiff base between PLP and an amine or amino acid
requires a contribution of external water molecule in order
to facilitate the transfer of proton [11, 13]. Kibura and
Wong [19] explored the tautomeric equilibria of a series of
3-hydroxypyridine derivatives and reported that the neutral
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hydroxyl form is more stable than the zwitterionic oxo form
in gas phase, but the stability influenced significantly by the
effect of solvent polarity. Furthermore, recently some DFT
studies have also been performed to elucidate the spectro-
scopic [15, 18] and antioxidant [17, 20] properties of
vitamin B6.

In this communication, we have performed a density
functional study on molecular structure and tautomeric
equilibria of a Schiff base (imine) L derived from pyridoxal
and o-phenylenediamine at the B3LYP/6-31 G(d,p) level of
theory in both gas phase and solution. Calculated properties
such as relative energies, tautomeric equilibrium constant,
atomic charges, and the highest-occupied molecular orbital
(HOMO) and the lowest-unoccupied molecular orbital
(LUMO) energies have been examined to explain the
tautomerism.

Computational details

All calculations were performed with the GAUSS
VIEW 5.0 visualization program and the GAUSSIAN
09 software packages [24]. It is well known that the
B3LYP method has been successfully applied to elucidate
the proton transfer reactions, particularly for tautomeric
conversions [25–32]. Therefore, all DFT calculations
were performed with a hybrid functional B3LYP [33]
(Becke’s three parameter hybrid functional using the LYP
correlation functional) using the basis sets 6-31 G(d,p),
6-31++G(d,p), 6-311 G(d,p) and 6-311++G(d,p). The
vibrational frequencies calculations showed no imaginary

Scheme 1 PLP to PMP interconversion

Fig. 1 The bond lengths (a) and the bond angles (b) differences from
the theoretical values
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frequencies that ascertained the optimized structure were
stable, and also provide various thermodynamic param-
eters to investigate the tautomeric stability. Some other
properties such as total energy, HOMO and LUMO
energies, Mulliken’s atomic charges, and the chemical
hardness [34] for the enolimine and ketoenamine forms
of the compounds L and LH were obtained at B3LYP/6-
31 G(d,p) level. These properties were also examined in
solvent media with three different kinds of solvents
(chloroform, ethanol and water) by using the conductor-
like polarized continuum model (CPCM) [35, 36].

Results and discussion

Geometrical structure

The experimentally determined molecular structure of the
compound L was obtained from Cambridge Crystallo-
graphic Data Centre (CCDC), and was used as the initial
structure for different theoretical calculations. The crystal
structure of the compound L is a monoclinic and space
group is P21/n. The crystal structure parameters of L are
a=12.9277(9) Å, b=13.4080(1) Å, c=14.7206(11) Å and

Fig. 2 (a) The optimized
geometrical structure of the title
compound L and (b) superim-
position of the X-ray structure of
L and its B3LYP/6-31 G(d,p)
optimized counterpart

Table 1 Selected molecular
structure parameters of L and
LH obtained at B3LYP/6-31
G(d,p) level

Bond lengths (°) Expt. L LH Bond angles (Å) Expt. L LH

O(3)-C(20) 1.331 1.342 1.328 C(12)-N(7)-H(9) 119.93 116.19 119.43

C(20)-C(16) 1.409 1.418 1.404 C(12)-N(7)-H(8) 120.04 116.33 118.19

C(16)-N(6) 1.325 1.330 1.352 C(12)-C(10)-C(29) 118.72 119.55 119.36

N(6)-C(14) 1.353 1.345 1.358 C(10)-C(29)-C(23) 121.26 121.17 121.06

C(14)-C(11) 1.363 1.387 1.377 C(29)-C(23)-C(31) 119.05 119.21 119.37

C(11)-C(13) 1.396 1.419 1.423 C(23)-C(31)-C(21) 121.55 120.54 120.99

C(11)-C(17) 1.508 1.508 1.513 C(31)-C(21)-C(12) 120.86 120.96 120.75

C(17)-O(1) 1.434 1.430 1.420 C(21)-C(12)-C(10) 118.51 118.54 118.45

O(1)-H(2) 0.819 0.967 0.967 C(10)-N(5)-C(33) 119.99 122.25 124.55

O(3)-H(4) 0.820 1.002 1.019 C(20)-C(13)-C(11) 118.34 117.62 119.29

C(13)-C(33) 1.461 1.456 1.450 C(13)-C(11)-C(14) 117.71 117.87 119.00

C(33)-N(5) 1.285 1.295 1.304 C(11)-C(14)-C(6) 124.70 124.39 120.32

N(5)-C(10) 1.405 1.404 1.383 C(14)-N(6)-C(16) 118.87 118.98 124.34

C(10)-C(29) 1.395 1.403 1.416 C(6)-C(16)-C(20) 120.83 121.52 117.44

C(29)-C(23) 1.374 1.391 1.379 C(16)-C(20)-C(13) 119.53 119.61 120.61

C(23)-C(31) 1.372 1.398 1.410 O(3)-H(4)-N(5) 146.82 148.19 149.70

C(31)-C(21) 1.350 1.391 1.382 H(4)-N(5)-C(33) 98.64 100.81 102.06

C(21)-C(12) 1.399 1.405 1.412 N(5)-C(33)-C(13) 121.37 121.10 119.67

C(12)-C(10) 1.408 1.420 1.431 C(33)-C(13)-C(20) 120.61 120.49 119.99

C(12)-N(7) 1.379 1.385 1.367 C(13)-C(20)-O(3) 123.03 122.52 122.46

N(7)-H(8) 0.861 1.009 1.009 C(20)-O(3)-H(4) 109.47 106.41 105.66

N(7)-H(9) 0.859 1.009 1.007 C(11)-C(17)-O(1) 108.18 109.72 108.40

N(5)-H(4) 1.886 1.681 1.608 C(17)-O(1)-H(2) 109.48 107.66 108.50

O(3)-N(5) 2.611 2.587 2.541
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V=2518.0(3) Å3 [37]. The optimized parameters (bond
lengths and bond angles, Table 1S) of L were obtained by
applying exchange-correlation energy function B3LYP and
different basis sets, 6-31 G(d,p), 6-31++G(d,p), 6-311 G(d,p)
and 6-311++G(d,p). The differences of computed bond
lengths as well as selected bond angles with corresponding
experimental values are shown in Fig. 1. The calculated bond
lengths with the basis sets 6-311 G(d,p) and 6-311++G(d,p)
were found to be slightly shorter than the 6-31 G(d,p) and
6-31++G(d,p), and the reduction of bond lengths was more
pronounced at B3LYP/6-311 G(d,p) level as compared to
others. Further, in order to account for the accuracy of the
different theoretical approaches, the optimized structures
were superimposed with that obtained from X-ray crystal-
lography that resulted in root-mean-square error (RMSE) of
0.191Å, 0.221Å, 0.197Å and 0.221Å with respect to
structure obtained at B3LYP/6-31 G(d,p), B3LYP/6-31++G
(d,p), B3LYP/6-311 G(d,p) and B3LYP/6-311++G(d,p) lev-
els. The RMSE revealed that the optimization at B3LYP/6-
31 G(d,p) level reproduces the geometry of the compound L
(Fig. 2). For this reason, later in this work, to keep a

reasonable computational time, all the calculations were
performed at the B3LYP/6-31 G(d,p) level of theory.

The calculated geometrical parameters obtained for L
and its protonated form LH at B3LYP/6-31 G(d,p) level
are listed in Table 1 and compared with the experimental
data of L. Except the hydrogen-bond length between N
(5)…..H(4), the result in Table 1 inferred that the optimized
bond lengths are slightly longer than the experimental
values. The most probable reason for this is that the
theoretical calculations are performed for an isolated
molecule in gaseous phase, and the experimental results
belong to the solid phase. In the solid phase, the existence
of the crystal field along with the inter-molecular
interactions such as van der waals interactions that
connected the molecules together resulted in the difference
of bond parameters between the calculated and the
experimental values [38]. Such intermolecular interactions
can be identified from the experimentally determined crystal
packing diagram of the compound L (Fig. 3) that showed the
presence of intermolecular H-bonding between pyridoxal
alcoholic-OH of one molecule with the pyridoxal nitrogen

Fig. 3 Packing diagram of the title compound L showing H-bonding [37] and visualized by using the program MOLDRAW [39]
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atom of another, and intramolecular H-bond between N(5)
and H(4). On the other hand, comparison between calculated
bond angles and experimental data in Table 1 shows good
agreement between then.

The optimized structural parameters of LH revealed that
in the intramolecular O(3)-H(4)…..N(5) hydrogen bridge,
the proton H(4) is located near the imine-nitrogen atom (H
(4)…..N(5)=1.608Å) and the O(3)…..N(5) distance 2.541Å
is substantially more compressed than the L (Table 1). The
increase in the hydrogen bond strength and the decrease in
O(3)…..N(5) distance in LH indicates the favourable
formation of ketoenamine form. This can further be

manifested from the shortening of the C(20)-O(3) distance
of 1.328Å and the increase of the C(33)-N(5) distance of
1.304Å for LH compared to L that corresponds to an
increased double-bond character of the first and an
increased single-bond character of the second (Table 1).

Relative stability of tautomers

The enolimine (O-H…N) and ketoenamine (N-H…O)
tautomers for the compounds L and LH are shown in
Fig. 4. To investigate the tautomeric stability, optimization
at B3LYP/6-31 G(d,p) level for both enolimine and ketoen-
amine forms of L and LH was performed in gas phase as
well as solutions. In order to evaluate the solvent effect on
ketoenamine-enolimine tautomerism, optimization calcula-
tions in three different solvents (water, ethanol and chloro-
form) were also performed at the same level of theory using
the CPCM model. Some calculated physicochemical proper-
ties such as total energies, relative energies, HOMO and
LUMO energies, and chemical hardness (η) are given in
Table 2. The chemical hardness is quite useful to rationalize
the relative stability and reactivity of the chemical species.
The chemical hardness is approximated in terms of the
energies of the HOMO and LUMO frontier molecular
orbitals by applying equation, h ¼ ELUMO � EHOMOð Þ=2.
Hard species having a large HOMO-LUMO gap will be
more stable and less reactive than soft species having a small
HOMO-LUMO gap [40].

Table 2 Calculated total ener-
gies, frontier orbital energies,
relative energies and chemical
hardness at B3LYP/6-31(d,p)
level for the enolimine and
ketoenamine form of the com-
pounds L and LH (values of LH
are in parenthesis)

aΔE(kcal mol−1)=[ETOTAL

(ketoenamine form) - ETOTAL

(enolimine form)] X 627.5095

Gas phase (ε=1) Chloroform (ε=4.9) Ethanol (ε=24.55) Water (ε=78.39)
Enolimine form

ETOTAL (Hartree) –857.24596933 –857.25723330 –857.26007987 –857.26055090

(–857.64681492) (–857.70246282) (–857.71545928) (−857.71757459)
EHOMO (eV) −0.19956 −0.20251 −0.20322 −0.20331

(−0.30959) (–0.23173) (–0.21576) (–0.21326)

ELUMO (eV) –0.07188 –0.07576 –0.07678 –0.07694

(–0.22357) (–0.13652) (–0.11693) (–0.11377)

η (eV) 0.064 0.063 0.063 0.063

(0.043) (0.048) (0.049) (0.050)

Ketoenamine form

ETOTAL (Hartree) –857.24001483 –857.25276933 –857.25619160 –857.25676803

(–857.64695022) (–857.70225080) (–857.71507400) (–857.71715407)

EHOMO (eV) –0.19453 –0.19948 –0.20085 –0.20107

(–0.31538) (–0.23836) (–0.22199) (–0.21939)

ELUMO (eV) –0.07836 –0.08296 –0.08427 –0.08449

(–0.22717) (–0.14118) (–0.12193) (–0.11884)

η (eV) 0.058 0.058 0.058 0.058

(0.044) (0.049) (0.050) (0.050)

ΔE(kcal/mol) a 3.74 2.80 2.44 2.37

(–0.09) (0.13) (0.24) (0.26)

Fig. 4 The enolimine-ketoenamine tautomerism for the neutral L and
protonated LH form of the title compound
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According to Table 2, the total energy in gas phase
calculated for the enolimine form of L is lower than the
ketoenamine form while the chemical hardness of the
enolimine form is greater than the ketoenamine one,
which indicates that the enolimine form of L is more
stable than its ketoenamine form. In solvent phase, the
total molecular energies for both enolimine and ketoen-
amine form slightly decreases. The relative energies
between the enolimine and ketoenamine forms decrease
with the increase in solvent polarity, but the hardness of
the enolimine form remains higher than the hardness of
the ketoenamine form in all solvents. Therefore, the
enolimine form of compound L is preferred over the
ketoenamine form in both, gas phase and solution.
However, in the case of LH, the relative energies between
the enolimine and ketoenamine forms are reduced
substantially as compared to L in both, gas phase and
solution (Table 2). In gas phase, the ketoenamine form
was energetically more stable by −0.085 kcal mol−1 and
also the hardness of the ketoenamine form was found to
be higher than the enolimine form. In solution, the
hardness of the enolimine form was comparable with that
of the ketoenamine and the relative energies increase from
0.13 kcal mol−1 to 0.26 kcal mol−1 with the increase in
the solvent polarity. However, the difference in relative
energies between the enolimine and ketoenamine forms
for the protonated compound LH is much less than that
computed for L.

Further, the 3D plots of the frontier orbitals HOMO and
LUMO of L and LH calculated at B3LYP/6-31 G(d,p) in

Table 3 Calculated atomic charges of some important atoms of L and
LH at B3LYP/6-31 G(d,p) level in gas phase and watera

Atom no. L LH

Gas phase Water Gas phase Water

N(7) –0.663 –0.676 –0.658 –0.671

N(6) –0.480 –0.516 –0.550 –0.539

N(5) –0.635 –0.631 –0.643 –0.634

O(1) –0.577 –0.558 –0.519 –0.549

O(3) –0.526 –0.593 –0.564 –0.576

H(4) 0.359 0.361 0.382 0.378

H(9) 0.270 0.281 0.278 0.288

H(8) 0.260 0.284 0.289 0.293

H(2) 0.311 0.335 0.334 0.344

C(10) 0.262 0.248 0.275 0.259

C(12) 0.276 0.258 0.308 0.276

C(29) –0.099 –0.116 –0.084 –0.105

C(23) –0.111 –0.130 –0.107 –0.128

C(31) –0.084 –0.100 –0.072 –0.091

C(21) –0.123 –0.139 –0.114 –0.133

C(13) 0.042 0.037 0.084 0.086

C(11) 0.071 0.059 0.040 0.031

C(14) 0.030 0.018 0.101 0.120

C(20) 0.275 0.276 0.273 0.274

C(16) 0.249 0.248 0.328 0.360

C(17) –0.041 –0.035 –0.030 –0.028

C(25) –0.351 –0.360 –0.361 –0.362

a See Fig. 2 for atoms numbering for the compounds

Fig. 5 HOMO and LUMO
orbital pictures of L and LH
computed at B3LYP/6-31 G(d,p)
level in gas phase
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gas phase are examined (Fig. 5). The HOMO is the orbital
that primarily acts as an electron donor and the LUMO is
the orbital that largely acts as the electron acceptor [41].
The LUMO plots of both L and LH look alike. However, it
can be seen from the figure that the HOMO in L is
distributed uniformly between the two aromatic rings,
whereas the HOMO in LH is found to be located more
towards the o-phenylenediamine ring. Therefore, it can be
concluded that transfer of electron density occurs from the
pyridoxal ring to the o-phenylenediamine moiety upon
protonation, i.e. intra-molecular charge transfer takes place
within the molecule. The increase of electron density in
o-phenylenediamine moiety in LH may favour the transfer
of a proton towards the imine-nitrogen atom and facilitate
the formation of ketoenamine form.

Mulliken’s atomic charges

Atomic charges are used to describe the processes of
electronegativity equalization and charge transfer in
chemical reactions [42, 43], to model the electrostatic
potential outside the molecular surfaces and for the

relocation of the electron density of a compound [44]. Also,
the local concentration and local depletion of electron charge
density allows us to determine whether the nucleophile or
electrophile can be attracted. Furthermore, the charge
distribution can also play a vital role in tautomerism and
therefore, the calculated Mulliken’s atomic charges at the
B3LYP/6-31 G(d,p) level were examined for the compounds
L and LH both in gas phase and water. The calculated
atomic charges are listed in Table 3 and represented in the
graphical form in Fig. 6.

FromTable 3, the gas phase results inferred that the atomic
charges on the intramolecular H-bond bridge (O-H….N)
between H(4), O(3) and N(5) atoms in L increases from
0.359, –0.526 and −0.635 to 0.382, –0.564 and −0.643
respectively on the protonation of the pyridoxal-nitrogen
atom (LH). The increased positive charge of H(4) and the net
negative charge of N(5) clearly demonstrated the favourable
path for the transfer of a proton from O(3) to N(5). In water,
the charge distributions are influenced due to dielectric effect
and mostly showed higher values than in gas phase. The
charges on H(4) and N(5) atoms increases from 0.361
and −0.631 to 0.378 and −0.534 respectively on protonation,

Table 4 Calculated thermody-
namic parameters (E, H and G)
in Hartrees for the compounds L
and LH at B3LYP/6-31 G(d,p)
level in gas phase and watera

aValues are in parenthesis

Compounds E H G

L Enolimine form –856.955262 –856.954318 –857.017994

(–856.970200) (–856.969255) (–857.032927)

Ketoenamine form −856.949529 −856.948584 −857.012159
(−856.966212) (−856.965268) (−857.028991)

LH Enolimine form −857.342595 −857.341651 −857.405653
(−857.413235) (−857.412291) (−857.476330)

Ketoenamine form −857.342348 −857.341404 −857.405609
(−857.412319) (−857.411374) (−857.475326)

Fig. 6 Comparison for calculated
atomic charges of L and LH at
B3LYP/6-31 G(d,p) level
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whereas the charges at O(3) slightly decreases from −0.593
to −0.576. The magnitude of the five carbon atomic charges
of the pyridoxal ring of the compounds L and LH are
found to be positive due to the more negative charge at the
pyridoxal-nitrogen atom. Excepting the atoms C(10) and
C(12) connected directly to the amine-N in in the o-
phenylenediamine ring, the atoms C(29), C(23), C(31) and
C(21) showed net negative charges. Furthermore, all the
hydrogen atoms have a net positive charge (Table 3); in
particular, the hydrogen atoms H(2) and H(4). The presence
of large amounts of negative charge on the oxygen and
nitrogen atoms, and the net positive charge on the hydrogen
atoms H(2) and H(4) indicate the presence of both inter-
molecular as well as intra-molecular hydrogen bonding in
crystalline phase (Fig. 1).

Equilibrium constant of tautomers

To estimate the relative stabilities of tautomers, the vibrational
analyses of the compounds L and LH are performed at
B3LYP/6-31 G(d,p) level to get various thermodynamic
properties (Table 4) and are given according to the formulas:

E0 ¼ Eelec þ ZPE

E ¼ E0 þ Evib þ Erot þ Etransl

H ¼ Eþ RT

G ¼ H� TS

Where, Eelec, ZPE, E0, E, H, and G represent the total
energy, zero point energy, corrected energy with ZPE,
thermal energy, enthalpy and Gibb’s free energy of the
compound respectively.

One of the ways of getting the most stable tautomer is to
calculate the tautomeric equilibrium constant. The calculated
Gibb’s free energies (Table 4) are used to calculate the
equilibrium constant (KT) between the tautomers by applying
the equations KT ¼ exp �ΔG=RTð Þ and pKT ¼ �logKT,
where ΔG is the Gibb’s free energy difference between the
tautomers (enolimine ↔ ketoenamine) at the temperature
298.15 K and R is the gas constant. In gas phase, the ΔG
value is calculated to be 3.66 kcal mol−1 and 0.03 kcal mol−1

between the enolimine and ketoenamine tautomers of L and
its protonated form LH, respectively. In water, the ΔG
values for L and LH are computed as 2.47 kcal mol−1 and
0.63 kcal mol−1 respectively. The lowering of ΔG values on
the protonation of the pyridoxal-nitrogen atom is an
indication for the favourable formation of the ketoenamine
form. Further, the pKT was calculated to determine the
privileged direction of equilibrium. If the pKT was positive,
equilibrium moved from right towards the left and when it
was negative, equilibrium moved from left towards the right.

The calculated pKT for L and LH in gas phase are 2.68 and
0.02, whereas in water are 1.81 and 0.46, respectively. The
calculated pKT for both L and LH are positive and favour
the equilibrium to shift towards the left. However, the
protonated compound LH is showing pKT value near to
zero and also appreciably lower than L, which inferred that
the compound LH is favouring a ketoenamine form over L.

Conclusions

DFT study of the vitamin B6 Schiff base analog L
inferred that the enolimine form is more stable than its
ketoenamine form both in gas phase and solution.
However, protonation of the pyridoxal nitrogen influenced
the tautomeric equilibria and accelerate the formation of
the ketoenamine form. In gas phase, LH preferred the
ketoenamine form over the enolimine, but with the
increase in solvent polarity the relative stability of the
enolimine form increases slightly from the ketoenamine
form. Therefore, both the enolimine and ketoenamine
forms of LH could be present in solvents. Other properties
such as relative energies, the tautomeric equilibrium
constant, atomic charges, and the HOMO and LUMO
energies provide essential evidences for the favourable
formation of the ketoenamine form on the protonation of
the pyridoxal-nitrogen atom.
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Abstract We report geometries, stabilization energies,
symmetry adapted perturbation theory (SAPT) and quan-
tum theory of atoms in molecules (QTAIM) analyses of a
series of carbene–BX3 complexes, where X=H, OH, NH2,
CH3, CN, NC, F, Cl, and Br. The stabilization energies were
calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-
pVDZ levels of theory using optimized geometries of all
the complexes obtained from B3LYP/aug-cc-pVTZ.
Quantitatively, all the complexes indicate the presence
of B–Ccarbene interaction due to the short B–Ccarbene

distances. Inspection of stabilization energies reveals that
the interaction energies increase in the order NH2 > OH >
CH3 > F > H > Cl > Br > NC > CN, which is the opposite
trend shown in the binding distances. Considering the SAPT
results, it is found that electrostatic effects account for about
50% of the overall attraction of the studied complexes. By
comparison, the induction components of these interactions
represent about 40% of the total attractive forces. Despite
falling in a region of charge depletion with ∇2ρBCP >0, the
B–Ccarbene bond critical points (BCPs) are characterized by a
reasonably large value of the electron density (ρBCP) and
HBCP <0, indicating that the potential energy overcomes the
kinetic energy density at BCP and the B–Ccarbene bond is a
polar covalent bond.

Keywords Ab initio . Carbene . QTAIM . Symmetry-
adapted perturbation theory

Introduction

It is well-known that intermolecular interactions are very
important in understanding organic, organometallic, and
biomolecular structures, supramolecular assembly, crystal
packing, reaction selectivity specificity, and drug-receptor
interactions [1–4]. On the basis of these interaction forces,
not only theoretical design but also experimental realization
of novel functional molecules, nanomaterials, and molecu-
lar devices has become possible [5, 6]. Thus, the study of
the fundamental intermolecular interactions and new types
of interactions are very important for aiding self-assembly
synthesis and nanomaterials design as well as for under-
standing molecular cluster formation [7, 8].

Carbenes are neutral compounds featuring a divalent
carbon atom with only six electrons in its valence shell.
Carbenes are in general highly reactive species with short
lifetimes; consequently, very few examples of carbenes
stable at room temperature are known [9]. In general,
carbenes are classified as either singlets or triplets depend-
ing upon their electronic structure there [10]. Carbenes play
important roles both as reactive intermediates and also as
ligands; consequently, considerable effort has been devoted to
understand their molecular and electronic structures [11–15].
Special interest is associated with carbenes that feature the
attachment of donor groups to the carbenic carbon since they
behave as nucleophiles and, in some instances, can be
isolated. Whereas triplet carbenes exhibit radical-like reac-
tivity, singlet carbenes are expected to show nucleophilic as
well as electrophilic behavior because of the lone pair and
vacant orbital. Hydrogen bond with singlet carbene as an
electron donor has been confirmed due to presence of a free
electron pair in the singlet carbene [16]. Among the most
typical reactions of singlet carbenes are the rearrangements
resulting from 1,2-shifts, dimerizations, [1+2]-cycloaddi-
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tions to carbon-carbon double bonds, and insertions into C-H
bonds [17–19]. The reactivity of transient singlet carbenes
has recently enabled a wide variety of new carbon-carbon
and carbon–metal bond-forming reactions to be developed
[20–22]. Many other reactions involving singlet carbenes
have been reported, including the formation of ylides with
Lewis bases [23, 24]. Pioneering work on nucleophilic
carbenes was carried out by Wanzlick and co-workers [25],
who, in the early 1970s, predicted that imidazol-2-ylidene
carbenes would possess enhanced stability due to the
possibility of aromatic resonance and examined the reactivity
patterns of these species as nucleophilic carbenes. Recently, a
new kind of carbene-lithium binding in H2C-LiX (X=H,
OH, NH2, CN, NC, CH3, F, Cl, Br, C2H3, C2H) complexes
was predicted and characterized by Li et al. [26]. However,
to the best of our knowledge, the study of the boron bond
with carbene as an electron donor is rare.

Computational chemistry provides numerous methods to
investigate the nature of intermolecular interaction, allow-
ing, in many cases, estimation of the stabilization energy or
other quantities related to this term. A very interesting tool
for studies of intermolecular interaction is the decomposi-
tion of energy into particular contributions. One of the first
successful schemes was that of Kitaura-Morokuma [27].
Symmetry-adapted intermolecular perturbation theory
(SAPT) presents a viable alternative to the supermolecular
approach [28–32]. In SAPT the interaction energy is
calculated as the sum of terms of distinct physical origin,
i.e., the first-order electrostatic and the second-order induction
and dispersion energies, each of these terms being accompa-
nied by a corresponding exchange correction due to the
simultaneous exchange of electrons between the monomers.
In the many-body version of SAPT the interacting monomers
are described through Møller–Plesset or even coupled cluster
theory, depending on the accuracy required for each individual
interaction term. The quality of the total interaction energies
compares with that obtained from CCSD(T). The interaction
energy partitioning techniques are, however, usually global.
From the set of theories with the capability of describing local
variations of bonding, the quantum theory of atoms in
molecules (QTAIM) approach [33] was also selected for the
current study.

The aim of the present study is to analyze B–Ccarbene

interactions for a wider spectrum of imidazol-2-ylidene
carbene–BX3 complexes, where X=H, OH, CN, NC, NH2,
CH3, F, Cl, and Br (Fig. 1). Although carbene has two
classes: singlet and triplet, we only consider the singlet
carbene due to presence of a free electron pair in singlet
carbene. The energy decomposition scheme is applied to
gain more detailed insight into the nature of the inter-
actions. In addition, the Bader theory has also been applied.
One of the aims of this study is to answer the following
questions: What is the nature of B–Ccarbene interactions in

carbene–BX3 complexes? Are there any sharply defined
differences in the physical nature of these complexes? What
is the substitution effect in these complexes? And are SAPT
energies consistent with ab initio and DFT binding energies?

Computational details

All molecular orbital calculations were performed using
GAMESS suite of programs [34]. The geometry of the
investigated various carbene–BX3 complexes was opti-
mized at the B3LYP level [35, 36] employing aug-cc-
pVTZ basis set. Then corresponding frequency calculations
were carried out at the same level to ensure that the
optimized structures are true minima. The interaction
energy for each cluster was calculated at the HF, B3LYP,
MP2, and MP4 and CCSD(T) levels of theory by using the
supermolecule method [37] which defines it as the
difference between the energy of the cluster and those of
the individual molecules in isolation:

Eint ¼ Eijk...ðijk . . .Þ �
X

i

EiðiÞ; ð1Þ

where the terms in brackets denote the basis sets to be used.
The results of Eq. 1 are subject to the basis superposition
error, BSSE, as each molecule uses the basis set of the
others in the cluster, decreasing the energy and resulting in
overestimated interaction energies. This problem is usually
overcome by using the counterpoise method of Boys and
Bernardi [38], where all energies are calculated by using the
basis set for the whole cluster, and the geometries of the
monomers correspond to those they adopt in the cluster.

In this study, the DFT-SAPT calculations were carried out
using the optimized geometries of all the complexes
obtained from B3LYP/aug-cc-pVTZ method. Calculations
were performed with aug-cc-pVDZ standard basis set. DFT-
SAPT uses monomer properties and electronic densities

Fig. 1 Optimized structure of imidazol-2-ylidene carbene–BX3

complex (X=H, OH, CN, NC, NH2, CH3, F, CL, Br)
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from DFT in order to compute interaction energies using
the SAPT [39–41]. This is the only variant of the SAPT
methods that can be practically used for systems containing
more than a few atoms and is, thus, the most useful for
computations on biomolecular systems. Based on DFT-
SAPT energy decomposition scheme [30], the two-body
binding energy can be decomposed as:

ESAPT
int ¼ E1

pol þ E1
ex þ E2

ex�ind þ E2
ind þ E2

ex�disp þ E2
disp

ð2Þ
some of these terms can be combined in order to define
values that correspond to commonly understood physical
quantities. The terms are commonly combined as such:

Eelec ¼ E1
pol

Eexch ¼ E1
ex

Eind ¼ E2
ind þ E2

ex�ind
Edisp ¼ E2

disp þ E2
ex�disp

where Eelec is the first-order electrostatic term describing
the classical columbic interaction of the occupied orbitals of
one monomer with those of another monomer, Eexch is the
repulsive first-order exchange component resulting from the
antisymmetrization (symmetry adaption) of wave function,
Eind and Edisp correspond to induction and dispersion
effects, respectively. The induction component is the energy
of interaction of the permanent multipole moments of one
monomer and the induced multipole moments on the other,
whereas the dispersion part comes from the correlation of
electron motions on one monomer with those on the other
monomer. For binding energy decomposition analysis,
molecular integrals were first obtained with the DALTON
2.0 package [42]; SAPT partitioning was then performed
using the SAPT2008 program [43].

The QTAIM methodology [33] has been used to analyze
the electron density of the systems considered at the
B3LYP/cc-pVTZ computational level using AIM2000 pro-
gram [44]. For atom–atom interactions such as intermolec-
ular contacts or valence bonds, the characteristics of the
corresponding bond critical point (BCP) of molecular
charge density, ρBCP are very important. These are points
where the electron density gradient ∇ρBCP vanishes and
additional characterization is done using the corresponding
Hessian matrix (a 3×3 matrix of second derivatives).
Diagonalization of this matrix yields the coordinate invariant
eigenvalues: 11≤12≤13. The quantities Laplacian, ∇2ρBCP, of
charge density at the bond critical point is defined as:

r2rBCP ¼
X3

i¼1

li: ð3Þ

There are well–known relationships between energetic
topological parameters and the Laplacian of electron density

at BCP:

1

4
r2rBCP ¼ 2GBCP þ VBCP ð4Þ

HBCP ¼ GBCP þ VBCP; ð5Þ
where GBCP, VBCP, and HBCP are the kinetic, potential, and
total electronic energy densities at critical point, respective-
ly. GBCP is a positive value, whereas VBCP is a negative one.

Results and discussion

Geometries

The graphical illustration of the complexes under consid-
eration is depicted in Fig. 1. Table 1 also presents the
evaluated geometrical parameters for various carbene–BX3

complexes (X=H, OH, CN, NC, NH2, CH3, F, Cl, and Br).
Quantitatively, all the complexes indicate the presence of
B–Ccarbene interaction due to the short B–Ccarbene distances.
From Table 1, it is apparent that the estimated B–Ccarbene

distances are in a range of 1.531–1.633 Å which is much
smaller than the sum of Van der Waals radii for carbon and
boron (about 3.7 Å). The binding distance is calculated to
be 1.587 Å in the carbene–BH3 complex. However, the
presence of the electron-donating groups makes an increase
of binding distance. More especially, the substitution of
electron-donating groups (OH and NH2) in the BX3

molecule makes a 0.040 and 0.046 Å increase of the
binding distance, respectively, whereas the electron-
withdrawing groups (F, CN and NC) result in a 0.020,
0.056 and 0.046 Å decrease of the binding distance. The
calculated binding distance in methyl substituted complex
is 1.614 Å, which is 0.027 Å longer than that of carbene–
BH3. An interesting aspect of the results presented in
Table 1 is the fact that the binding distance of the systems
tends to decrease as the size of the halogen increases, which
corresponds to a decreasing value of the halogen atom
electronegativity.

From the data in Table 1, it is also evident that all B–X
bonds are systematically lengthened upon complexation.
These results reveal that the binding between carbene and
the BX3 molecules weakens the B–X bond. The elongation
of the B–X bond varies from 0.0273 to 0.1279 Å. It should
be noted that this elongation is larger than that in the H2C–
LiX lithium bond [26]. The B–H bond elongation is 0.0273
Å in carbene–BH3 complex. However, both the electron-
donating (OH and NH2) and electron-withdrawing groups
(F, CN and NC) result in a significant increase of the B–X
bond elongation. An interesting finding is that the amount
of elongation in B(NC)3 is 0.02 Å greater than that of B
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(CN)3. The estimated B–X bond distance in -CH3 substi-
tution is 1.6426 Å, which is 0.0692 Å shorter than free B
(CH3)3 molecule. The B–X bond elongation in the three
halogen-containing complexes increases in the following
order: carbene–BF3< carbene–BCl3 < carbene–BBr3.
According to the above analyses, it is seen that the B–X
bond elongation is not completely consistent with the
change of the binding distance.

It is expected that the carbene–BF3 complex formation is
associated with a dipole moment enhancement due to the
charge transfer and electron polarization of the molecules
involved in the interaction. Dipole moments (μ) and
quadrupole moments (Q) of the carbene–BX3 systems are
listed in Table 1. For the all complexes studied here, the
largest dipole moment component is directed along the BX3–
carbene bond. One can see that the substitution of X atoms
into the carbene–BH3 complex has a significant influence on
the dipole and quadrupole moments. As also evident from
Table 1, the electron-donating groups tend to decrease the total
dipole moments of the studied species, while a reverse trend is
found for the electron- withdrawing groups. Figure 2 shows
the relationship of the binding distance with the dipole
moment of the carbene–BX3 complexes. As can be seen
from Fig. 2, there is a linear relationship between the binding
distance and the dipolemoment of the complexes (R2=0.931).

Binding energies

The interaction energy provides a measure of the strength
of the interaction between carbene and BX3 moieties in
carbene–BX3 complexes. Table 2 presents the interaction
energies for these complexes at HF, B3LYP, MP2, MP4 and
CCSD(T) levels of theory. Estimation of the BSSE for all of
the structures presented here was performed by the full
counterpoise method [38].

Considering the results listed in Table 2, it can be seen
that all the methods indicate the presence of a relatively
strong carben–BX3 interaction due to the interaction
energies between −42 and −101 kcal mol−1. We could not
find any theoretical information in the literature regarding
the binding energies of the carbene–BX3 complexes.
However, we can compare our estimates with the binding
energies of (R–BH)2, where R=imidazol-2-ylidene. The
B3LYP-estimated complexation energy for the carbene–BH3

complex is −71.96 kcal mol−1, which is −25 kcal mol−1

smaller than that for the (R–BH)2 [45]. It should be noted
that the estimated binding energies in the carbene–BX3

complexes are also much larger than that for the H-bonded

Fig. 2 Correlation between dipole moments and binding distances of
carbene–BX3 complexes

Table 2 Calculated binding energies by supermolecule HF, B3LYP,
MP2, MP4 and CCSD(T) methods carbene–BX3 complexesa

X EHF
int EB3LYP

int EMP2
int EMP4

int ECCSDðTÞ
int

H −60.80 −71.96 −72.05 −69.68 −68.97
OH −50.48 −51.72 −55.81 −53.81 −53.08
CN −92.57 −92.52 −101.57 −97.60 −96.09
NC −80.34 −84.97 −97.41 −92.33 −90.12
NH2 −42.54 −46.68 −53.36 −50.22 −42.66
CH3 −44.12 −52.23 −59.43 −56.32 −54.02
F −62.61 −69.87 −71.22 −69.33 −69.72
Cl −78.68 −77.75 −85.47 −80.09 −79.03
Br −80.64 −79.52 −88.60 −82.43 −81.10

a All calculated binding energies in kcal mol−1 and BSSE corrected

Table 1 B–Ccarbene and B–X
bond distances, dipole moments
and principal components of
electronic quadrupole moment
in carbene-BX3 compounds

aData in parentheses are the
difference between the complex
and the monomer. bData in
parentheses are for BX3 moie-
ties in the complex. cThe prin-
cipal components of quadrupole
moments

X rB-Ccarbene (Å) rB-X(Å)
a μ(D) b QXX:QYY:QZZ (D-Å) c

H 1.587 1.215 (0.027) 6.79 (0.75) −50.23: −28.40: −41.86
OH 1.626 1.461 (0.090) 5.77 (1.15) −44.69: −45.49: −57.73
CN 1.531 1.585 (0.064) 10.99 (2.21) −62.00: −73.60: −87.12
NC 1.541 1.510 (0.084) 10.90 (2.2) −63.04: −73.69: −87.11
NH2 1.633 1.538 (0.056) 4.54 (2.48) −45.21: −45.07: −65.09
CH3 1.614 1.643 (0.069) 6.71 (0.26) −56.08: −52.19: −64.84
F 1.567 1.394 (0.078) 9.11 (1.80) −49.71: −41.25: −55.51
Cl 1.560 1.867 (0.119) 9.15 (0.73) −62.96: −67.52: −81.12
Br 1.549 2.038 (0.128) 8.93 (0.33) −70.52: −85.87: −99.00
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H2C–HY (Y=F, CN, OH, and NH2) [46] and H2C–LiX [26]
complexes, consistently with the fact that the BX3

molecules are better Lewis acid than HY and LiX. Table 2
shows that, in general, the MP2 method provides larger
stabilization energy than the others. Moreover, the inclu-
sion of correlation (MP2) produces a stabilization of the
complexes as high as 5–15 kcal mol−1. Higher order
perturbation (MP4) also produces significant variation in
the binding energies of the B–Ccarbene complexes. As can
be seen, the HF level of theory extremely underestimates
the interaction energies of the complexes. In a previous
study [47], it was demonstrated that the difference
between the MP2 and HF energies is mainly assigned to
the effects of high-order electrostatic interaction such as a
dispersion interaction. Consequently, due to the large gain
of the attraction by electron correlation (5–15 kcal mol−1),
dispersion force plays an important role in the stability of
the complexes.

The interaction energies calculated at the CCSD(T) level
are smaller by about 2–7 kcal mol−1 than those at the MP2
and MP4 levels. Even so, the change in interaction energy
in the different systems is similar for the different levels of
theory. However, the interaction energies at the MP4 level
are close to those at the CCSD(T). Inspection of Table 2
reveals that the CCSD(T) interaction energies increase in
the order NH2>OH>CH3>F>H>Cl>Br>NC>CN, which
is the opposite trend shown in the binding distances. That
is, upon complexation with carbene, electron-withdrawing
groups form the strongest B–Ccarbene bond. This result is
consistent with that obtained for Li–Ccarbene bonds [26].
Focusing on CCSD(T) results, which are available for each
type of system considered, it can be seen that BBr3 moiety
is bound about 3% more strongly than BCl3, which binds
about 13% more strongly than BF3. Figure 3 shows the

correlation between ECCSDðTÞ
int interaction energies and

dipole moments of the complexes. As evident, there is a
linear relationship between the interaction energy and the
dipole moment of the complexes (R2=0.918). This suggests
that the electrostatic interaction may contribute significantly
to the formation of the complexes.

Application of SAPT

To further understand the nature of the B–Ccarbene bonds in
these complexes, the interaction energies of complexes
were decomposed into four parts: electrostatic interaction
energy (Eelect), Pauli exchange repulsion energy (Eexch),
induction energy (Eind) and dispersion energy (Edisp). The
results are given in Table 3. The SAPT interaction energy
(ESAPT

int ) is the sum of Eelect, Eexch, Eind and Edisp. One of the
most striking features of these data is the fact that the
stabilities of the B–Ccarbene interactions are predicted to be
attributable mainly to electrostatic and induction effects,
while dispersion forces, which have been widely believed
to be responsible for these types of interactions, play a
smaller role in stabilizing these complexes. Considering the
SAPT results, it is also found that electrostatic effects
account for about 52% of the overall attraction in the
carbene–BH3 complex. By comparison, the induction com-
ponent of this interaction represents about 39% of the total
attractive forces, while dispersion contributes 9% to the
stability of this complex. Thus it can be said that the
carbene–BH3 interaction is remarkably dependent on both
electrostatic and induction forces, with electrostatic playing
the largest role in their stability. Thus, the character of the B–
Ccarbene bond is almost equally due to covalency and ionicity.

Unlike H–bonding interactions [48–50], the exchange
energy term outweighs the electrostatic term for each
complex studied here (Table 3). Based on our SAPT results,
the electrostatic contribution to the overall attraction
energies of X=OH, CN, NC, NH2, CH3, F, Cl, and Br are
56%, 51%, 52%, 56%, 53%, 56%, 51%, 50 %, respectively.
Clearly, the electrostatic contribution is largest for the
electron-withdrawing groups (F, CN and NC) and smallest
for electron-donating groups (OH and NH2). It is interesting
to note that, although these types of interactions are largely
dependent on electrostatic forces, the induction interaction

Fig. 3 Correlation between dipole moment and CCSD(T) binding
energies of carbene–BX3 complexes

Table 3 DFT-SAPT energy decomposition analysis for carbene–BX3

complexesa

X Eelect Eexch Eind Edisp ESAPT
int

H −115.71 156.88 −86.42 −20.89 −66.14
OH −126.65 180.14 −77.99 −20.74 −45.25
CN −145.14 195.11 −114.22 −26.47 −90.73
NC −143.78 198.19 −113.54 −24.82 −83.94
NH2 −125.53 186.59 −75.79 −23.73 −38.45
CH3 −122.36 178.43 −82.18 −26.02 −52.13
F −129.82 168.90 −83.66 −17.49 −62.07
Cl −158.46 227.99 −122.87 −28.50 −81.82
Br −166.73 243.50 −132.19 −31.37 −86.79

a All calculated SAPT components and SAPT energies in kcal mol−1
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between the carbene and BX3 moiety seems to play a
significant role in determining the geometric structures of
these complexes. For the CN and NC electron-withdrawing
groups, the estimated induction energy contributions to the
total stabilization energy are 40% and 39%, respectively. As
the size of the halogen substituent increases the electrostatic
interaction would be expected to decrease. Comparing the
data for the fluorine, chlorine, and bromine substituted
carbene-BX3 systems, it can be seen that both the
dispersion and induction components of the interaction
energy increase with increasing halogen size. Interestingly,
there is a larger increase in the induction interaction, going
from fluorine to bromine, than in the dispersion interaction.

Table 3 and Fig. 4 indicate that the SAPT interaction
energies for the carben–BX3 complexes are generally in
good agreement with those obtained using the correlated
B3LYP, MP2, MP4 and CCSD(T) methods. The calculated
ESAPT
int energy for carbene–BH3 complex is −66.14 kcal

mol−1 which underestimates CCSD(T) and MP4 energies
by about 2.8 and 3.5 kcal mol−1, respectively. The SAPT
result for the carbene–B(OH)3 complex compare particu-
larly poorly to CCSD(T), with the SAPT binding energy
being 8 kcal mol−1 lower than that calculated using the
CCSD(T). It is interesting to note that, in the case of the Cl

and Br substitution, SAPT binding energies are under-
estimated in relation to CCSD(T), while binding energies
for the BF3 is overestimated.

Application of QTAIM

A great deal of information about the nature of B···Ccarbene

intermolecular interactions in the carbene–BX3 complexes
can be obtained from topological analysis of its electron
density. Based on the QTAIM [33], properties of BCPs serve
to summarize the nature of the interaction between two
atoms as shared (covalent) or closed–shell (ionic) interaction.
For a set of H–bonded complexes, Koch and Popelier [51]
found the correlation between the HB energy and ρBCP to be
linear as long as the acceptor atom remained unchanged.

Table 4 shows the li, ρBCP, ∇2ρBCP, and the energy
components GBCP, VBCP and HBCP values for all of the
complexes examined in this work. The molecular graph of
the carbene-BH3 complex is also displayed as Fig. 5, where
the positions of all critical points are indicated as well as
the bond paths between attractors. As seen in the molecular
graph, there is BCP for B–Ccarbene and one ring critical
point (RCP) within the five-member ring. Ring-bond paths
connecting BCPs and RCPs have also been found. The
QTAIM analysis of B–Ccarbene bonding has been studied in
a previous study [45]. Liu indicated that the polar B–
Ccarbene bond, possessing a high degree of covalency in the
bonding character, contributes positive net charge to atom
B, and simultaneously, negative net charge to atom Ccarbene.
The author concluded that this means that more π-
backdonation than σ-donation occurs from the center to
the ligand in R(H)B=B(H)R, where R=imidazol-2-ylidene.
On the basis of the fact that there is a BCP between the
donor Ccarbene and the B atom in the carben-BX3 (X=H,
OH, CN, NC, NH2, CH3, F, Cl, Br) complex, a topological
analysis of the electron density further validates the
existence of B–Ccarbene bonds in all of the complexes.

From the results in Table 4, despite falling in a region of
charge depletion with ∇2ρBCP >0, all B–Ccarbene BCPs are

Fig. 4 Correlation between SAPT and CCSD(T) binding energies of
carbene–BX3 complexes

Table 4 QTAIM analysis at the
B3LYP/aug-cc-pVTZ level of
theory for carbene–BX3 com-
plexes ∇2ρBCP

a

aAll QTAIM parameters in au

X l1 l2 l3 ρBCP ∇2ρBCP GBCP VBCP HBCP

H −0.224 −0.216 0.821 0.144 0.381 0.212 −0.339 −0.127
OH −0.205 −0.203 0.513 0.131 0.104 0.144 −0.262 −0.118
CN −0.236 −0.232 0.577 0.157 0.109 0.165 −0.314 −0.149
NC −0.257 −0.253 0.535 0.149 0.026 0.151 −0.296 −0.145
NH2 −0.186 −0.182 0.512 0.126 0.143 0.146 −0.256 −0.110
CH3 −0.202 −0.194 0.714 0.135 0.318 0.190 −0.31 −0.122
F −0.229 −0.226 0.520 0.138 0.065 0.144 −0.272 −0.128
Cl −0.285 −0.277 0.659 0.158 0.096 0.176 −0.328 −0.152
Br −0.293 −0.283 0.684 0.162 0.107 0.182 −0.337 −0.155
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characterized by a reasonably large value of the electron
density ρBCP and HBCP <0, indicating that the potential
energy overcomes the kinetic energy density at BCP and
the B–Ccarbene bond is a polar covalent bond. The estimated
values of ρBCP in B-Ccarben BCPs are in the range 0.126-
0.162 au, whereas the values of ∇2ρBCP are between 0.026-
0.381 au. For carbene-BH3 complex, the calculated ρBCP
and ∇2ρBCP value is 0.144 and 0.381 au, respectively. These
values decrease to 0.131, 0.126 and 0.104, 0.143 au for the
OH, and NH2 electron-donating groups, respectively, which
is in accordance with the evidence for small destabilization
of the B–Ccarbene. The average values of ρBCP (∇2ρBCP) in
au for CN and NC electron-withdrawing groups are 0.147
(0.109) and 0.149 (0.026), respectively. For the halogen
substitution, QTAIM analyses indicate the capacity of the
carbene-BX3 complexes to concentrate electrons at the B–
Ccarbene BCPs enhance considerably with the size of
halogen atom. This conclusion is completely the same as
that drawn from B–Ccarbene energies.

Two topological parameters both the total electron
energy density HBCP and Laplacian at BCP (∇2ρBCP) may
be useful in characterization of the strength of the B–
Ccarbene interactions. According to Rozas et al. [52], the
character of X–Y interaction could be classified as a
function of the total electron energy density HBCP with
Laplacian of the electron density at X–Y BCP (∇2ρBCP). It
means that for strong X–Y interactions (∇2ρBCP<0 and
HBCP<0) the covalent character is established, for medium
strength X–Y (∇2ρBCP>0 and HBCP<0 ) their partially
covalent character is defined, and weak X–Y (∇2ρBCP>0
and HBCP>0) are mainly electrostatic [53]. Therefore, B–
Ccarbene interactions for the complexes studied here have a
partially covalent nature. Figure 6 shows the correlation
between SAPT electrostatic energies with HBCP values. This
correlation (R2=0.89) indicates that the two representations
of B–Ccarbene characteristics, based upon QTAIM and
SAPT, are approximately equivalent. In terms of Espi-

nosal’s proposal [54], the local electronic potential energy
density (VBCP) can represent the capacity of the complexes
in concentrating electrons at the B–Ccarbene BCP and gives
an approach to describing the B–Ccarbene strength. Abramov
[55] has proposed the evaluation of the local electronic
potential energy density from the experimental electron
density distribution. The Abramov’s local electronic poten-
tial energy density VBCP,A can be evaluated according to the
following expression:

VBCP;A ¼ � 3

5
ð3p2Þ2=3r5=3 þ 1

12
r2r

� �
: ð6Þ

Figure 7 compares the calculated values of VBCP,A from
Eq. 6 with the VBCP data from the topological analysis for
the nine B–Ccarbene bonds. The distribution of the points
exhibits a very good linear relationship between VBCP and
VBCP,A. The graphical representation indicates that Eq. 6
can equivalently evaluate the capacity of the carbene-BX3

complexes in concentrating electrons at the B–Ccarbene BCP
and therefore the B–Ccarbene strength.

Conclusions

Within this study, we used ab initio, DFT, SAPT and
QTAIM theories to investigate the nature of B–Ccarbene

interaction in a series of imidazol-2-ylidene carbene-BX3

complexes, where X=H, OH, NH2, CH3, CN, NC, F, Cl,

Fig. 6 Correlation of SAPT electrostatic (Eelect) term with total
electronic density (HBCP) at B–Ccarbene BCPs

Fig. 5 Molecular graph of carbene–BH3 complex. The graph was
obtained at the B3LYP/aug-cc-pVTZ level. Big circles correspond to
attractors and small red and yellow circles are bond and ring critical
points, respectively. The lines are bond paths

Fig. 7 Correlation between calculated potential energy density (VBCP)
and Abramov potential energy density (VBCP,A)
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and Br. Based on the results found in this study, it is
concluded that the imidazol-2-ylidene carbene makes a
relatively strong interaction with BX3 moieties. All B–X
bonds are systematically lengthened upon complexation.
These results reveal that the binding between carbene and
the BX3 moieties weakens the C–X bond. A more detailed
analysis of calculated binding energies shows that, in
general, the MP2 method provides larger stabilization
energy than the other. Focusing on CCSD(T) results, which
are available for each type of system considered, it can be
seen that BBr3 moiety is bound about 3% more strongly
than BCl3, which binds about 13% more strongly than BF3.
The SAPT interaction energies for the carbene–BX3

complexes are generally in good agreement with those
obtained using the supermolecule MP4 and CCSD(T) levels
of theory. Based on QTAIM results, it is evident that the B–
Ccarbene interactions for the complexes studied here have a
partially covalent nature. Moreover, this work should be
interesting for future theoretical investigations and experi-
mental works, which can also enrich the theory of donor-
acceptor interaction. Since imidazol-2-ylidene carbene is an
intermediate in some chemical reactions, thus the study of the
interaction between this carbene and BX3 moieties is helpful
to understand the mechanism in carbene–boron chemical
reactions. The results of SAPT analysis can also lead to
deeper understanding of carbene–boron interactions, and the
quantitative results may be used to guide development of
empirical, yet computationally fast force fields for biomolec-
ular simulation and modeling. We believe that this study
enriches the knowledge of carbene-boron interactions and
need some support from future experimental work.
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Abstract Laccases belong to multicopper oxidases, a
widespread class of enzymes implicated in many oxidative
functions in various industrial oxidative processes like
production of fine chemicals to bioremediation of contami-
nated soil and water. In order to understand the mechanisms of
substrate binding and interaction between substrates and
Pycnoporus cinnabarinus laccase, a homology model was
generated. The resulted model was further validated and used
for docking studies with toxic industrial dyes- acid blue 74,
reactive black 5 and reactive blue 19. Interactions of
chemical mediators with the laccase was also examined.
The docking analysis showed that the active site always
cannot accommodate the dye molecules, due to constricted
nature of the active site pocket and steric hindrance of the
residues whereas mediators are relatively small and can

easily be accommodated into the active site pocket, which,
thereafter leads to the productive binding. The binding
properties of these compounds along with identification of
critical active site residues can be used for further site-
directed mutagenesis experiments in order to identify their
role in activity and substrate specificity, ultimately leading to
improved mutants for degradation of these toxic compounds.

Keywords Bioremediation . Homology modeling .

Laccase .Mediators . Toxic dyes

Abbreviations
ABTS 2,2′-azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid)
PROSA Protein structure analysis
NAMD Nanoscale molecular dynamics
PDB Protein data bank
RMSD Root mean square deviation
CASTp Computed atlas of surface topography

of proteins
GOLD Genetic optimization for ligand docking
MD Molecular dynamics

Introduction

Laccases (EC 1.10.3.2) are oxidoreductases constituting a
class of blue multicopper enzymes, first described in 1883
[1]. These are present ubiquitously in bacteria [2], fungi [3]
and plants [4] and are classified into high and low redox
potential oxidoreductases [5, 6]. Variations in protein
structure are responsible for variable redox potentials and
consequently, varied rates of one-electron transfer [7–10].
This electron transfer is mediated through Cu2+ ion. Three
copper binding sites (T1-T3) contain four Cu2+ ions. T1
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site, being a mononuclear center, possesses one copper
atom and T2&T3, being trinuclear centers, possess three
copper atoms. Two conserved channels allow the passage of
di-oxygen and release of water molecule from the T2/T3
center. Two β-turns close to the T1 Cu atom constitute the
substrate binding pocket. The geometry of this pocket
defines the substrate specificity of the enzyme [11].
Laccases utilize a one-electron transfer mechanism to
oxidize a variety of substrates including biphenyls, poly-
phenols, aromatic amines, diamines and ascorbic acid [12].
Owing to its low substrate specificity, laccase from
Pycnoporus cinnabarinus finds use in treatment of toxic
dyes which are present in the effluent of the textile industry
[13]. A general mode of laccase action involves the one
electron oxidation of hydroxylated aromatic substrates,
coupled to the reduction of dioxygen to water, converting
the substrate to a free radical [5].

O2 þ 4e� þ 4Hþ ! 2H2O:

The structural studies on several fungal and bacterial
laccases have further allowed the rationalization of important
structural and functional aspects of multi-copper oxidases
such as the positioning of the T1 site, the electron transfer
pathways between T1 and the T2/T3 cluster, the oxygen and
water channels [8, 10, 11, 14–18].

Since 1990, when ABTS (2,2′-azino-bis(3-ethylbenz-
thiazoline-6-sulfonic acid)) was found to serve as a laccase
substrate mediating or enhancing the enzyme action [19], the
range of compounds that can be transformed by laccases has
increased. An ideal mediator must be a low-molecular-
weight laccase substrate whose enzymatic oxidation gives
rise to stable high-potential intermediates. These intermedi-
ates act as reactive species which take part in chemical
reactions with other compounds. Their oxidized and reduced
forms should be stable and at the same time must not inhibit
the enzymatic reaction. Ideally, a mediator can perform many
cycles without degradation. In particular the biotechnological
application of laccases, aiming at the development of various
industrial oxidative processes is to produce fine chemicals to
bioremediation of contaminated soil and water [20].

In the present study, the homology model of Pycnoporus
cinnabarinus laccase has been constructed in order to get
an in depth knowledge of its structural and functional
aspects. To analyze its structural integrity, the constructed
model was validated using structure analysis tools like
PROSA and PROCHECK. Further, the docking studies
were performed to understand the mechanism of laccase
catalyzed enzymatic reactions as well as the role of
chemical mediator interaction with active site residues.
The approach is applicable in engineering 3D structures of
enzymatic models, and studying interactions of active site
residues with substrates.

Materials and methods

Homology modeling

The amino acid sequence of Pycnoporus cinnabarinus
laccase was obtained from the NCBI protein database
(Accession number: AAF13052) (http://www.ncbi.nlm.
nih.gov/protein). Crystal structure of Trametes hirsuta
laccase was taken from the protein data bank (PDB ID:
3FPX) [21] and used as the template for building the
initial 3D model. The sequence alignment of laccase with
the template was accomplished using ClustalW 2.0
(http://www.ebi.ac.uk/Tools/clustalw2/index.html). The
Modeller 9v7 program [22] was employed to generate
the initial 3D models of laccase. Modeller generates the
3D models by optimization of molecular probability
density functions. The optimization process consists of
applying the variable target function as well as
conjugated gradients and molecular dynamics with
simulated annealing. A set of 20 models of laccase
were produced based on the resulting alignment
obtained above. The outcomes were ranked based on
the internal scoring function of Modeller.

Modeling copper atoms

All the models were reinitialized as quires and by setting
the input output HETAM function in true mode. The
function was read in HETAM records from template PDB
and the copper atoms were inserted in the query models.
These models containing copper atoms were further
validated and refined.

Homology models validation

The top five models with high scores were validated by the
Procheck [23], ProSA [24] and VADAR [25]. After
validation, a model was finally chosen for further refine-
ment by energy minimization. The energy minimization
was performed using the NAMD package [26]. The
optimized model was subjected to quality assessment with
respect to its geometry and energy and was then subjected
to molecular docking. Procheck was utilized for geometric
evaluation. ProSA program was employed to evaluate the
quality of consistency between the native fold and the
sequence and examine the energy of residue–residue
interactions using a distance-based pair potential. The
substrate molecules acid blue 74, reactive black 5, reactive
blue 19, ABTS, acetosyringone and syrangaldehyde were
downloaded from Pubchem database of NCBI [27], and
converted to 3D structure with VEGA ZZ software [28].
These substrates were geometrically optimized for further
use in docking.
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Structural analysis

Both the template and homology model C alpha and back
bone atoms RMSD were calculated by magic fit program
[29]. Packing architecture of the modeled protein was
calculated by VADAR program. It analyzes mean hydrogen
bonds distances, mean dihedral angles, accessible surface
area and packing volume of the model.

Active site analysis

The substrate accessible pockets and active sites of laccase
were identified by computed atlas of surface topography of
proteins (CASTp) calculation [30] and GOLD software [31–
33]. CASTp program uses the weighted Delaunay triangula-
tion and the alpha complex for shape measurements. It
provides identification and measurements of surface accessi-
ble pockets as well as interior inaccessible cavities of proteins.
The program measures analytically the area and volume of
each pocket and cavity, both in solvent accessible surface and
molecular surface. The identified active sites were analyzed
for amino acid cluster groups based on the solvent exposed
active site atoms and bonding capacity of the polar groups.
All the active site pockets were further evaluated by docking
to test their capacity of accommodating substrates.

Molecular docking

Substrate molecules were docked to the binding sites using
GOLD software [31–33]. One-hundred genetic algorithm
(GA) runs were performed for each compound, and 10 ligand
bumps were allowed in an attempt to account for mutual
ligand/target fit. The binding region for the docking study was
defined as a 20 Å radius sphere centered on the active site.
For each of the GA run a maximum number of 100,000
operations were performed on a population of 100 individuals
with a selection pressure of 1.1. The number of islands was
set to 5 with a niche size of 2. The weights of crossover,
mutation and migration were set to 95, 95 and 10 respectively.
The scoring function Gold Score implemented in GOLD was
used to rank the docking positions of the molecules, which
were clustered together when differing by more than 2 Å rmsd
[34, 35]. The best ranking clusters for each of the molecules
were selected. Hydrogen bonds, bond lengths and close
contacts between enzyme active site and substrate atoms were
analyzed.

Results and discussion

Pycnoporus cinnabarinus laccase modeling

The first important step in homology modeling is to select
an appropriate template structure for constructing the target

model. To date, several crystal structures of fungal and
bacterial laccases have been determined. A BLASTp search
against protein data bank confirmed that several fungal
laccase crystal structures could serve as the potential
template for building the model. Pycnoporus cinnabarinus
laccase has 82% sequence identity with Trametes hirsuta
laccase (PDB ID: 3FPX). The template was chosen based
on sequence similarity, residue completeness, and crystal
resolution. The majority of the structure is considered
conserved except for the limited gap inserts. The resulting
alignment was used as input file for Modeller to generate
the initial 3D models using the fast simulated annealing
procedure implemented in the Modeller program. Since the
N-terminus does not affect the substrate binding, the
corresponding first 18 residues were not modeled in the

Fig. 1 Final three dimensional model of Pycnoporus cinnabarinus
laccase in ribbon display mode showing α- helices in red, β-sheets in
cyan, β-turns in green and copper atoms in blue color

Table 1 Copper atom distances in modeled Laccase and known 3D
crystal laccases

Protein Cu1-Cu2 Cu1-Cu3 Cu1-Cu4 Cu2-Cu3 Cu2-Cu4 Cu3-Cu4

MODEL 14.80 12.81 12.30 4.12 3.80 3.85

3FPX 14.84 12.86 12.18 4.10 3.79 3.84

1GWO 14.50 12.93 12.42 4.15 3.92 4.91

3CG8 14.51 13.08 12.64 4.13 3.91 4.97

1GYC 14.74 12.90 12.31 3.81 3.82 3.91

2H5U 15.12 13.26 12.43 4.40 4.08 4.77

2VDS 14.97 12.98 12.17 4.57 3.86 4.70

2HZH 14.74 13.12 12.02 4.33 3.93 4.80

2HRH 14.59 12.69 12.20 3.56 3.31 3.19
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model. The initial 3D models of laccase were energy-
minimized to release the bad atomic contact and tune
unreasonable local structural conformations.

Validation of homology models

Validation of a 3D model is an essential step that can be
performed at different levels of structural organization to
check the stereochemical parameters and accuracy of the
overall packing. The assessment of chosen model for
stereochemical properties of main-chain and side-chain
residues was performed using Procheck-Ramachandran plot
analysis. Procheck analysis, showed 91.0% of the residues
were in the core region, 8.5% residues in the allowed
regions and 0.5% in disallowed region. The overall main-
chain and side-chain parameters are favorable for further
analysis.

In order to investigate whether the interaction energy of
each residue with the remainder of the protein is negative, a
test was carried out to apply energy criteria using ProSA II

energy plot. The ProSA analysis of the model showed
maximum residues to have negative interaction energy with
few residues displaying positive interaction energy. The
overall interaction energy of the model was −7.34 kcal mol-1,
which is quite similar to the template 3FPX.pdb
(−7.93 kcal mol-1). Hence, the final model which proved to
be well validated in terms of geometry and energy profiles
suggests that the model is good enough to be a starting point
for our next phase of docking studies. The final model
structure of laccase is displayed in Fig. 1.

Structural analysis of model

Cα atoms and back bone atoms RMSD of both the model and
template are 0.14 Å and 0.20 Å respectively. The mean residue
volume and total packing volume of the model are 132.8 Å3

and 68801.3 Å3 respectively. VADAR analysis of the model
showed, the mean helix phi, psi and omega angles are −63.5,
-35.3 and −179.5 respectively, which is promising residue
packing when compared to the crystal structure information.
The accuracy of position of the modeled four copper atoms in
three copper binding sites was checked by comparing the
distances between the copper atoms with known 3D laccase
copper binding site information (Table 1). The distances
between copper atoms are quite similar to the distances
between copper atoms in known 3D laccase structures. The
catalytic active site is present close to the T1 copper binding
site and residues at the active site are closely packed together
forming a narrow cavity (Fig. 2). Therefore relatively small
solvent accessible area, large substrate molecules cannot
freely approach into the active site.

Docking conformations of ligands in the active site

Docking interaction was carried between all the solvent
accessible atoms and ligands. Fruitful binding docking

Fig. 2 Surface representation of model and close up view of active
site pocket

Fig. 3 Docked conformations of (A) Reactive black 5, (B) Reactive blue 19 and (C) Acid blue 74 in the active site
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interactions were selected for further analysis. The selected
binding site is near to the tri copper centers and has
394.5 Å3 volume. The solvent accessible region at active
site cavity comprises of residues ARG182, PRO184,
PHE185, ASP227, PRO228, ASN229, ALA261, PRO412,
GLY413, PHE414, PRO415, GLN451, HIS473, ILE474,
ASP475, PHE476 and HIS477. The topological polar
surface area of dyes is ranging from 189 Å2 to 458 Å2.
Docking of reactive black 5, reactive blue 19, acid blue 74
azure B, amido black and aniline blue with active site
residue atoms showed that the dye molecules are producing
only some fruitful binding conformations at active site. This
was due to steric hindrance caused by amino acid side
chains near and around the active site cavity and bulky
planar ring conformations of the dyes. Figure 3 depicts the
productive binding conformations of the dyes in the active
site. In the current picture, the narrow active site cavity
could not always accommodate the bulky dye molecules for
productive binding.

Mediator - enzyme docking studies reveal that
mediator molecules easily approach the active site
cavity and are able to rotate in the active site to bind
in close proximity to the Cu1 atom (Fig. 4), which leads
to productive binding and further electron transfer. The
topological polar surface area of mediators is ranging from
55 Å2 to 215 Å2. 2-D structural details of ligands were
presented in supplementary data. Hydrogen bonding
profile of dyes and mediators with active site atoms are
depicted in Table 2. The hydrogen bonds range between
1.700 Å to 2.471 Å. A mediator can perform many cycles
without degradation due to its highly stable oxidized and
reduced forms. In particular the biotechnological applica-
tion of laccases, aiming at the development of various
industrial oxidative processes is to produce fine chemicals
to bioremediation of contaminated soil and water. Thus,
mediator approach to laccase activity is preferred in
degradation of industrial dyes over direct laccase-
substrate reactions.

Conclusions

The modeled laccase exhibits 91.0% of residues falling in
the most favorable region of the Ramachandran’s plot,
which showed the proper modeling of laccase. Further
model overall quality analysis, geometrical and packing
architecture analysis of the model shows that the modeled
protein structure is suitable for docking studies. Active site

Fig. 4 Docked conformations of (A) ABTS, (B) Acetosyringone and (C) Syrangaldehyde in the active site

Table 2 Docking statistics of laccase with dyes and mediators

Substrate/mediator Residue atom Ligand atom H.Bond distance

Reactive black 5 GLN 451:H O25 1.272

ASN 229:H O22 2.500

ASN 229:1HD2 O23 2.470

ASN 229:2HD2 O23 2.338

ASN 229:2HD2 O21 2.334

THR 356:HG1 O29 2.312

Reactive blue 19 ASN 229:2HD2 O16 2.195

PHE 185:O O42 2.676

Acid blue 74 ASN 229:2HD2 O8 1.807

Pontamine sky blue ALA261:H O14 1.458

ALA261:H O15 1.897

ALA261:H O16 2.686

Amido black ASN229:H O6 1.990

ASN229:2HD2 O6 2.335

ASN229:2HD2 O8 2.346

PHE414:O H45 2.671

Aniline blue ARG182:H O11 1.536

ASN229:2HD2 O5 1.582

ALA261:H O9 2.590

PRO415:O H79 2.342

HIS477:NE2 H66 2.136

ABTS ASN 229:1HD2 O6 2.584

ASN 229:1HD2 O7 1.741

Acetosyringone ASP 227:OD1 H20 1.548

ASP 227:OD2 H20 2.691

Syringaldehyde ASP 227:OD1 H17 1.668
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analysis revealed closely packed narrow shape active site
conformation, which lies close to the T1 copper binding
site. The surface of the active site is composed of residues
ARG182, PRO184, PHE185, ASP227, PRO228, ASN229,
ALA261, PRO412, GLY413, PHE414, PRO415, GLN451,
HIS473, ILE474, ASP475, PHE476, and HIS477. The
docking conformations of substrates at active site showed that
substrate molecules cannot freely access the active site pocket
due to their bulky planar ring structure and steric hindrance of
the active site residues. Mediator conformations at active site
showed that mediator molecules are entering into the active site
without any steric repulsion and interacting with residues. This
is because mediator molecules are relatively small and can
easily approach residues in the narrow active site as well as
bind in close proximity to the T1 copper site. This leads to
enzymatic oxidation and gives rise to stable high-potential
intermediates. These intermediates oxidize substrate molecules
and they themselves get reduced to their original state. The
above mentioned enzymatic and chemical interactions are thus
carried out in a cyclic manner without any degradation of the
mediator.
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Abstract Reactivity prediction in the series of MPR3
+

fragments ( M=Au, Ag, Cu; R=−H, -Me, -Ph) has been
achieved at the ab initio (HF and MP2) and density
functional theory (B3LYP and PBE) levels. We have used
global and local descriptors based on conceptual DFT such
as hardness, Fukui function and electrophilicity index. For
all methods and fragments, we have found an equal trend in
reactivity using both the global and local electrophilicity
index: QR-AuPR3

+>CuPR3
+≈AgPR3

+>NR-AuPR3
+. It is

also found that the electrophilicity power decreases as the
volume of R increases.

Keywords Electrophile fragments . Quasi-Relativistic
effects . Reactivity

Introduction

The coin metal phosphine fragment [M(PR3)]
+ (M=Au,

Ag, Cu) has been extensively used in organometallic and

inorganic clusters [1–6]. The [M(PR3)]
+ fragments are

Lewis acids, still they are always found as terminal ligands
in a large number of complexes. In particular, triphenyl-
phosphines (PPh3) are used in many synthesized coin
clusters because it acts as a stabilizing agent [4–6]. In the
literature it is possible to find several examples that
illustrate this situation. For example, clusters of the
[X(AuPR3)n]

+m type with X=C, N, O and their analogous
from the rows further down the periodic system have been
studied experimental and theoretically [7–9]. Compounds
of the [Pt3(μ-L)3(L’)3] (L=PR3 (phosphine); SO2, CNR
(isocyanides); L’=PR3; CNR) type act as Lewis bases
toward the Lewis acids [M(PR3)]

+ [10–12]. Other examples
are the compounds of the type [M(PR3)n]

+ (M=Cu, Ag, Au;
n=1–4) which have been known and characterized [13, 14].
These are three examples among many cases.

It is customary for computational chemists to replace the
triphenylphosphine (PPh3) ligand with trimethylphosphine
(PMe3) or phosphine (PH3) ligands [15, 16] when the
cluster models are built. The goal is a reduction of the
computational cost. The influence of the phosphine ligands
on the structural properties turned out to be moderate.
However, the dipole moment, the first ionization potential,
electron affinity, and the binding energy are described only
approximately [17, 18]. Replacement of the original ligands
leads to changes in the reactivity properties of the clusters.
This last has been shown by Rösch and co-workers for the
MeAuPR3 system (R=H, Me, Ph) [17, 18]. The structural
properties the PH3 and PMe3 ligands provide satisfactory
models of the full PPh3 ligand. However, the phosphine and
trimethylphosphine ligated models tend to only approximate
for energy properties and for the dipole moments [17].

The aim of the current study is to computationally
predict the reactivity of the MPR3

+ (M=Au, Ag, Cu)
fragment using three types of phosphines (PR3): triphenyl-
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phosphines (PPh3), trimethylphosphine (PMe3), and pure
phosphine (PH3). This contribution focuses on the structure
and properties of the MPR3

+ fragments by reactivity indices
as introduced through conceptual density functional theory
(CDFT) [19–22].

Models and computational methods

The model of the electrophiles of the type MPH3
+, MPMe3

+

and MPPh3
+ (M=Au, Ag, Cu) are depicted in Fig. 1. The

MPH3
+ models assume a C3v point symmetry, while

MPMe3
+ and MPPh3

+ have a C1 point symmetry. We first
fully optimized the geometries of the fragments at the
Hartree-Fock (HF), second-order Møller-Plesset perturbation
theory (MP2) [23], B3LYP and PBE [24] levels.

The theoretical studies have been carried out by ab initio
calculations available in the Gaussian03 program [25]. For
the heavy elements Au, Ag and Cu, we have used
pseudopotentials (PP). For gold 19-valence electron (VE)
Schwerdtfeger non- and quasi-relativistic (NR and QR) PP
have been used [26]. The silver and copper atoms were
treated by a 19-VE Stuttgart quasi-relativistic pseudopoten-
tials [27]. Two f-type polarization functions were added: Au
(αf=0.20, 1.19), Ag (αf=0.22, 1.72), and Cu (αf=0.24,
3.70) [28]. The C and P atoms were also treated with PP,
using a double-zeta basis set and adding one d-type
polarization function [29]. For hydrogen, a valence-
double-zeta basis set with one p-polarization function was
used [30].

With the aim of understanding the properties of the
electrophilic MPH3

+, MPMe3
+ and MPPh3

+ (M=Au, Ag,
Cu) fragments we have used the CDFT. The chemical
potential (μ) and chemical hardness (η) from operational
DFT [31–35], which are defined as:

m � � IP þ EAð Þ
2

ð1Þ

h � IP � EAð Þ
2

; ð2Þ

where IP is the ionization potential and EA is the electron
affinity. These two quantities can also be defined based on
the frontier molecular orbitals eigenvalues; on the basis of
Koopmans’ theorem as IP≈−EHOMO and EA≈−ELUMO,
where EHOMO and ELUMO are the energies of the highest
occupied molecular orbital (HOMO) and lowest unoccu-
pied molecular orbital (LUMO), respectively. Moreover,
this definition of chemical potential is related to Mulliken’s
definition of electronegativity (χ) called absolute electro-
negativity: χ=−μ [31].

On the other hand, the electrophilicity index (ω) is
defined as [34]

w ¼ m2

2h : ð3Þ

It is a measure of the electrophilicity of the fragment.
The ω is called the “electrophilicity index” and from a
classical electrostatic point of view is considered to be a
measure of electrophilic power as was defined by Parr
and co-workers [34]. Also, they have shown that ω
measures the second-order energy of an electrophile when
it gets saturated with electrons. The higher its value, the
greater its electrophilicity. In addition, to see reactive sites,
the orbital Fukui local function [36, 37] for electrophilic
fragments was determined from its frontier orbital density
at atom M, where M represents a metal atom. The orbital
Fukui function at atom M for nucleophilic attack is given
as:

f aM ¼ PAO

n2M
C2
na þ PAO

# 6¼n
C#aCn#Sn# ; ð4Þ

where α=+ for LUMO, Cνα are the molecular orbital
frontier expansion coefficients (LUMO) and Sνχ are the
atomic orbital overlap matrix elements. This definition of
the orbital Fukui function has been used in several studies
yielding reliable results [38].

M

P

H
H

H

M

P

M

P

C
C

C

Fig. 1 The MPH3
+, MPMe3

+

and MPPh3
+ (M=Au, Ag, Cu)

models
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Moreover, a local counterpart of electrophilicity has been
introduced to analyze the electrophile-nucleophile reactions
[39]. It is defined as

wþ
M ¼ wf þM : ð5Þ

The MPR3
+ metal electrophile fragments studied in this

work act as soft acids. Therefore, they are in the category of
orbital controlled reactions. An analysis of local electro-
philicity (ωk

+) provides the information of a particular
atomic site in a molecule being attacked by a nucleophile.
This local property has been proposed as a better
intermolecular reactivity index than the Fukui function
itself for analyzing electrophile-nucleophile interactions
becuase the Fukui function allows to compare the sites
selectivity within a molecule, while for a comparison of the
reactivity of a specific site on different molecules, it is more
appropriate to use a property that includes intrinsic
information of the systems studied [19–22]. In this context,
the local softness and the local electrophilicity descriptors are
suitable to explain hard-soft and electrophile-nucleophile
interactions, respectively. Thus, the Fukui function is used as
a distribution function which allows to map any global
property within a molecule. In the literature some of these
aspects have been verified [40].

Results and discussion

Structural description

All models were assumed as a singlet ground state.
Tables 1, 2, 3 summarize the main geometric parameters at
several theoretical levels. The models are shown in Fig. 1. In

Table 3 Main geometric parameters of the MPPh3
+ electrophiles

(distances in pm and angles in degrees) at different levels of
calculation

Electrophile Method MP PC MPCº

AuPPh3
+ HF-QR 238.2 183.0 110.48º

MP2-QR 223.2 180.8 108.95

B3LYP-QR 231.7 183.0 110.27º

PBE-QR 229.3 183.0 109.97º

AuPPh3
+ HF-NR 275.2 184.0 112.19º

MP2-NR 253.2 182.6 112.25º

B3LYP-NR 262.8 183.9 111.68º

PBE-NR 257.9 184.3 110.86º

AgPPh3
+ HF 255.7 183.7 111.65º

MP2 235.4 182.2 111.35º

B3LYP 242.9 184.0 110.59º

PBE 239.2 184.0 110.32º

CuPPh3
+ HF 233.6 183.6 111.32º

MP2 215.1 182.2 111.41º

B3LYP 221.3 183.6 111.22º

PBE 218.7 183.9 109.84º

Table 2 Main geometric parameters of the MPMe3
+ electrophiles

(distances in pm and angles in degrees) at different levels of
calculation

Electrophile Method MP PC MPCº

AuPMe3
+ HF-QR 237.5 183.2 111.63

MP2-QR 223.9 182.5 110.11

B3LYP-QR 230.2 183.7 110.83

PBE-QR 227.7 183.7 110.48

AuPMe3
+ HF-NR 276.2 184.4 113.73

MP2-NR 255.8 184.1 113.27

B3LYP-NR 262.1 184.9 114.09

PBE-NR 257.9 185.1 113.43

AgPMe3
+ HF 256.0 184.1 113.13

MP2 237.1 183.7 112.44

B3LYP 242.2 184.5 112.78

PBE 238.3 184.6 112.30

CuPMe3
+ HF 234.2 183.9 112.95

MP2 216.1 183.6 112.59

B3LYP 220.9 184.4 112.43

PBE 218.2 184.5 112.08

Table 1 Main geometric parameters of the MPH3
+ electrophiles

(distances in pm and angles in degrees) at different levels of
calculation

Electrophile Method MP PH MPHº

AuPH3
+ HF-QR 239.2 140.2 114.47º

MP2-QR 225.1 140.8 113.05º

B3LYP-QR 229.5 142.0 113.47

PBE-QR 226.7 143.5 113.28º

MP2-QR [13] 229.1 139.6 114.30º

AuPH3
+ HF-NR 282.8 140.8 117.30º

MP2-NR 260.5 141.1 117.00º

B3LYP-NR 265.2 142.3 117.09º

PBE-NR 260.3 143.7 117.22º

MP2-NR [13] 269.6 140.0 117.40º

AgPH3
+ HF 260.9 140.6 116.45º

MP2 240.5 141.1 115.82º

B3LYP 243.9 142.2 115.85º

PBE 239.2 143.6 115.88º

MP2 [13] 247.5 139.8 116.40º

CuPH3
+ HF 237.2 140.5 115.98º

MP2 217.7 141.0 115.40º

B3LYP 221.3 142.2 115.30º

PBE 217.6 143.6 115.33º

MP2 [13] 220.6 139.8 115.70º
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the literature, there are theoretical models of the [M(PH3)]
+

type described by Schwerdtfeger and co-workers at the MP2
level [13]. Small deviations are due to pseudopotential type
and size of the basis sets (see Table 1). The geometric
magnitudes of MP2 are the shortest, followed by PBE,
B3LYP, and finally HF, which are always higher. If we take
as reference the M-P distance in the different models, it is
clear that electronic correlation effects play an important role
in the stability of the system. The M-P distances obtained
with all methods are close to those of a typical single bond,
with the shortest distance obtained with the MP2 method
[13].

Taking into account the non-relativistic case, the distance
of the M-P bond is Cu>Ag>Au, but this changes when
quasi-relativistic effects are introduced, getting the order
Cu<Au<Ag. As explained in the literature, the relativistic
effects increase the electronegativity of the gold atom (from
ca. 1.9 to 2.4) [41], which enhances the possibility for
sigma-charge donation from the PR3 lone pair [13]. This is
because the relativistic effects decrease the size of the gold
atom and change the energy patterns of the frontier orbitals.
Also, we can see that when the ligand goes from PH3 to
PMe3 and finally PPh3, the M-P distance decreases as the
volume of the substituent R increases. This shows the
nature of the R group in the PR3 ligand. This has an
important influence on the bonding and stability of these
phosphine complexes, as was demonstrated by Rösch and
co-workers for several gold phosphine complexes [2, 17, 18].

ω
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Fig. 2 Molecular and atomic representations of the electrophiles with
global and local electrophilicity indices (ω, ω+) at the B3LYP level

Table 4 Ionization potential (I), electron affinity (A), electronic
chemical potential (μ), chemical hardness (η), global electrophilicity
index (ω). All values are in eV

Electrophile Method I A -μ η ω

AuPH3
+ HF-QR 16.23 4.89 10.56 5.66 9.84

MP2-QR 16.27 4.77 10.52 5.75 9.62

B3LYP-QR 13.56 8.64 11.10 2.46 25.04

PBE-QR 12.47 9.19 10.83 1.64 35.76

AuPH3
+ HF-NR 15.58 4.39 9.99 5.60 8.91

MP2-NR 15.88 4.28 10.08 5.80 8.76

B3LYP-NR 13.20 7.75 10.48 2.73 20.12

PBE-NR 12.30 8.28 10.29 2.01 26.34

AgPH3
+ HF 16.03 4.53 10.28 5.75 9.19

MP2 16.26 4.42 10.34 5.92 9.03

B3LYP 13.47 8.06 10.77 2.71 21.42

PBE 15.99 5.92 10.96 5.04 28.93

CuPH3
+ HF 16.59 4.47 10.53 6.06 9.14

MP2 16.72 4.33 10.53 6.20 8.94

B3LYP 13.27 8.04 10.66 2.61 21.73

PBE 16.13 5.92 11.03 5.11 32.62

AuPMe3
+ HF-QR 14.57 4.10 9.33 5.24 8.31

MP2-QR 14.52 3.92 9.22 5.30 8.02

B3LYP-QR 12.12 7.46 9.79 2.33 20.57

PBE-QR 11.20 7.97 9.59 1.62 28.47

AuPMe3
+ HF-NR 13.72 3.88 8.80 4.92 7.87

MP2-NR 13.86 3.76 8.81 5.05 7.68

B3LYP-NR 11.47 6.97 9.22 2.25 18.89

PBE-NR 10.63 7.41 9.02 1.61 25.27

AgPMe3
+ HF 14.13 3.95 9.04 5.09 8.03

MP2 14.22 3.82 9.02 5.20 7.82

B3LYP 11.81 7.13 9.47 2.34 19.16

PBE 10.90 7.61 9.26 1.65 25.98

CuPMe3
+ HF 14.60 3.87 9.24 5.37 7.95

MP2 14.75 3.76 9.26 5.49 7.81

B3LYP 11.87 7.07 9.47 2.40 18.68

PBE 10.63 7.59 9.11 1.52 27.30

AuPPh3
+ HF-QR 11.96 3.67 7.82 4.15 7.37

MP2-QR 11.87 3.43 7.65 4.22 6.93

B3LYP-QR 10.25 6.77 8.51 1.74 20.81

PBE-QR 9.59 7.22 8.41 1.19 29.72

AuPPh3
+ HF-NR 11.52 3.57 7.55 3.98 7.16

MP2-NR 11.53 3.39 7.46 4.10 6.25

B3LYP-NR 9.77 6.46 8.12 1.66 19.85

PBE-NR 9.12 6.82 7.97 1.15 27.62

AgPPh3
+ HF 11.69 3.59 7.64 4.05 7.21

MP2 11.66 3.40 7.53 4.13 6.86

B3LYP 9.84 6.54 8.19 1.65 20.33

PBE 9.30 7.00 8.15 1.15 28.88

CuPPh3
+ HF 11.81 3.47 7.64 4.17 7.00

MP2 11.81 3.32 7.57 4.25 6.74

B3LYP 10.05 6.45 8.25 1.80 18.91

PBE 9.33 6.94 8.14 1.20 27.61
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Global properties

Using CDFT, the most stable species in a group of similar
complexes is the one with the greatest chemical hardness
(according to the principal of maximum hardness, PMH
[33, 42]). The global properties were obtained from Eqs. 1,
2 and 3, see Table 4. The chemical potential and hardness
are computed from ionization energy and electron affinity,
with those at the ab initio level (HF and MP2) better than
those at the DFT level (B3LYP and PBE). It is know that in
calculations with DFT the electronic density decays faster
than at the ab initio level [43]. This is manifested in the μ
and η values in Table 4. This effect is seen in all MPR3

+

fragments. Anyway, regardless of the fragment, the trend is
maintained. Also, this is obtained for the electrophilicity
index (ω) values.

When we analyze the first set of MPH3
+ fragments

CuPH3
+ is found as the hardest group. This behavior is the

most stable of the series regardless of the method. Then
either AgPH3

+ or NR-AuPH3
+ and finally QR-AuPH3

+

show the minimum chemical hardness, or in other words,
the softer fragment is predicted for AuPH3

+ when the
relativistic effects are described. This situation changes
when we use MPMe3

+ and MPPh3
+ fragments. The CuPR3

+

is still the hardest, the second is QR-AuPR3
+, followed by

AgPR3
+ and finally NR-AuPR3

+. As can be noted the size
of R groups alter the reactivity trends in MPR3

+ fragments
by decreasing η as the size increases.

Table 4 shows the global electrophilicity index (ω) of
the electrophile fragments. As Chattaraj and Roy have
described [40] "During an electrophile and nucleophile
interaction process, when two reactants approach each
other from a large distance, they feel only the effect of the
global electrophilicity of each other and not its local
counterpart. The molecule with the large ω value will act as
an electrophile, and the other will behave as the nucleophile”.
This effect is seen in the fragments analyzed, the most and
least electrophilic are predicted for QR-AuPR3

+ and NR-
AuPR3

+, respectively. This shows the importance of
relativistic effects in the reactivity indices based on the

Table 5 NBO analysis of the
MP2 density for MPH3

+,
MPMe3

+ and MPPh3
+

complexes(M=Au, Ag, Cu)

System Method M P R Natural electron configuration on metal

AuPH3
+ QR 0.4918 0.2507 0.0858 6S0.675 d 9.676p 0.045f0.096 d0.05

NR 0.8707 −0.0850 0.0714 6S0.155 d9.856p0.035f0.086 d0.047p0.01

AgPH3
+ QR 0.7910 −0.0282 0.0790 5S0.254 d 9.835p0.034f0.075 d0.055f0.01

CuPH3
+ QR 0.7559 0.0006 0.0801 4S0.303 d9.784p0.034 d0.135p0.014f0.02

AuPMe3
+ QR 0.2999 1.1881 −0.9501 6S0.895 d9.656p0.045f0.096 d0.05

NR 0.7889 0.7796 −0.9310 6S0.245 d9.836p0.035f0.096 d0.047p 0.01

AgPMe3
+ QR 0.6726 0.8642 −0.9335 5S0.384 d9.815p 0.034 0.075 d0.055f0.01

CuPMe3
+ QR 0.6445 0.8776 −0.9335 4S0.433 d9.764p0.034 d0.135p0.014f0.025f0.01

AuPPh3
+ QR 0.2523 1.3158 −0.4446 6S0.945 d9.646p 0.045f0.096 d 0.05

NR 0.8808 0.8816 −0.4400 6S0.145 d9.98

AgPPh3
+ QR 0.6650 0.9566 −0.4114 5S 0.394 d 9.815p 0.024f 0.075 d 0.055f 0.01

CuPPh3
+ QR 0.6452 0.9597 −0.4103 4S0.433 d 9.764p 0.034 d 0.135p 0.014f 0.025f 0.01

Table 6 Condensed Fukui
function on metal center (fM

+) Electrophile Method fM
+ (HF) fM

+ (MP2) fM
+ (B3LYP) fM

+ (PBE)

AuPH3
+ QR 0.7940 0.9094 0.9085 0.7588

NR 0.9799 0.9809 0.9224 0.9045

AgPH3
+ QR 0.9693 0.9694 0.8860 0.8626

CuPH3
+ QR 0.9774 0.9838 0.8913 0.8683

AuPMe3
+ QR 0.9699 0.9729 0.8827 0.8590

NR 0.8889 0.8883 0.7414 0.7061

AgPMe3
+ QR 0.9572 0.9604 0.8453 0.8157

CuPMe3
+ QR 0.9673 0.9635 0.8572 0.8295

AuPPh3
+ QR 0.9588 0.9706 0.8545 0.8240

NR 0.8634 0.8548 0.6816 0.6395

AgPPh3
+ QR 0.9428 0.9504 0.8096 0.7708

CuPPh3
+ QR 0.9558 0.9558 0.8154 0.7749
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B3LYPLUMO

8.66 eV

AuPH3
+ (NR)

7.75 eV

AgPH3
+

8.06 eV

CuPH3
+

8.04 eV

AuPH3
+

Fig. 3 The LUMO orbital of
MPH3

+ (M=Au, Ag, Cu)
models at the B3LYP levels

B3LYPLUMO

AuPMe3
+ AuPMe3

+(NR)

AgPMe3
+

7.46 eV

7.13 eV

6.97 eV

CuPMe3
+

7.07 eV

Fig. 4 The LUMO orbital of
MPMe3

+ (M=Au, Ag, Cu)
models at the B3LYP levels

2026 J Mol Model (2012) 18:2021–2029



conceptual DFT. CuPR3
+ and AgPR3

+ are in an intermedi-
ate position (see Fig. 2). On the other hand, the effect of the
R group is noticeable because when going from -H to –Ph
the ω values decrease. The Ph group linked to phosphorus
decreases the reactivity of all the fragments possibly
because the positive charge is more delocalized. In general,
the electrophilicity index also shows that the QR-Au
fragment is the most electrophilic among the systems
studied, indicating that it is a better electron acceptor.

When electronegativity is used as the negative of
chemical potential, in Table 4, we can seen that such

magnitude always increases in fragments of gold with
relativistic effects (QR) in comparison to the non-relativistic
(NR). The CuPR3

+ and AgPR3
+ are in an intermediate

position. The effect of the R group is noticeable because
when going from -H to –Ph the electronegativity values
decrease according to all fragments.

Local properties

In this section, the local properties centered on the metal of
the fragment are analyzed. In this sense, we have performed

Table 7 Local electrophilicity
index on the metal center (ω+).
The values are in eV

Electrophile Method ω+ (HF) ω+ (MP2) ω+ (B3LYP) ω+ (PBE)

AuPH3
+ QR 7.81 8.75 22.76 27.13

NR 8.73 8.59 18.56 23.82

AgPH3
+ QR 8.91 8.75 18.98 24.96

CuPH3
+ QR 8.93 8.80 19.37 28.32

AuPMe3
+ QR 8.06 7.61 18.16 24.46

NR 6.99 6.82 14.01 17.84

AgPMe3
+ QR 7.69 7.51 16.20 21.19

CuPMe3
+ QR 7.69 7.53 16.01 22.65

AuPPh3
+ QR 7.07 6.73 17.78 24.49

NR 6.18 5.34 13.53 17.66

AgPPh3
+ QR 6.80 6.52 16.46 22.26

CuPPh3
+ QR 6.69 6.44 15.42 21.39

B3LYPLUMO

AuPPh3
+

6.77 eV

AuPPh3
+ (NR)

6.46 eV

AgPPh3
+

6.54 eV

CuPPh3
+

6.45 eV

Fig. 5 The LUMO orbital of
MPPh3

+ (M=Au, Ag, Cu)
models at the B3LYP levels
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the natural bond orbital (NBO) population analysis by
different methods (HF, MP2, B3LYP and PBE), with
similar results. Table 5 shows a summary at the MP2
level. The initial addition of the PR3 ligand to M+

decreases the charge on the metal center, but even more
so for QR-Au. The relativistic effects have a strong
influence on the coordination of gold. For MPH3

+ frag-
ments similar results were obtained by Schwerdtfeger and
co-workers [13]. By going from PH3 to PMe3 to PPh3, the
charge on the metal center decreases and the charge on the
phosphorus atom increases in the same proportion. The
charge flow comes from phosphorus and goes toward both
the metal and R group. It is greater when the electrophile
is the QR-Au fragment, followed by Cu, Ag, and finally
NR-Au.

The local reactivity of electrophile fragments has been
studied using the local orbital nucleophilic Fukui function
on the metal center (fM

+). In all the fragments the highest
value for the nucleophilic Fukui function is expected at the
metal center. Low values are expected at the other atoms.
For clarity, we have not included the values of fk

+ for the
other atoms of each fragment. The results are summarized
in Table 6. For comparison, for all methods the same trend
is found: QR-Au>Cu>Ag>NR-Au with PMe3 and PPh3. If
PH3 is used, the values of QR-Au and NR-Au are similar.
We are using the approximate relationship for the nucleo-
philic Fukui function expressed in terms of the frontier
LUMO (ФLUMO), as: f+≈−ФLUMO|

2 [36]. Figures 3, 4, 5
show the LUMO level in the MPR3

+ fragments at the
B3LYP level. Similar results are obtained for the other
methods used in this work. Regardless of the fragment, the
stabilization of the LUMO energy follows the same trend:
QR-AuPR3

+>CuPR3
+≈AgPR3

+>NR-AuPR3
+.

On the other hand, the local electrophilicity index on the
metal (ωM

+) gives the final trend in Table 7. We can
emphasize that the global variation in the electrophilicity
index is modulated through the local variations being
mapped in the more reactive site, as indicated through the
Fukui function [39] using the ωM

+. This means that the
variation of the electrophilic power is directed to the sites
where the Fukui function for nucleophilic attacks is
important. For comparison, the same trend is found for all
methods and fragments: QR-Au>Cu≈Ag>NR-Au. This
behavior is shown in Fig. 2.

In a previous work, we studied the formation of
complexes of type [Pt3(μ-CO)3(PH3)3]-MPH3

+ [44]. The
energy of formation of the complex follows the Au>Cu>
Ag trend. Experimentally, the order of formation is the
same, Au>Cu>Ag, which indicates that gold is the most
stable complex with the [Pt3(μ-CO)3(PH3)3] nucleophile
cluster. The local reactivity of the electrophile fragments
(MPH3

+) is correlated with the interaction energy of
[Pt3(μ-CO)3(PH3)3]-MPH3

+.

Conclusions

According to the orbital Fukui and electrophilicity local
indices on the metal, reactivity in the [MPR3]

+ series
increases from NR-Au<Ag≈Cu<QR-Au. The effect of the
R group is noticeable since when going from -H to –Ph the
global and local indices decrease. The -Ph group does
decrease the reactivity of all the fragments. The local
electrophilicity index indicates that the QR-Au fragment is
the most electrophilic of the three, indicating that it is a
better electron acceptor. The results show the importance of
relativistic effects on the reliability of the reactivity indices
based on the conceptual DFT.
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Abstract Protein-protein interactions are abundant in sig-
nal transduction pathways and thus of crucial importance in
the regulation of apoptosis. However, designing small-
molecule inhibitors for these potential drug targets is very
challenging as such proteins often lack well-defined
binding pockets. An example for such an interaction is the
binding of the anti-apoptotic BIR2 domain of XIAP to the
pro-apoptotic caspase-3 that results in the survival of
damaged cells. Although small-molecule inhibitors of this
interaction have been identified, their exact binding sites on
XIAP are not known as its crystal structures reveal no
suitable pockets. Here, we apply our previously developed
protocol for identifying transient binding pockets to XIAP-
BIR2. Transient pockets were identified in snapshots taken
during four different molecular dynamics simulations that
started from the caspase-3:BIR2 complex or from the
unbound BIR2 structure and used water or methanol as
solvent. Clustering of these pockets revealed that surpris-

ingly many pockets opened in the flexible linker region that
is involved in caspase-3 binding. We docked three known
inhibitors into these transient pockets and so determined
five putative binding sites. In addition, by docking two
inactive compounds of the same series, we show that this
protocol is also able to distinguish between binders and
nonbinders which was not possible when docking to the
crystal structures. These findings represent a first step
toward the understanding of the binding of small-molecule
XIAP-BIR2 inhibitors on a molecular level and further
highlight the importance of considering protein flexibility
when designing small-molecule protein-protein interaction
inhibitors.

Keywords Apoptosis . Docking . Inhibitors . Molecular
dynamics simulation . Pocket detection . Protein-protein
interaction . Transient pockets

Introduction

Apoptosis is a process that enables multi-cellular organisms
to preserve their viability by selectively inducing the death
of damaged cells. The decision whether a cell divides or
undergoes apoptosis is controlled by cell signals that may
originate either on the cell inside (intrinsic inducer) or
outside (extrinsic inducer). However, in many diseases like
cancer, the cell’s inherent capability to kill itself is disturbed
and the damaged cell proliferates in an uncontrolled way.
Thus, a promising therapeutic strategy is modulating the
involved signal transduction to activate the apoptosis
pathway. The challenge in this approach is that signal
transduction pathways mainly involve interactions between
proteins and such drug targets are commonly considered as
“high-hanging fruits” [1].
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Inhibitors of Apoptosis proteins (IAPs) are endogenous
caspase inhibitors [2, 3] that share a conserved structure,
the BIR domain [4]. As caspases are responsible for
apoptosis, their inhibition leads to the survival of damaged
cells and, thus, to tumor proliferation [5, 6]. Not surpris-
ingly, some IAP family proteins are commonly overex-
pressed in human cancers [7] and are therefore important
drug targets. X-chromosome linked inhibitor of apoptosis
(XIAP) is the best-characterized member of the IAP family.
It is composed of three BIR domains (called BIR1 to BIR3)
and a RING zinc-finger motif. BIR2 and the linker region
connecting BIR2 to BIR1 bind and inhibit caspase-3 and -7,
while BIR3 suppresses caspase-9 [8, 9]. The activity of
XIAP is regulated by inhibitory proteins like Smac that
disrupt XIAP-caspase complexes and thus reconstitute
caspase activity [10]. While the molecular details of the
interactions with caspase-3 [11], -7 [12], and -9 [13], as
well as the interaction of the BIR3 domain with Smac [14,
15] have been resolved, it is still unclear whether Smac also
binds to the BIR2 domain.

The interaction between Smac and XIAP-BIR3 has been
used as a template to design small-molecules inhibiting
caspase-9 binding. The X-ray structures of XIAP-BIR3
complexed with these compounds confirm that they bind
into the Smac pocket [16–20]. Likewise, several classes of
small-molecule compounds have been identified that
selectively target the interaction between XIAP-BIR2 and
caspase-3 [21–23], but in contrast to the XIAP-BIR3
antagonists, the structural basis for this inhibition is not
yet revealed. The X-ray structure of the BIR2 - caspase-3
complex [11] shown in Fig. 1 and site-directed mutagenesis
studies [24] reveal that the interaction interface involves
mainly the linker region (residues 124-168) of BIR2 and
that the XIAP residues Leu140, Leu141, Val146, Asp148,

Ile149, Ile153, Tyr154, Arg156, Phe228, and Arg233
essentially contribute to the interaction. Other publications
[21, 23] reported a series of polyphenylurea-based com-
pounds and studied their mechanism of action using
biochemical, molecular biological, and genetic methods.
Since the inhibitors did not compete with Smac, it was
hypothesized that they bind to the linker region. However,
the exact binding site and mode was unknown. Moreover,
the NMR structure of unbound XIAP-BIR2 reveals that the
linker region is highly flexible [25]. This impeded
structure-based drug design attempts using the apo NMR
structure or the X-ray structure of the XIAP-BIR2 -
caspase-3 complex.

We have previously presented a computational protocol
for identifying transient pockets that is able to provide
starting points for structure-based drug design especially for
such challenging systems [26, 27]. For the three protein
systems MDM2, BCL-XL, and interleukin-2 (IL-2), we
found that large pockets not detectable in the apo crystal/
NMR structures opened frequently on the protein surfaces
during standard molecular dynamics (MD) simulations of
10 nanoseconds length at room temperature. At the native
binding site, pockets of similar size as with a known
inhibitor bound could indeed be observed for all three
systems. Docking known inhibitors with AutoDock3 [28]
into these transient pockets resulted in docking results with
smaller than 2Å root mean square deviation (RMSD) from
the crystal structures.

In a subsequent study, we could show that, when the
water solvent was replaced by methanol, the transient
pockets opening in the MD simulations tended to be larger
and less polar [27]. Moreover, the docking results improved
significantly for two of the three systems. In a subsequent
study, the pocket detection protocol was applied to the

Fig. 1 The interaction between
XIAP-BIR2 (shown in gray
surface representation) and
caspase-3 (shown as cartoon,
the main interacting caspase is
colored green, a second caspase
mainly interacting with a second
XIAP is colored beige) as
revealed by the complex crystal
structure 1I3O [20]. The
caspase-3 residues involved in
the interaction are shown as
sticks and those of XIAP-XIR2
are labeled and colored by
element
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adrenodoxine protein for which polyamine binding was
measured experimentally, but the binding sites were
unknown. By docking the polyamines into the predicted
transient pockets we were able to suggest favorable binding
sites that were validated by site-directed mutagenesis
studies [29]. It is a justified concern that incorporating
protein flexibility may result in a lack of specificity and
increase the number of false positive binders. However,
Carlson and co-workers showed that this is not the case with
the related multiple protein structures (MPS) approach that
uses multiple protein conformations either taken from MD
simulations or X-ray structures for building pharmacophore
models to identify inhibitors over non-inhibitors [30, 31].

By comparing the binding energies for a dataset of
residues from heterodimeric protein-protein interfaces using
alanine scanning it turned out that only a fraction of
residues named hot-spots account for the majority of the
binding energy [32, 33]. Hot-spot residues are generally
located in the tightly packed interior of interfaces where
they are excluded from solvent. Several methods were
developed for predicting hot spots from structural informa-
tion using energy-based calculations [34–39]. Some of
these achieve accuracies of up to 70 percent for the
prediction of hot spot residues [39].

The goal of this work was to explore the putative
interaction of small-molecule XIAP inhibitors with the
BIR2 domain. In particular we address the following two
questions: (1) Is the pocket detection protocol able to
distinguish between binders and non-binders? (2) Where (in
the linker region) do the known inhibitors bind? This study
is based on the assumption that the experimentally
identified polyphenylurea-based compounds bind to the
region connecting the BIR1 and BIR2 domain where they
would directly affect its ability to bind caspase-3 simulta-
neously. The other possible alternative where the poly-
phenylurea-based compounds would act as allosteric
inhibitors appeared less likely. Thus, we used our pocket
detection protocol for suggesting reasonable binding sites
located within this region for the three previously published
potent inhibitors, 1396-11, 1396-34, and 1540-14 [21–23],
here referred to as A1, A2, and A3, respectively. The
concern mentioned before about the possible loss of
specificity by incorporating protein flexibility was met by
also including in this study the inactive compounds 1540-
20 (I1) [23] and 1396-28 (I2) [21]. The chemical structures
of the five compounds are depicted in Fig. 2.

In order to ensure a thorough sampling of the pocket
space, four different conformational ensembles were gener-
ated: XIAP-BIR2 was simulated in water as well as in
methanol and two different starting structures were used
namely the unbound NMR structure [25]), or XIAP-BIR2
extracted from the X-ray structure of its complex with
caspase-3 [11].

Materials and methods

Parameterization of the Cys3His-Zinc finger

The force field parameterization of the Cys3His-Zinc finger
unit was based on the energy minimized average NMR
structure of the unbound XIAP-BIR2 (PDB ID 1C9Q [25])
as well as on the X-ray structure of XIAP-BIR2 bound to
caspase-3 (PDB ID 1I3O [11], chain E). Geometry
optimizations were performed using NWChem 4.7 [40]
whereby the ligating cysteines were modeled as CH3S

- and
the histidine as imidazole. Thus, the resulting system
contained 24 atoms and had a total charge of -1e. The
geometries were optimized without constraints by the
density functional theory (DFT) module using the B3LYP
exchange-correlation functional [41] and the 6-31G* basis
set. The number of iterations was set to 500 and the default
convergence criteria were used for the optimization. The
optimized geometry was then used for calculating the
restrained electrostatic potential fit (RESP) charges [42]
using the Hartree Fock (HF) method with the same basis
set. Both input geometries converged to almost identical
minimum energies with an RMSD of 0.8Å on the heavy
atoms and the calculated RESP charges differed by at most
0.018 e. As the optimized geometry based on the X-ray
structure was closer to the conformation in either experi-
mental structures than the one based on the NMR structure
(0.7 and 0.6Å instead of 0.8 and 0.9Å), the former was
used for the parameterization of the Cys3His-Zinc finger in
the OPLS-all atom force field [43].

The RESP charges obtained from the HF calculation
(listed in Table S1, Supplementary material) were used for
Coulombic interactions and the van-der-Waals parameters
for the zinc ion were taken from [44]. The interactions
between the Cys:Sγ or the His:Nε2 and the Zn2+ were
modeled as bonded interactions and the equilibrium values
for the respective bond lengths, angles, and dihedrals were
taken from the optimized geometry. The force constants
were assigned in analogy to similar groups in the OPLS
force field.

Molecular dynamics simulations

Molecular dynamics (MD) simulations in water and in
methanol were performed starting from the X-ray structure
1I3O and the NMR structure 1C9Q. All MD simulations,
energy minimizations, and analysis were performed with the
Gromacs 3.3.1 package [45]. The proteins were parameter-
ized using the OPLS-AA force field [43] and placed in cubic
boxes filled with TIP4P water [46] or methanol (using
parameters from the OPLS-AA force field). The box
dimensions were 90 and 99Å. Periodic boundary conditions
were applied. The system was then relaxed by 500 steps of
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steepest-descent energy minimization while keeping the
positions of the heavy protein atoms harmonically restrained
(force constant of 2.39 kcal·mol-1·Å-2). Two sodium counter
ions were added to ensure a net neutral charge of the systems
and the pre-equilibrating run was repeated. For the simula-
tion in water, the equilibration continued during a 100 ps
simulation with harmonical restraints on the heavy atoms in
the NPT ensemble at a temperature of 300 K. For the
simulation in methanol, the equilibration was extended to
500 ps followed by a 1 ns MD run in which all restraints
were removed. Thereafter, simulation snapshots were col-
lected during a subsequent 10 ns simulation and saved every
2.5 ps. Electrostatic interactions beyond the short-range cut-
off of 9Å were treated by the particle-mesh-Ewald method
[47] and Van der Waals interactions were computed within a
9Å cut-off. Temperature and pressure were kept constant at
standard conditions (105 Pa, 300 K) by weak coupling to a
temperature and pressure bath [48] with coupling constants
of 0.1 ps for the temperature coupling and 1 ps for the
pressure coupling. Protein, solvent, and counter ions were
coupled to separate baths. The LINCS procedure [49] was
used to constrain all covalent bonds.

Detection of transient pockets

The MD simulations yielded four conformational ensem-
bles, each consisting of 4001 snapshots. Additionally, we
included the experimental structures in the pocket detection
step. The ensembles of pockets were identified with our in-

house program EPOSBP as described in [27] that is freely
available at http://gepard.bioinformatik.uni-saarland.de/
software/epos-bp. In that software, pockets are detected
with an implementation of the PASS algorithm [50] with the
BALL library. In the clustering step we reduced the
similarity threshold defining two pockets as states of the
same transient pocket from 85% to 75%.

Docking into transient pockets found in MD snapshots

The ligands were set as neutral and Gasteiger atom charges
[51] as calculated by molecular operating environment
(MOE), version 2007 were assigned. Rotatable bonds were
defined using AutoTors. The number of flexible torsions
was 16 for A1, 13 for A2, 12 for A3 and I1, and 18 for I2.

For preparing the MD snapshots for the docking with
AutoDock3, the nonpolar hydrogen atoms of the MD
snapshots were removed and Kollman united-atom partial
charges and solvation parameters were assigned using the
AutoDockTools modules (ADT 1.4.6) of the Python
Molecular Viewer software [52]. The pockets detected in
the individual MD snapshots were used to define the
putative binding region for which grid maps were calculated
with AutoGrid3. The center of the pocket was used as center
and the grid dimensions were set to 26.25Å×26.25Å×26.25
Å allowing the ligands to place only a terminal moiety into the
transient pocket.

For the docking procedure, the standard Lamarckian
genetic algorithm protocol was used with an initial

Fig. 2 The three active ((a) – (c)) and the two inactive ((d), (e)) compounds used in this study
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population of 150 randomly placed individuals, a maximum
number of 2,500,000 energy evaluations, a mutation rate of
0.02, a crossover rate of 0.80, and an elitism value of 1. The
probability of performing a local search on an individual
was set to 0.06, and the maximum number of consecutive
successes or failures before doubling or halving the local
search step size was 4. The Solis and Wets algorithm [53]
was applied for these local searches with a maximum of
300 iterations. Twenty independent docking runs were
carried out for each MD snapshot.

The best docking poses were then docked again with
AutoDock4.2 [54]. For this purpose, the ligand files were
converted into AutoDock4 format. As before, the MD
snapshots were prepared for the docking with AutoDock4.2
with AutoDockTools. Gasteiger atom charges and Auto-
Dock4 atom types were assigned and nonpolar hydrogens
were removed. As this docking step was used for refining
the docking poses predicted by AutoDock3, the center of
the ligand pose obtained from AutoDock3 was used to
define the center of the grid calculated by AutoGrid4.2. The
grid dimensions were set to 15Å×15Å×15Å. For the
AutoDock4.2 runs the standard Lamarckian genetic algo-
rithm protocol was used with the same parameters and ten
independent docking runs were carried out for each docking
pose.

Clustering of the docking poses

For each ligand, the docking poses were ranked by their
predicted binding free energy and the best 10% of the ranks
were selected for clustering. Note that by picking the best
10% of the ranks, the number of selected docking poses
differs among the ligands as those poses having the same
predicted binding free energy also have the same rank.

The similarities of the docking poses for the five
different ligands were calculated by comparing the heavy
protein atoms (pose lining atoms, PLA) found within 5Å of
the docked ligand. These similarities were then used as
input for a single linkage clustering where clusters of
docking poses A and B were merged, if

min PLAðaÞ \ PLAðbÞj j : a 2 A; b 2 Bf g � 30: ð1Þ

Results

Stability of XIAP-BIR2 during the MD simulations
in water and methanol

The molecular dynamics simulations of XIAP-BIR2
revealed that the Zinc finger motif remained very close to
its optimized geometry and, thus, did not distort the overall

protein structure. The core of the protein underwent only
minor conformational changes during the simulations in
water (Fig. S1, Supplementary material) as reflected by the
relatively small RMS deviation of the protein backbone
from the starting structure of about 1.5Å. Slightly larger
structural transitions with a RMSD of 2.0 – 2.5Å were
observed when methanol was used as solvent. Still, these
values compare well to typical RMSD values observed in
other MD simulations on stably folded proteins. We note
that although the XIAP-BIR2 protein may not be stably
folded when studied experimentally in methanol, it is
extremely unlikely to observe such unfolding events during
relatively short MD simulations at room temperature. As
expected, the N-terminal linker region as well as the C-
terminus was quite mobile (Fig. S2, Supplementary
material). In both simulation setups, the protein conforma-
tion taken from the complex X-ray structure showed
slightly smaller RMS deviations from the starting confor-
mation than the one taken from the NMR structure.

Overall, the secondary structure remained stable through-
out the simulation. Solely the third β-sheet between residues
205 and 207 partly unfolded in three of the four different MD
simulations (Fig. S3, Supplementary material).

Detection of transient pockets

Our protocol identified 32 transient pockets (after removal
of pockets detected in only one MD snapshot) that are
spread over the whole protein surface. However, as
structural studies suggested that caspase-3 mainly interacts
with the linker region of XIAP-BIR2 (residues 124-168)
[24], we focused our analysis on the pockets involving
these residues. Indeed, a surprisingly high number of 45%
of all pockets involved the residues of the linker region.
They are listed in Table 1 (for an overview of all transient
pockets see Table S2, Supplementary material). These
pockets are all overlapping but were not assigned to the
same cluster because their lining protein atoms vary more
than the given threshold depending on the MD simulation
setup. Note that even transient pockets assigned to the same
cluster substantially differ in their frequencies and volume.
This highlights the influence of the starting structure and
the used solvent on the pocket openings as discussed in a
previous study [27] and further suggests that these pockets
are highly mobile and adaptable. From our previous
experience on the BCL-XL, IL-2, and MDM2 systems,
individual snapshots with pocket volumes larger than 200
Å3 appear promising candidates for docking studies. Thus,
all pockets located in the linker region (PIDs 0, 13-16, 18,
20, 23, 25-27, 29, 30, 32) having a pocket volume ≥200Å3

were selected as putative binding sites for the five ligands.
This resulted in the selection of 6,662 pockets from the four
different MD simulations (1,624 in the simulation that was
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started from the NMR structure in water, 137 from the
NMR structure in methanol, 418 from the X-ray structure in
water, and 4,483 from the X-ray structure in methanol).

Can the protocol for detecting transients pockets distinguish
between active and inactive compounds?

So far, we have only applied this protocol for predicting the
binding modes of known binders. However, in virtual
screening experiments the goal is to identify putatively
active compounds among a large number of putatively
inactive compounds. Therefore, a reliable discrimination
between binders and non-binders is crucial. In order to
explore whether this protocol predicts binding affinities that
are reliable enough for such an application, three active as
well as two inactive compounds were docked into the
transient pockets. Note that in this analysis it is difficult to
separate the quality of this protocol from that of the
docking program itself which calculates and scores the
binding poses. In order to estimate the impact of the pocket
detection protocol on the discrimination between binders
and non-binders, the docking scores and predicted binding
free energies obtained from docking into the X-ray or NMR
structure (Table 2) were compared to those obtained from
docking into the transient pockets (Table 3). Table 2 clearly
indicates that when using the X-ray or NMR structure as
receptor for docking, the docking score and the predicted
binding free energy do not allow inferring the activity of the
compounds. Although the most active compound A1
obtained the best docking score, the other two active

compounds were scored similar or worse than the inactive
ones. When focusing on the predicted binding free energy
alone, it is at least possible to classify one of the two
inactive compounds correctly.

Table 3 reveals that combining the pocket detection
protocol with the predicted binding free energy significantly
improves the discrimination between active and inactive
compounds. Here, the difference in the predicted binding free
energy between the “best” inactive compound with the
“worst” active compound is 1.05 kcal mol-1 and thus larger
than the difference observed among the three active
compounds (0.9 kcal mol-1). Moreover, this table also reveals
that when trying to discriminate between active and inactive
compounds, the predicted binding free energy outperforms
the docking score. Taken together, these results suggest that

Table 1 The mean properties and the frequencies of the transient pockets opening in the linker region that are detected in more than one snapshot
of the four MD simulations

Binding
Site (PID)

Residues NMR in methanol NMR in water X-ray in methanol X-ray in water

Freq.
[%]

Vol.
[Å3]

Freq.
[%]

Vol.
[Å3]

Freq.
[%]

Vol.
[Å3]

Freq.
[%]

Vol.
[Å3]

0 137, 138, 140, 141 0.87 199.2 35.5 495.0 1.4 264.3 0.3 172.2

13 151-153 1.8 182.4 18.0 367.0 18.0 221.6

14 132-136 2.3 201.7 30.2 194.5 2.8 140.9

15 127, 131, 134, 135 18.8 234.6 51.4 497.9 0.1 134.8

16 148, 151, 228, 233-235 21.3 453.8 65.7 353.1 21.2 183.8

18 153-155, 157, 158, 161 6.3 282.8 7.8 338.3 2.2 211.6

20 141-147 6.4 182.8 20

23 128, 136, 139, 140, 143, 145 5.4 150.4

25 129, 131, 133-135, 138, 141, 142 52.3 237.0

26 145-149, 151-157 27.3 218.2

27 161-163, 166, 186, 201, 229, 233-235 90.0 279.7

29 124-127, 131, 134, 135, 137, 141, 145, 4.8 300.6

30 141, 146, 148, 151, 233 23.4 290.2

32 161-163, 166, 201, 229, 232-235 78.4 281.2

Table 2 Comparison between the best docking scores and ΔGbinding

per ligand obtained from docking into the X-ray and NMR structure
with AutoDock3

X-ray structure NMR structure

Best docking
score
[kcal/mol]

Best
ΔGbinding

[kcal/mol]

Best docking
score
[kcal/mol]

Best
ΔGbinding

[kcal/mol]

A1 −14.46 −7.05 −14.77 −6.94
A2 −11.21 −5.05 −12.52 −6.26
A3 −10.93 −6.03 −11.74 −7.08
I1 −12.57 −6.52 −13.14 −7.02
I2 −11.47 −2.46 −14.18 −4.75
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more reliable binding affinities can be predicted when
dynamic properties of the binding site (like the existence of
transient pockets into which moieties of the ligands can bind)
are combined with predicted binding free energies.

Favorable binding sites

Table 3 indicates that the best predicted binding free
energy is the most reliable parameter for distinguishing
between active and inactive compounds. Therefore, this
measure was used as the basis to suggest favorable
binding sites. When selecting the best 10% of docking
results with respect to the predicted binding free energy,
302 poses were kept for compound A1, 187 for A2, 191
for A3, 178 for I1, and 224 for I2. Interestingly, all these
docking results started from transient pockets either
detected in the MD snapshots of the simulation of the
NMR structure in water or from the simulation of the X-
ray structure in methanol. Clustering of these poses and
keeping only those clusters with at least 15 members
resulted in the 11 favorable binding sites listed in Table 4.

At each binding site, the inactive compounds have a worse
predicted binding free energy than the three actives. Note
that many binding sites involve almost the same residues
(for example binding sites 1, 4, 5, 7, 8, and 11) but not the
same atoms. This subdivision of very similar binding sites
emphasizes that the docking pose clustering is very
sensitive toward different conformational substates of the
protein.

All docking poses listed in Table 4 were subsequently
refined by re-docking them with the AutoDock4.2 program.
This new version of AutoDock incorporates a new charge-
based desolvation method [54]. As all binding pockets
considered in this study are relatively flat and solvent
exposed, the resulting docking poses and binding free
energies from AutoDock4.2 are expected to be more
accurate than those from AutoDock3. In this setup, the
ligands were restrained to the same binding site by using
smaller grid dimensions. As before, the best 10% of
docking poses with respect to the predicted binding free
energy were chosen and clustered. The results are compiled
in Table 5. The clustering yielded five overlapping binding
sites. Although the distinction between active and inactive
compounds in each individual binding site is not as clear as
with AutoDock3, the best predicted binding free energies
per compound allow a reliable identification of the three
binders with an energy difference of 1.05 kcal mol-1

between the “worst” active and the “best” inactive.
Moreover, the refined binding energies per binding site
listed in Table 5 suggest that compounds A1 and A3 prefer
the same binding site. Considering that A3 is structurally
more similar to A2 than to A1, this observation may be
surprising. However, one should keep in mind that the
clustering of the binding sites is based on the similarity of
the heavy protein atoms found within a certain distance of

Table 3 Comparison between the mean and best docking scores and
ΔGbinding per ligand obtained when docking into the MD snapshots
with AutoDock3

Mean docking
score
[kcal/mol]

Best docking
score
[kcal/mol]

Mean
ΔGbinding

[kcal/mol]

Best
ΔGbinding

[kcal/mol]

A1 −12.83±1.58 −19.59 −4.92±1.83 −12.65
A2 −11.69±1.28 −17.85 −5.64±1.45 −11.85
A3 −10.60±1.19 −16.31 −6.33±1.35 −11.75
I1 −11.06±1.12 −16.29 −5.09±1.25 −10.70
I2 −11.58±1.51 −18.71 −2.64±1.67 −10.16

Table 4 The most favorable binding sites for the five compounds as
predicted by docking them with AutoDock3 into the transient pockets,
selecting the best 10% of docking poses (w.r.t. binding free energy)
and clustering them based on the protein atoms located within 5Å

from any heavy ligand atom. Shown are the best binding free energies
per binding site and compound in (kcal mol-1). The most favorable
binding free energies per ligand are highlighted

Binding site /no. of poses Residues A1 A2 A3 I1 I2

1 (18) 148, 152, 228, 231, 234, 235, 236 −12.65 −10.37 −10.41 −8.93 −7.84
2 (178) 125, 126, 129, 131, 140, 141, 145, 146, 236 −11.52 −11.46 −11.75 −10.34 −10.16
3 (234) 147, 148, 225-227, 232-234 −12.05 −11.00 −11.68 −10.70 −9.66
4 (261) 147, 148, 151-153, 228, 231, 234-237 −12.02 −11.85 −11.22 −10.01 −9.12
5 (56) 148, 151, 228, 231, 234-237 −11.48 −10.79 −11.56 −9.35 −8.71
6 (51) 148, 226, 232-234 −11.32 −10.63 −10.97 −9.86 −8.08
7 (30) 148, 151, 228, 231, 234-236 −10.85 −10.20 −10.56 −9.18 −9.75
8 (22) 148, 151, 152, 228, 234-236 −10.90 −11.04 −11.14 −8.69 −7.83
9 (19) 226, 232-234 −10.92 −10.64 −10.81 −9.46 −8.26
10 (68) 126, 129-131, 140, 141, 146, 236, 237 −11.32 −11.20 −11.21 −9.83 −9.03
11 (15) 148, 151, 152, 228, 231, 234-236 −10.61 −11.69 −10.33 −9.74 −7.42
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the predicted binding pose and, thus, does not consider
individual protein conformations or ligand orientations
explicitly. The suggested binding modes of all five com-
pounds in binding sites 1 to 3 are shown in Fig. 3.

For comparison, we also used the hotspot prediction
server HOTPOINT [39] on the complex structure 1I3O
using default parameters. Within a few seconds HOT-
POINT predicted residues M176, H237, and L141 at the
interface between chains A and E as hotspot residues and
residues M176 and H237 at the interface between chains C
and F. Of these, residue L141 belongs to the XIAP protein
and the two other residues belong to Caspase3. Residue
L141 belongs to the best binding pockets 1 and 5 in
Table 5, but not to the other binding pockets. This
emphasizes the nature of the expensive molecular dynamics
simulations that yield a much more detailed view of the
shape modularity of this highly flexible system. We suggest
that hotspot predictions may be more useful for character-
izing essential binding residues at preformed binding
pockets.

Discussion

In this work, the ability of the transient pocket
detection protocol to distinguish between active and
inactive compounds was explored. Comparing the
AutoDock3 docking scores and predicted binding free
energies for the known binders and nonbinders identi-
fied the predicted binding free energy as a more
reliable indicator. The docking score is calculated as
the sum of the intermolecular interaction energy and the
intramolecular ligand energy. The predicted binding free
energy, on the other hand, also takes the approximated
entropy loss into account. It is calculated as the sum of
the intermolecular interaction energy and the weighted
number of flexible ligand torsions. Although this
disregards the impact of highly strained ligand con-
formations, it emphasizes the influence of the entropic
contribution. This may be particularly relevant for the
set of floppy, extended ligands studied here. Admittedly,

the number of known binding and non-binding mole-
cules is very small, so that the energy difference
separating the two classes is not statistically significant
yet. Another limitation of this study is that MD
simulations of 10 ns length clearly cannot sample the
entire conformational ensemble accessible to this extremely
floppy linker region. However, the results suggest that
MD simulations of this length are well able to generate
a large number of suitable binding conformations that
may be representative for many of the alternative
binding modes of the five ligands if they were to bind
to the XIAP-BIR2 domain in the assumed region.

A further interesting, though not unexpected, observa-
tion is that the best predicted binding free energies
outperform the mean binding free energies per ligand listed
in Table 3. If the dominance of a certain protein
conformation was a prerequisite for ligand binding, one
can expect the prediction power of the mean predicted
binding free energies to be much better. Our findings for the
XIAP system are thus in accordance with the conforma-
tional selection model of ligand binding [55]. This model
implies that a protein in the unbound state exists in a
myriad of different conformations. Although the unbound
state is predominant, a small percentage of conformations
also exist resembling the bound state. A ligand can then
selectively bind to such a conformation and even though
this conformation will be of higher energy when consider-
ing the protein alone, the binding event shifts the
equilibrium toward the bound state in which the ligand
bound conformation then becomes predominant. In the
context of our pocket detection protocol, this underpins that
pockets opening less frequently are not necessarily non-
binding pockets. Or analogously, when docking multiple
ligands into multiple protein conformations, the ligand with
the best mean score is not necessarily the most active one.

However, one should always keep in mind that the
predicted binding free energies or docking scores are very
error-prone. For example, the authors of a publication
describing the testing of AutoDock4 [56] stated that the
method has a standard error of about 2-3 kcal mol-1 in
predicting binding free energies. They further mentioned

Table 5 The most favorable binding sites for the five compounds as
predicted by re-docking them with AutoDock4.2 to the positions of
the docking poses listed in Table 4. Shown are the best binding free

energies per binding site and compound in (kcal mol-1). The most
favorable binding free energies per ligand are highlighted

Binding site/ no. of poses Residues A1 A2 A3 I1 I2

1 (95) 125, 126, 129-131, 140, 141, 145, 146, 236, 237 −10.54 −10.29 −10.48 −8.51 −9.20
2 (92) 147, 148, 151-153, 228, 231, 234-237 −10.22 −10.56 −9.16 −8.79 −9.43
3 (120) 151, 228, 231, 234-237 −9.55 −10.40 −10.03 −8.84 −8.79
4 (43) 147, 148, 225-227, 232-234 −10.37 −10.02 −9.49 −8.06 −8.17
5 (15) 125, 126, 129-131, 140, 141, 145, 146, 236 −8.95 −9.73 −9.21 −8.64 −8.8
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that AutoDock4 successfully re-docked complexes with ten
or fewer flexible torsions while re-docking failed for most

ligands of higher flexibility and re-docking the same
complexes with AutoDock3 performed even a bit worse.

Fig. 3 The best scored binding modes of the five ligands in binding sites
1 to 3 as listed in Table 5: (a) ligand A1 in binding site 1, (b) ligand A2
in binding site 1, (c) ligand A3 in binding site 1, (d) ligand I1 in binding
site 1, (e) ligand I2 in binding site 1, (f) ligand A1 in binding site 2, (g)

ligand A2 in binding site 2, (h) ligand A3 in binding site 2, (i) ligand I1
in binding site 2, (j) ligand I2 in binding site 2, (k) ligand A1 in binding
site 3, (l) ligand A2 in binding site 3, (m) ligand A3 in binding site 3,
(n) ligand I1 in binding site 3, (o) ligand I2 in binding site 3
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Considering that the number of flexible torsions of the
ligands docked in this study was between 13 and 18, the
binding modes presented in this study have to be regarded
as what they are: suggested binding poses. This is also the
reason why we are rather focusing on binding sites than on
binding modes. From this point of view, it is encouraging
that refining the clustered AutoDock3 docking poses by re-
docking them with AutoDock4 and clustering the best
results reduced the number of favorable binding sites from
11 to 5. The predicted binding free energies yet suggest that
binding sites 1 to 3 (Table 5) are the most likely binding
sites for the five ligands tested in this study. One could
argue that binding site 1 is the most reasonable binding site
because the predicted binding free energies allow for a clear
discrimination between the three binders and the two
nonbinders. But on the other hand, Table 5 suggests that
the preferred binding site may differ for the investigated
ligands and the nonbinders can only be winnowed from the
binders by focusing on their largest predicted binding free

energies regardless of the binding site. However, to arrive at
a reliable conclusion, one would have to investigate a larger
number of known active and inactive compounds using the
protocol.

To our knowledge, this is the first publication
reporting a MD simulation of the BIR2 domain of
XIAP. Obiol-Pardo et al. also used MD simulations for
analyzing the protein-protein interactions appearing in the
Smac/Diablo – XIAP complex but they only studied the
BIR3 domain [57]. They used the cationic dummy
approach [58] for maintaining the tetrahedral coordination
of the zinc ion during the simulation while in our
simulation, the tetrahedral coordination was preserved
through bonded interactions with equilibrium values for
angles, dihedrals, and bond lengths taken from a opti-
mized geometry. Their reported average simulation dis-
tances of the zinc ion to the coordinating Cys:Sγ and the
His:Nε2 atoms are in the same order of magnitude as in
our simulations (data not shown).

Fig. 3 (continued)
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Conclusions

In this work, the putative binding sites of previously reported
small-molecule XIAP-BIR2 inhibitors were explored using
the transient pocket detection protocol. A surprisingly large
number of small pockets opened in the linker region during
molecular dynamics simulation in water and inmethanol. This
does not only highlight the flexibility of the domain but also
the sensitivity of the pocket detection protocol toward
different conformational substates of the protein. The detected
cavities were rather small in volume suggesting that the
binding site is composed of multiple subpockets that
accommodate different parts of the large ligands. When
disregarding these transient (sub)pockets and docking into
the X-ray or NMR structures of the BIR2 domain, it was
impossible to distinguish between binders and nonbinders. In
contrast, the three binders could successfully be identified
when docking into transient pockets detected by the protocol
when the best calculated binding free energy was considered.
Furthermore, clustering the most favorable binding modes
resulted in five putative binding sites. To the best of our
knowledge, this is the first MD simulation study of the BIR2
domain of XIAP. Although this study was conducted with a
small set of active and inactive XIAP inhibitors, this work
represents a first step toward understanding at the molecular
level the mode of action of protein-protein interaction
inhibitors targeting the XIAP-BIR2 domain.
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Abstract Exploring and evaluating the potential applica-
tions of two-dimensional graphene is an increasingly hot
topic in graphene research. In this paper, by studying the
adsorption of NO, N2O, and NO2 on pristine and silicon
(Si)-doped graphene with density functional theory methods,
we evaluated the possibility of using Si-doped graphene as a
candidate to detect or reduce harmful nitrogen oxides. The
results indicate that, while adsorption of the three molecules
on pristine graphene is very weak, Si-doping enhances the
interaction of these molecules with graphene sheet in various
ways: (1) two NO molecules can be adsorbed on Si-doped
graphene in a paired arrangement, while up to four NO2

molecules attach to the doped graphene with an average
adsorption energy of −0.329 eV; (2) the N2O molecule can
be reduced easily to the N2 molecule, leaving an O-atom on
the Si-doped graphene. Moreover, we find that adsorption of
NO and NO2 leads to large changes in the electronic
properties of Si-doped graphene. On the basis of these
results, Si-doped graphene can be expected to be a good
sensor for NO and NO2 detection, as well as a metal-free
catalyst for N2O reduction.

Keywords Graphene . Nitride oxides . Density functional
theory

Introduction

Since its discovery in 2004 [1], graphene—a rapidly rising
star on the horizon of materials science and technology—has
attracted tremendous attention and holds great promise in
various fields [2–14]. Especially in gas detecting or sensing
[8, 9], the emergence of graphene has opened new avenues
for utilizing two-dimensional planer carbon materials as
solid-state sensors due to excellent properties such fewer
crystal defects [5, 15, 16], and their semimetallic nature (low
Johnson noise) [5, 15–17]. Graphene can act as a single
atomic layer, which can maximize its interaction with
adsorbate. Recently, mechanically exfoliated graphene sheets
and reduced graphene oxide (GO) have been shown to
exhibit high sensitivity towards some gas molecules, such as
NO2, NH3, H2O, and CO [8, 18]. The gas sensing
mechanism is based on changes in the electrical conductivity
of graphene due to charge transfer between graphene and the
adsorbate. Other studies, however, have shown that the
above molecules can only be “physisorbed” on pristine
graphene [19–21]. Many experimental and theoretical studies
have focused on improving the sensing performance of
graphene to various desired molecules by functionalizing or
doping graphenes [22–26]. For example, Ural [22] and
Ramaprabhu [23] reported independently that graphenes
functionalized with Pd and Pt nanoparticles become effective
H2 sensors, whereas Dai et al. [24]. demonstrated that B- and
S-doped graphene could be a good sensor for NO and NO2.
Additionally, Zhang et al. [25] suggested that the sensitivity
and selectivity of graphene-based sensors could be improved
greatly by introducing dopants or defects into graphenes.
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It is well known that nitrogen oxides, such as NO, N2O,
and NO2, are major components of air pollution, contributing
to acid rain formation, photochemical smog, and depletion of
the ozone layer [27–30]. The greatest anthropogenic source
of these pollutants is the combustion of solid and liquid fuel
sources, encompassing both static and portable applications.
Hence, monitoring of, or control of exposure to, nitrogen
oxides is of special interest in both industrial and residential
settings. We note that NO or NO2 adsorption on doped or
defective graphene has been investigated recently. However,
prior reports considered only an individual NO or NO2

molecule adsorbed on graphene [23, 24]. Several questions
remain to be addressed: (1) can N2O (a highly potent
greenhouse gas) be adsorbed on pristine or doped graphene?
(2) What would happen if more than one NO or NO2

molecule is attached to a graphene sheet? (3) What are
the effects of adsorption of nitrogen oxides on the
properties of graphene? To address these questions, this
study took Si-doped graphene—formed by its growth on
the (0001) surface of a 6H-SiC substrate [31]—as an
example to study the adsorption of NO, N2O, and NO2 on
Si-doped graphene using density functional theory (DFT)
calculations.

Computational details

We carried out all-electron ab initio DFT calculations using
the double numerical basis set with polarization function
(the DNP basis set), implemented in the DMol3 package
[32, 33]. The Perdew-Burke-Ernzerhof (PBE) functional
[34] within the generalized gradient approximation (GGA)
was chosen for the spin-unrestricted DFT calculations. The
GGA/PBE method used has also been employed success-
fully to study graphene systems in previous theoretical
studies, including their functionalization with various
functional groups [24, 35–40]. A tetragonal supercell with
dimension 17.22×17.22× 30 Å3 (seven periodic lengths of
graphene layer in both a and b directions) was chosen as
the benchmark model system, which consists of 98 carbon
atoms. The size of this employed supercell in this work is
large enough to completely avoid image interactions. For
geometry optimizations, the Brillouin zone was sampled by
2×2×1 special k-points using the Monkhorst-Pack scheme
[41], while a 15×15×1k-point was used to calculate the
electronic properties. The Hirshfeld method was adopted in
the present work. It should be pointed out that this method
is based on the deformation electron density, which is less

Fig. 1 Optimized geometrical
configurations of a NO, b N2O,
and c NO2 molecules adsorbed
on the pristine graphene. The
bond distances and angles are in
Ångstroms and degrees,
respectively
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sensitive to the chosen basis sets than Mulliken charge
analysis, although Hirshfeld charge analysis generally
underestimates atomic charges, according to many results
in the literature [42–48]. We did not consider correction for
basis set superposition error (BSSE) [49] to calculate the
adsorption energy because a recent study has proven that
the numerical basis sets implemented in Dmol3 can
minimize or even eliminate BSSE [50].

Results and discussion

NO, N2O, and NO2 adsorption on pristine graphene sheet

First, we study adsorption of NO, N2O, and NO2 on pristine
graphene sheet. The three molecules were placed initially on
various sites on the graphene sheet (e.g., on-top of a carbon
site, the center of a hexagonal ring, or a C–C bond) with
different orientations (adsorbed molecule perpendicular or
parallel to the graphene sheet). After geometrical optimiza-
tion, the most stable adsorption configurations of the three
molecules on pristine graphene are shown in Fig. 1a–c. The
calculated Eads values for NO, N2O, and NO2 on pristine
graphene are −0.061, −0.059, and −0.153 eV, respectively.
Moreover, the shortest distances between the three adsorbed
molecules and graphene sheet are 3.362, 3.570, and 3.615Å,
respectively. The small adsorption energies and long dis-
tances indicate the three molecules are only adsorbed
physically onto the sheet of pristine graphene, which is in
good agreement with Leenaerts’ study [20]. We should point
out that GGA in DFT is not capable of describing
physisorption, while local density approximation (LDA)
has been shown to be a reliable functional to study systems
involving van der Waals interactions [51–53] and can give an
adsorption energy much closer to the MP2 calculation [54–
56]. Thus, we also calculated adsorption energies of NO,
N2O, and NO2 on perfect graphene through LDA with the
Perdew-Wang (PWC) functional [57]. The results indicate
that the interactions of the three molecules with perfect
graphene are indeed weak, with adsorption energies of
−0.082 (for NO), −0.074 (for N2O), and −0.202 eV (for
NO2), respectively. The weak interaction is further confirmed
by the negligible charge transfer between pristine graphene
and these adsorbates (< 0.01 e), which is not enough to
change the electronic properties of the intrinsic graphene. In
other words, the intrinsic graphene is not sensitive to NO,
N2O, and NO2 molecules. Thus, from a theoretical point of
view, pristine graphene is not a suitable candidate for
detecting these three gases.

For doped graphene with one carbon atom substituted by
one silicon atom in a supercell, drastic changes in the
geometric structure of the graphene sheet have been
observed, as shown in Fig. 2a: the silicon atom preserves

its sp3 character and bonds with pyramidal-like configu-
rations, with bond angles close to 105°. The Si–C bond
length is 1.765Å, which is quite large compared to 1.420Å
for C–C sp2 bonds. The 24% increase in the bond length
combined with the difference in bond angles forces Si to
protrude from the graphene plane, also displacing the
positions of the first-, second-, and third-out-of-plane
neighbors. This can be explained as a corrugation induced
by the presence of the Si atom. Moreover, we also explored
the effects of Si-doping on the electronic properties of
graphene by analysis of the calculated band structures
(Fig. 2c). Compared to the electronic structure of perfect
graphene (Fig. 2b), the minimum of the conduction band
edge (CBM) of doped graphene is found to be shifted up
slightly, forming a small band gap of 0.054 eV (Fig. 2c).

Fig. 2 a Optimized geometrical structure of Si-doped graphene. Gray
and yellow balls represent carbon and silicon atoms, respectively.
Bond distances are in Ångstroms. b Band structure of the Si-doped
graphene. Red dotted lines denote Fermi levels. c Isosurface (isovalue
is 0.025 au) of the highest occupied molecular orbitals (HOMOs) of
Si-doped graphene. Blue and yellow regions denote positive and
negative sign of wave functions, respectively
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This is because silicon has four electrons in its valence
shell, but it binds with sp3 hybridization, following a
trigonal pyramidal coordination, thus creating a localized
state when bonded to a graphitic network, which would
have little effect on the semi-metallic character of the
graphene. This behavior of Si-doping of graphene is similar
to a recent report of phosphorus-doped graphene [58].
Additionally, it is known that the Si atom works as a donor
when incorporated into graphene. Therefore, the highest
occupied level (highest occupied molecular orbital, HOMO)
for Si-doped graphene is contributed mainly to the excess
electrons of the Si atom. This can be reflected by its HOMOs
(Fig. 2d): most states of the HOMOs are localized around the
dopant, indicating that the Si atom has much higher
reactivity than other atoms. Thus, the Si-dopant acts as the
active site for foreign adsorbates, as will be testified by the
following results.

NO, N2O, and NO2 adsorption on Si-doped graphene

In this section, we explore mainly the effects of Si-doping
on the adsorption of NO, N2O, and NO2 on graphene. The

most stable adsorption configurations of the three molecules
on Si-doped graphene are listed in Figs. 3, 4, 5, 6. We find
that interaction of the adsorbate with graphene is greatly
enhanced due to introduction of the Si-dopant into the
graphene sheet.

NO adsorption

Two stable configurations are obtained on an individual NO
molecule on Si-doped graphene, i.e., the Si-atom of Si-
doped graphene is close to the N- and O-atoms of NO,
respectively, as shown in Fig. 3 (labeled as configurations I
and II). The Eads values for configuration I (Fig. 3a) and II
(Fig. 3b) are −0.816 and −0.209 eV, respectively, which
are higher than that of intrinsic graphene (−0.061 eV).
Obviously, configuration I, in which the N-atom in NO is
bound to the Si-atom in graphene, is the most stable, and its
Eads increases by 0.755 eV, compared with the intrinsic
graphene system. This indicates that Si-doped graphene is
more sensitive to the NO molecule. Moreover, NO
adsorption causes a change in the geometrical structure of
Si-doped graphene, resulting in an expansion of the Si–C

Fig. 3 a, b Optimized struc-
tures of NO molecule adsorbed
onto Si-doped graphene: the
NO-graphene systems labeled
by configuration I (a) and II (b)
with the N and O atom of a NO
molecule close to the Si atom
of Si-doped graphene, respec-
tively. c Configuration of two
NO molecules on Si-doped
graphene. The gray, yellow, blue,
and red balls represent carbon,
silicon, nitrogen, and oxygen
atoms, respectively. Bond
distances and angles are in
Ångstroms and degrees,
respectively
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bond from 1.765Å to 1.781Å, while the N–O bond is
increased to 1.218Å from the isolated bond length of 1.164
Å. The distance between the adsorbed NO and Si-doped
graphene sheet is 1.894Å (Fig. 3a). Because the ground state
of Si-doped graphene is nonmagnetic, the net spin of
configuration I with an unpaired electron should originate
from the magnetism of the adsorbed NO molecule (Fig. S1).

On the basis of the adsorption of one NO molecule, we
further studied adsorption of a second NO on Si-doped

graphene. Three kinds of initial adsorption configurations
were considered, i.e., a second NO adsorbed on (1) the
C-atoms nearest to the Si-dopant, and (2) the O-, or (3)
N-atoms of the first NO molecule. Each initial configura-
tion was fully optimized. Adsorption of the second NO
onto Si-graphene of types (1) and (2) were found to be
unstable and to collapse to type (3), i.e., the N-atom of the
second NO is attached to the N-atom of the first NO with a
distance of 1.489Å (Fig. 3c). The Si–N distance is 1.835Å,

Fig. 4 a–d Optimized
structures of a single N2O
adsorbed on Si-doped graphene,
showing various adsorption
configurations. Bond distances
and angles in Ångstroms and
degrees, respectively
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which is smaller than that of adsorption of an individual
NO (1.894Å). The adsorption energy1 of two NO mole-
cules (−0.870 eV) is slightly larger than that of the first NO
(−0.816 eV), indicating that NO molecules prefer the pair
arrangement (or dimerization) on Si-doped graphene. This
can be attributed to the following: (1) the net spins of the
NO-Si-doped-graphene system and the isolated NO are
derived mainly from the contributions of their respective N
atoms (Fig. S1). Therefore, when a second NO molecule is
adsorbed on Si-doped graphene sheet at the position wehre
the first NO molecule is located, their net spins prefer to
couple spontaneously with each other. (2) The HOMO of
the Si-doped graphene functionalized by one NO molecule
(Fig. S2) locates mainly on the N-atom—possibly the most
reactive site of this whole system toward a second NO
molecule. This mechanism of NO dimerization on Si-doped
graphene is very similar to that of metal-based catalysts
reported by Sojka [59, 60], which have also been confirmed

experimentally by IR spectroscopy [61]. We also tried
adding more NO molecules to Si-doped graphene. The
results show that the structure is unstable and the third NO
molecule is seen to fly off.

N2O adsorption

When a single N2O molecule is attached to Si-doped
graphene sheet, we initially consider three typical possible
configurations, as shown in Scheme 1: (1) O- or N-attacking,
(2) [3+2]-cycloaddition, and (3) [2+2]-cycloaddition. In type
(1), the linear N2O molecule is attached vertically to the
active sites (i.e., Si- or its nearest C-atoms). In type (2), N2O
uses its N- and O-atoms to bond with the Si- and C-atoms of
Si-doped graphene, forming a five-membered ring, while a
four-membered ring, in which the N–N or N–O bond of the
N2O molecule attacks the Si–C bond of Si-doped graphene,
will be obtained via type (3).

In more detail, after full structural optimization for type
(1), two stable configurations are obtained (Fig. 4a,b): the
N2O molecule is shown to be adsorbed only physically onto
the Si-doped graphene with a small adsorption energy (a
few tens meV), stemming from van der Waal’s attraction.

1 The adsorption energy of n adsorbate on Si-doped graphene is
defined as: Eads=[ Etotal (nadsorbate-Si-doped graphene)] - n[ Etotal

(adsorbate)] - [ Etotal Si-doped graphene)]/n, where Etotal is the total
energy of the studied system and n is the number of the adsorbate

Fig. 5 a–c Optimized structures
of a single NO2 adsorbed on
Si-doped graphene, showing
various adsorption configura-
tions. Bond distances and
angles in Ångstroms and
degrees, respectively
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The distances between the O- or N-atom in N2O and the
Si-atom of Si-doped graphene are 3.443 and 3.471Å,
respectively. The weak physisorption of the N2O molecule
is thought to be because no local structural deformation is
observed for the Si-doped graphene sheet. Moreover,
when the N2O molecule is adsorbed onto the Si-doped
graphene in type (2), i.e., [3+2]-cycloaddition, another
stable configuration (Fig. 4c) is obtained, with adsorption
energy of −0.390 eV and 0.226 electrons being transferred
from graphene to N2O. The bond lengths of the newly
formed O–Si and N–C bonds are 1.607 and 1.665Å,
respectively. N2O [3+2] cycloaddition on Si-doped gra-

phene induces local structural deformation to both N2O
and graphene: (1) the bond angle of O–N–N of N2O is
decreased greatly from 180° in free N2O to 115.2° in the
adsorbed form; (2) the N2O-adsorbed Si–C bond is
increased from 1.765 to 1.841Å. Another stable configu-
ration (Fig. 4d) is obtained when the N2O molecule is
adsorbed on Si-doped graphene in type (3). Of particular
interest, a N2 molecule in this configuration is found to
escape from the sheet of Si-doped graphene, leaving an
O-atom attached to the Si-atom of graphene. The O–Si
bond length is 1.581Å, while the N–O and N–C distances
are further apart by 3.316 and 3.552Å, respectively. This

Fig. 6 a–d Optimized
structures of a second NO2

adsorbed on Si-doped graphene
where the first NO is located,
showing various adsorption
configurations. Bond distances
and angles in Ångstroms and
degrees, respectively
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configuration is the most stable of all obtained adsorption
configurations, with an adsorption energy of −2.159 eV.
This leads to the suggestion that the N2O molecule could
be reduced into the N2 molecule on the Si-doped graphene
sheet. Hence, Si-doped graphene might be an ideal
candidate as a metal-free catalyst for N2O-reduction.

NO2 adsorption

For NO2 adsorption on Si-doped graphene, the most stable
configuration is one in which the Si-atom in Si-doped
graphene is bound with one O-atom in a NO2 molecule
with a nitrite configuration. The Si–O bond length is
1.686Å as shown in Fig. 5a. As with NO and N2O
adsorption, the structures of Si–doped graphene and NO2

are also deformed due to NO2 adsorption. For example,
the C–Si bond length of graphene expands to 1.799Å,
while the O–N bond of the NO2 on the side of the Si-atom
is elongated from 1.210Å in isolated NO2 to 1.580Å. The
calculated adsorption energy is about −2.172 eV. It can be
expected that the adsorbed Si-doped graphene becomes a
magnetic material, with a magnetic moment of 1 μB upon
adsorption of a single NO2 molecule. In contrast to NO
adsorption on Si-doped graphene (Fig. S1), however, the spin
densities of this graphene system are located mainly on a few
C-atoms around the Si-, N-, and O-atoms in the adsorbed
NO2 (Fig. S3). In addition, we also obtained two meta-stable
adsorption configurations as presented in Fig. 5b,c. Their
adsorption energies are −2.025 and −1.592 eV, respectively,
which are smaller than that of the most stable one.

Based on the adsorption of a single NO2 molecule, we
further studied the attachment of a second NO2 molecule to
Si-doped graphene on which the first NO2 has been located.
After geometrical optimization, the most energetically
favored configuration is one in which the second NO2

molecule is located at the ortho position of the Si-atom with
a nitro configuration (Fig. 6a). The most stable configura-
tion can be rationalized thus: (1) the adsorption of a single
NO2 molecule with an unpaired electron activates those

carbon atoms near adsorption sites (Fig. S2). Hence, these
“activated” carbon sites can be considered as the “default
state” of the graphene, which initiates adsorption of a second
NO2 molecule onto it. (2) About 0.374 electrons are shown
to be transferred from the HOMO of Si-doped graphene to
the LUMO of a second NO2 molecule. Thus, the second NO
molecule prefers to be adsorbed on the site that makes the
largest contribution to the HOMO of Si-doped graphene
(Fig. 3d). The length of the newly formed C–N bond is 1.685
Å, which is larger than the typical C–N distance of 1.500Å.
The Si–C bonds involving the adsorption NO2 molecules are
1.802, 1.802, and 1.863Å, respectively. Because steric
repulsion exists between the two NO2 molecules, and the
Si–O binding energy (798 kJ mol−1) is slightly larger than
that of N–C (770 kJ mol−1) [62], it is not surprising that the
adsorption energy2 of the second NO2 molecule (−1.231 eV)
is significantly smaller than that of the first (−2.172 eV). As
far as the lowest-energy configuration is concerned, three
metastable adsorption configurations are obtained. For these
configurations (Fig. 6b–d), we find that the second NO2

molecule is in the nitrite configuration, and located at the
ortho-, meta-, and para-sites of the same six-membered ring
on which the first NO2 molecule is located. Moreover, the
calculated adsorption energies are −1.040 (ortho-site,
Fig. 6b), −0.550 (meta-site, Fig. 6c), and −0.909 eV (para-
site, Fig. 6d), respectively.

The next and most important question is: what is the
maximum number of NO2 molecules that can be bound to
Si-doped graphene? To answer this question, we gradually
added adsorbed NO2 molecules up to the number five. The
results show that Si-doped graphene functionalized with
five NO2 molecules is unstable, and one NO2 molecule
leaves the sheet of Si-doped graphene. In other words, the
maximum number of NO2 molecules that can bind to doped
graphene with one carbon atom substituted by one silicon
atom is four (Fig. 7). The average adsorption energy for

Scheme 1 Typical possible
configurations for attaching
a single N2O molecule to
Si-doped graphene sheet

2 see footnote 1
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four NO2 molecules is −0.329 eV. The large surface:volume
ratio of graphene plays a decisive role in device engineering,

as a large number of Si atoms may be doped onto each
graphene sheet.

Fig. 8 Band structure of Si-
doped graphene after adsorption
of a one NO, b two NO, or
c one, d two, e three, or f four
NO2 molecules. Red dotted lines
denote the Fermi level

Fig. 7 Optimized structures
of a three and b four NO2

molecules adsorbed onto
Si-doped graphene. Bond
distances in Ångstroms
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Effects of NO and NO2 adsorption on the electronic
properties of Si-doped graphene

Any change in electronic properties is an important factor
in evaluating the potential application of Si-doped graphene
in gas sensing. As discussed above, Si-doped graphene is a
semiconductor with a small band gap of ~0.054 eV.
Adsorption of a single NO or NO2 molecule onto Si-
doped graphene introduces spin polarization into the whole
system. It can be seen from Fig. 8a that Si-doped graphene
exhibits half-metallic behaviors after adsorbing one NO.
The spin-up state opens a band gap of 0.186 eV, and the top
valence band lies below the Fermi level, while the spin-
down state has densities up to 0.065 eV above Fermi level.
For adsorption of two NO molecules, the spin polarization
of Si-doped graphene disappears and a band gap with a
width of ~0.137 eV is opened (Fig. 8b). On the other hand,

the CBM of Si-doped graphene is shifted slightly, resulting
in an increase of its band gap for NO2-adsorption, which is
dependent on the number of the adsorbed NO2 molecules.
For example, when one or two NO2 molecules are
adsorbed, the band gaps of Si-doped graphene are increased
to 0.204 (one NO2) and 0.374 eV (two NO2), respectively,
while the band gaps are increased to 0.490 and 0.680 eV,
respectively, upon adsorption of three and four NO2

molecules. The changes in band structures of Si-doped
graphene due to NO or NO2 adsorption are further
confirmed by the charge transfer between graphene and
adsorbate. Analysis of Hirshfeld charges shows that there is
a charge transfer of about 0.125 e from Si-doped graphene
to NO molecules, and of about 0.334 e to NO2 molecules,
suggesting that both NO and NO2 can work as an acceptor.
In short, the appreciable adsorption energy and large charge
transfer render Si-doped graphene an excellent sensor for

Fig. 9 Iso-surface of
Fukui functional f -(r), f+(r),
and electrostatic potential (ESP)
of Si-doped graphene, NO, N2O,
and NO2. Blue and yellow
regions denote positive and
negative sign of wave functions,
respectively
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the detection of NO and NO2 molecules. The former
(appreciable adsorption energy) allows reversible adsorp-
tion to be accomplished easily without destroying the host
materials, while the latter, which is larger than the well-
established experimental case [63], is expected to induce
sizeable changes in the conductivity of the system.

From the above results and analysis, it is obvious that the
substituted doping of a Si atom into graphene can greatly
enhance the chemical reactivity of graphene towards NO,
N2O, and NO2 molecules. The good chemical reactivity of
Si-doped graphene can be further comfirmed by computed
Fukui functions [64]. Fukui functions measure the sensi-
tivity of the charge density ρ(r) with respect to the loss or
gain of electrons via the following definitions:

fþ rð Þ ¼ >Nþ $N rð Þ � >N rð Þð Þ=$N ð1Þ

f� rð Þ ¼ >N rð Þ�>N� $N rð Þð ÞÞ=$N ð2Þ

f 0 rð Þ ¼ fþ rð Þ þð Þf� rð ÞÞ=2 ð3Þ
in which f+(r) measures changes in electron density when
the molecule (or cluster) gains electrons, thereby providing a
description of reactivity with respect to nucleophilic attack. In
contrast, f-(r) measures the reactivity with respect to
electrophilic attack (loss of electrons). The f0(r), which is
the average of f+(r) and f -(r), describes radical attack.
Figure 9 plots the iso-surface of f+(r) and f -(r) of optimized
Si-doped graphene, NO, N2O, and NO2, respectively. As
shown in Fig. 9, the Si atom of Si-doped graphene exhibits a
fairly large contour of f+(r) iso-surface, compared to its f-(r)
iso-surface. Thus, Si-doped graphene possesses relatively
high reactivity with respect to nucleophilic attack, and its Si
atom is the most reactive site for nucleophilic guest molecule
adsorption. This fact is in good agreement with the HOMO
(Fig. 2d) and electrostatic potential (ESP, Fig. 9): most states
of the HOMO or ESP are localized around Si atom. For NO
and NO2, their highest reactivity sites are the N atom (fN

-=
0.581) of NO and O atom (fN

-=0.581) of NO2 derived from
Hirshfield scheme, respectively. Hence, it is clear that the N
atom of NO and the O atom of NO2 will most favor being
attached to the Si atom of Si-doped graphene (Fig. 3a, 5a).
On the other hand, it is also clear that the f-(r) iso-surface of
N2O is located mainly on the terminal O and N atoms. In
other words, the two atoms represent the reactivity sites for
adsorption on Si-doped graphene (Fig. 4c).

Conclusions

Using DFT calculations, we have studied the adsorptions of
three nitrogen oxides—NO, N2O, and NO2 molecules—

onto pristine and Si-doped graphene. It was found that Si-
doped graphene exhibited completely different behavior
when exposed to the three gaseous molecules. Specifically,
the moderate adsorption strength and obvious changes in
electronic structure produced by NO and NO2 adsorption
make Si-doped graphene a suitable candidate fpr a NO or
NO2 sensor. Interestingly, N2O, a greenhouse gas, can be
easily reduced to benign N2 on a sheet of Si-doped
graphene. This suggests that Si-doped graphene may be
used as a metal-free catalyst for N2O reduction. Finally, by
exploring the calculated band structures, we find that the
electronic properties are modified significantly after
adsorption of NO and NO2 molecules, which is dependent
on the coverage of the adsorbate. The present work is
useful not only in deepening our understanding of the
properties of graphene, but also to further widen its fields
of application.
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Abstract Trypanosoma cruzi glutamate cysteine ligase
(TcGCL) is considered a potential drug target to develop
novel antichagasic drugs. We have used a variety of
computational methods to investigate the interactions between
TcGCL with Glutathione (GSH). The three-dimensional
structure of TcGCLwas constructed by comparative modeling
methods using the Saccharomyces cerevisiae glutamate
cysteine ligase as template. Molecular dynamics simulations
were used to validate the TcGCL model and to analyze the
molecular interactions with GSH. Using RMSD clustering,
the most prevalent GSH binding modes were identified
paying attention to the residues involved in the molecular
interactions. The GSH binding modes were used to propose
pharmacophore models that can be exploited in further
studies to identify novel antichagasic compounds.

Keywords Comparative modeling . Glutamate cysteine
ligase .Molecular dynamics . Pharmacophore .

Trypanosoma cruzi

Introduction

Chagas disease represents the leading cause of cardiac
lesions in young, economically productive adults in Latin
American countries where this disease is endemic [1].
Trypanosoma cruzi, the eukaryotic protozoan responsible
for Chagas disease, has a redox metabolism based on
trypanothione, a glutathionyl spermidine derivative. In
Trypanosoma cruzi, glutathione (GSH) is synthesized from
its constituent amino acids by the consecutive actions of
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two related ATP-dependent peptide ligases (Scheme 1): i)
glutamate cysteine ligase (GCL or GSH1, EC 6.3.2.2) and
ii) glutathione synthetase (GSH2, EC 6.3.2.3) [2, 3]. The
GCL reaction is rate limiting and essential for the parasite
as shown by RNAi experiments [4]. TcGCL activity is
precisely controlled by non-allosteric feedback inhibition
by glutathione, the limited availability of cellular L-Cys and
the transcriptional and post-transcriptional regulation of the
enzyme’s expression under various physiological conditions
[5, 6]. Generated glutathione, is then conjugated with
spermidine by trypanothione synthetase (TryS, EC 6.1.1.9)
to form trypanothione (T(SH)2), the central thiol that delivers
electrons for the synthesis of DNA precursors, the detoxifi-
cation of hydroperoxides and other trypanothione-dependent
pathways [7–9].

GCLs sequences can be classified in three groups: i)
sequences primarily from gamma-proteobacteria; ii) sequen-
ces from non-plant eukaryotes; and iii) sequences primarily
from alpha-proteobacteria and plants. Although sequence
identities between groups are insignificant, some conserved
sequence motifs are found, suggesting distant phylogenetic
relationship [10]. Recently, the crystal structures of Saccha-
romyces cerevisiae GCL (ScGCL) in complex with BSO and

GSH were solved at 2.20 Å and 2.50 Å resolution (pdb ids
3LVV and 3LVW, respectively) [11]. Despite their low
sequence identity (<10 %), ScGCL shares significant
structural similarity with Brassica juncea (BjGCL) and
Escherichia coli GCL (EcGCL). Both proteins were solved
in complex with BSO (pdb id 2GWC and pdb id 1VA6,
respectively) [12–14]. All these enzymes provide a source of
structural insights to identify main protein-ligand interactions
for buthionine sulfoximine (BSO) and other analogs. In all
these cases, the inhibitors bind on the bottom of the catalytic
domain comprised by six anti-parallel β-strands that form a
partial barrel with a funnel-like shaped internal cavity
(Fig. 1). The sequence of the small variable domain changes
widely among GCL family members; sequence analysis
revealed that there are no conserved regions corresponding to
these sequences among family members of mechanistically
related glutamine synthetase [14].

In light of its central role in the essential glutathione and
trypanothione metabolism, GCL has been studied as a target
for the design and identification of novel analogs of BSO [15–
18], an inhibitor of GCL and effective GSH-depleting agent,
which have shown to prolongs survival of mice infected with
Trypanosoma brucei and increases the trypanocidal activity

Scheme 1 Biosynthetic pathways for Glutathione and Trypanothione in Trypanosoma cruzi
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of Nifurtimox and Benznidazole against Trypanosoma cruzi
[19–22]. Unfortunately, structure-activity relationships con-
sidering GSH or sulfoximine-based transition state analogues
have not been assessed for T. cruzi GCL. However, some
efforts have been conducted for GCL homologues present in
E. coli, T. brucei, rat and human [23–29].

In this work, we report the comparative modeling of
TcGCL and the investigation of its interaction with GSH,
the identification of the preferred binding modes, and the
development of structure-based pharmacophore models
suitable for the design and identification of novel chemical
entities targeting TcGCL.

Materials and methods

Molecular modeling

The molecular model of TcGCL was constructed using
Modeller [30] as implemented in the Protein Modeling
module of Discovery Studio 2.1 (Accelrys Inc., San Diego,
CA). The sequence of TcGCL (Uniprot entry O77252) [31]
was aligned with that of the class II Saccharomyces
cerevisiae GCL in complex with GSH, solved at 2.5Ǻ of
resolution (pdb id 3LVW and Uniprot entry P32477) [11].
Due to the lack of an appropriate template, residues 214–
283 of TcGCL were not included in the model. The copy
ligand function was used to model the crystallographic
position of GSH. Secondary structure restrains were applied
in the following segments according to PCI-SS secondary
structure prediction [32]: W13-T40 helix, K81-D86 helix,
S113-S130 helix, S227-A238 helix, P444-K463 helix,
Y492-R496 strand, P507-S511 strand, K522-V533 helix,
and E587-E623 helix. A total of 100 models were
constructed and the best model according to Modeller
internal DOPE score was subjected to a loop refinement
protocol that was applied to the P240-H248 zone. Twenty-
five different loop conformations were constructed and the
best-generated loop variant model according to CHARMM
energies was subjected to a molecular minimization
protocol using the CHARMM 22 force-field [33]. The

protocol consisted of 5000 steps of steepest descent method
followed by 10,000 steps of conjugate gradient method to
reach a final root-mean square (RMS) gradient of
0.001 kcal mol−1 Å−1. The overall quality of the final
model was assessed by Ramachandran plot analysis using
the RAMPAGE server [34] and Profiles-3D analysis [35].
Additional quality model assessments were performed
using the ProSA-web [36], QProt [37] and SAVES (http://
nihserver.mbi.ucla.edu/) servers. Binding site search was
performed in Discovery Studio 2.1 with default parameters.
DelPhi software was used to calculate the spatial distribu-
tion of electrostatic potential on protein atoms, using a two-
dielectric implicit solvent model and the finite difference
method to solve the Poisson-Boltzmann equation. The
dielectric constant used for protein was 2 and 80 for the
solvent [38].

Molecular dynamics (MD) simulation

The simulated periodic cells were constructed using VMD
v1.9 [39] and comprised the TcGCL model alone and the
TcGCL model plus the GSH molecule. The models were
solvated in a water box, keeping at least 18 Å between
every protein atom and the cell boundaries. Both systems
were neutralized by randomly placing 16 and 17 Na+ ions
for TcGCL and TcGCL-GSH respectively. The final
dimensions of the periodic cells were 95x106x91 Å
comprising a total of ~86,300 atoms. The systems were
minimized and subjected to MD for 0.2 ns with the protein
fixed. The proteins were then released keeping alpha
carbons and side-chain non-hydrogen atoms constrained
with a force constant of 20 and 5 kcal mol−1 Ǻ−2

respectively. The full systems were then minimized and a
slow relaxation procedure was performed in which the
constraint applied to alpha carbon atoms and side-chain
non-hydrogen atoms of the proteins were decreased at a rate
of 0.5 kcal mol−1 ps−1 until no constraints were applied.
Subsequently, 12 ns of unconstrained NPT-MD simulation
were performed with the first 2 ns considered as equilibra-
tion and the last 10 ns considered for analysis. The MD
program NAMD [40] with CHARMM22 force field

Fig. 1 Topology of GCLs pro-
teins. Class I GCLs are mainly
bacterial, class II eukaryotic and
class III mostly plant homo-
logues. Co-crystallized ligands
and cofactor metals are shown
as spheres for comparison
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corrected by CMAP for proteins [41, 42] and TIP3P for
water were used for the simulation [43]. Periodic boundary
conditions were imposed and the particle mesh Ewald
method [44, 45] was used for electrostatic forces calcula-
tion. Constant temperature (300K) and pressure (1 atm)
were maintained by using Langevin dynamics [46]. The
SHAKE algorithm [47] was applied to constrain the lengths
of all bonds that involve hydrogen allowing the use of a
2 fs integration timestep. MD trajectory analyses were
performed with VMD v1.9 to calculate the Cα root-mean
square deviation (Cα−RMSD) and the residue wise Cα
root-mean square fluctuation (Cα−RMSF), for each system.

RMSD clustering and binding mode selection

To generate a reduced set of structures that represent the
dynamical behavior of the GSH binding site of TcGCL, a
root-mean-square deviation (RMSD) conformational clus-
tering was performed to reduce the structural redundancy in
the MD ensemble. Two hundred receptor conformations
were extracted from the 10 ns MD trajectory, one every
50 ps. The structures of the trajectory were superimposed
using all α-carbon atoms to remove overall rotation and
translation in order that subsequent RMSD calculations
could focus on the internal conformational variability of the
protein. A hierarchical clustering procedure was performed
with the WORDOM (v0.21) software [48] based on a
subset of 15 residues located within a 5 Å radius from the
center of mass of the GSH molecule during the MD-
simulation (Residues: 55 93 94 179 180 183 256 260 262
264 311 335 412 and 415). These residues were grouped
into clusters of similar configurations using the atom-
positional RMSD for all atoms (including side chains and
hydrogen) as the similarity criterion. A cutoff of 1.5 Å was
chosen. The central member within each cluster, i.e., the
structure having the smallest RMSD to all other structures,
was chosen as the representative structure.

Binding energy calculations and pharmacophore
hypotheses generation

Each cluster representative structure was minimized to
convergence using 5000 steps of steepest descent method
followed by 10,000 steps of conjugate gradient method to
reach a final root-mean square (RMS) gradient of
0.001 kcal mol−1 Å. The Ludi 2 empirical scoring function
was used to estimate the binding energy and the individual
energy descriptors that contribute to the score. For each
minimized structure, a structure-based pharmacophore hy-
pothesis was generated with LigandScout v3.01 (Inteligand
GmbH, Vienna, Austria). Chemical features perception was
performed using default parameters.

Results and discussion

Comparative modeling

The Saccharomyces cerevisiae glutamate cysteine ligase
ScGCL in complex with glutathione (3LVW) was identified
as a suitable template for modeling using the sequence
search facility in the Protein Data Bank [49]. For residues
214–283 of TcGCL, no suitable template structure could be
identified. The initial alignment obtained from the PDB-
BLAST search was manually corrected by inserting or
removing gaps. After several rounds of comparative
modeling, where we evaluated the impact of the alignment
corrections on the secondary structure, a set of constrains
were used to preserve the length of predicted secondary
structure elements (see methods). The final alignment
between TcGCL and ScGCL shows a 32.7% and 52.2%
sequence identity and sequence similarity respectively
(Fig. 2). According to STRIDE web-server [50], the
secondary structure is composed of 18 α-helices, 12
extended β-sheets and two 3–10 helices. In contrast with
other GCLS such as EcGCL (1 disulfide bridge) and
BjGCL (3 disulfide bridges), ScGCL has no disulfide
bridges. It is important to note that Trypanosoma brucei
GCL, the best-characterized trypanosome GCL, has no
reported disulfides bridges. For these reasons, no disulfide
bridges were included in our model. Although DiANNA
server [51] predicts 2 disulfide bridges between cysteines
72–196 (score 0.95909) and 241–255 (Score 0.82679),
analysis of TcGCL model shows that the first pair is far
away in the structure (distance ~18 Å) and the second pair
is not present in our model, which lacks the portion
containing these residues. The model is in agreement with
mutagenesis data for Trypanosoma brucei GCL (TbGCL),
to which TcGCL has a 67.7% and 81.6% sequence identity
and sequence similarity respectively [2, 24] (Fig. S1). The
resulting TcGCL minimized model was superimposed with
ScGCL and a root-mean square deviation (RMSD) of 0.8 Å
based on alpha carbon atoms (Cα-RMSD) of 600 equiva-
lent residues was obtained (Fig. 3a). The final TcGCL
structure contains 623 residues, of which 97.3% of them
were found in allowed region and 2.7% in the outlier region
of the Ramachandran plot according to the RAMPAGE
server evaluation (Fig. 3b). The Profile-3D score was also
computed to measure the compatibility of the protein model
with its sequence, using a 3D profile. A ten residues
window size for smoothing and the Kabsch-Sander secondary
structure were used. A compatibility score of 203.35 with a
maximum expected score of 286.07 was obtained for the
model. These values comparewell with the profile and score of
277.88 for the template structure ScGCL (Fig. 3c). The results
obtained from the SAVES server for the Ramachandran Plot
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(PROCHECK) and Verify 3D profiles using a window size of
21 residues for smoothing compared well with those obtained
with Rampage and Profile3D respectively (Fig. S2). The

ProSA-web server quality assessment provides a Z-score of
−10.73 and −8.43 for the template and model structure
respectively (Fig. S3). This result indicates that the TcGCL

Fig. 2 Sequence alignment between TcGCL and template ScGCL proteins. Residues interacting with GSH are marked with blue and red, green
and magenta asterisks for Glu-COO−, Glu-NH3

+, Cys and Gly binding sites respectively

Fig. 3 Comparative modeling
of TcGCL (a) Structural super-
position between TcGCL model
and template. (b) Ramachandran
plot from RAMPAGE, (c)
Profiles-3D plot of TcGCL
model and template structure
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model is of similar quality as equivalent sized X-ray
structures. The ProQ neural network provided an LGscore
of 5.726 and 6.464 for the TcGCL model and the template
structure respectively. This method considers that models
with LGscore>4 are extremely good. All these results suggest

that the fold of the TcGCL model is reliable and the model is
suitable for further analysis and studies. Figure 4a shows
the 3D-structure of the minimized TcGCL-GSH model. A
726 Ǻ3 cavity was identified with the binding site analysis
module of DS2.1 (Fig. 4b) and a highly electronegative

Fig. 4 From left to right.
Topology, binding site cavity
and electrostatic potential
surface of the obtained
TcGCL model

Fig. 5 (a) Cα-RMSD of
TcGCL and TcGCL-GSH
complex during the MD, (b)
Cα-RMSF of TcGCL and
TcGCL-GSH complex during
the MD. (c) RMSD of GSH, and
α-carbons from residues within
4 and 5 Ǻ from GSH during MD
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GSH binding site was identified by the Delphi spectrum
(Fig. 4c).

Molecular dynamics simulations

TcGCL is thought to be biologically functional as a
monomer [52], and can be feedback inhibited by GSH. In
order to study the TcGCL-GSH complex stability, a 10 ns
molecular dynamics simulation was performed. Figure 5a
shows the alpha carbon RMSD plot using the first frame of
the production stage of the simulation as reference for the
TcGCL-GSH and using the TcGCL alone as a control. The
proteins reach a stable equilibrated state after 4 ns of
simulation, with an average Cα-RMSD value of 2.27±
0.38 Å. The Cα root mean square fluctuation (RMSF) plot
for each residue during the simulation was calculated to
identify the most mobile residues, all of which are located
far from the GSH binding site (Fig. 5b). The calculated
RMSDs for GSH (average 0.99±0.20 Å) and for the
residues surrounding it at 4 and 5Ǻ (average 0.89±0.14
and 0.96±0.13 Å, respectively) show that the binding site is
fairly rigid but some movement can be detected. As
expected, correlated deviations are observed between GSH
and the binding site (Fig. 5c). To further characterize this
behavior, the binding pattern between GSH and relevant
conserved binding site residues was followed during
simulation and analyzed. The H-bond pattern for which

distances were measured is shown in Fig. 6a. As shown in
Fig. 6b, for the glutamate carboxylate group or motif of
GSH (Glu:COO−) distances between R381:NE/Glu:OT2,
Y405:OH/Glu:OT1 and R506:NH2/Glu:OT1 are within
hydrogen bond distance, except for the C334:SG/Glu:OT2
interaction, with average values of 2.82±0.13, 2.60±0.09,
2.73±0.11 and 4.09±0.36 Ǻ, respectively. This result is in
agreement with mutagenesis data that shows that the
equivalent residue in TbGCL enzyme (C319) has no
significant effect on the specific activity of the enzyme
[53]. For the charged amino moiety of GSH (Glu:NH3

+),
the distance to E55:OE1, C332:O and M330:O are within
hydrogen bond distances with average values of 2.68±0.09,
2.74±0.12 and 3.00±0.26 Ǻ, respectively. In particular the
interaction with the main-chain carbonyl of M330 is non-
water mediated in contrast to the corresponding interaction
with the M262 residue in ScGCL. For the cysteine residue
of GSH distances E93:OE1/Cys:NH, E93:OE2/Cys:NH and
W485:NE1/Cys:O are within hydrogen bond distance, with
average values of 3.32±0.28, 2.84±0.17 and 3.20±0.37 Ǻ,
respectively. Finally, for the glycine residue of GSH the
measured distances E93:OE2/Gly:NH, R179:NH/Gly:OT2,
R179:NH2/Gly:OT1 and R179:CZ/Gly:C, with average
distances of 3.17±0.52, 3.63±1.00, 4.04±1.21 and 4.31±
0.69 Ǻ, respectively, are consistent with a hydrogen bond
with E93, and a transient double salt bridge between R179
and the terminal carboxylate observed around 1.5-2.5 ns of

Fig. 6 (a) Snapshot of the averaged TcGCL-GSH complex during
simulation, water molecules are not shown for clarity. (b) Binding site
H-bond interaction distances between several GSH atoms and the Glu,

Cys and Gly binding sites residues during MD. Distance colors are
shown as in panel A for each zone
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simulation, which can be explained by the high flexibility
of the terminal glycine residue of GSH. These results reveal
that the GSH binding site has a rigid and a flexible zone.
The rigid zone comprises the glutamate zwitterion binding
residues and the cysteine counterparts, and the flexible zone
is mainly located within the terminal carboxy group of
glycine.

RMSD clustering and binding mode selection

To identify the preferred GSH binding modes suggested by
trajectory analysis, an RMSD conformational clustering
based on the GSH binding site was performed on a set of
200 snapshots separated by 50 ps taken from the trajectory,
in order to reduce structural redundancy in the MD
ensemble. Using a 1.5 Å cut-off, we identified three
clusters from which the structure, from each cluster having
the smallest RMSD to all other structures within the cluster
was selected as the representative structure as shown in
Fig. 7. Cluster 1 (Fig. 7a) contains 48 structures and
represents a 24% of occurrence during the MD, cluster 2
(Fig. 7b) contains only 14 structures representing the 7%,
and cluster 3 (Fig. 7c) contains 138 structures and account
for the last 69%.

Binding energy calculations and pharmacophore
hypotheses generation

Individual components of the binding energy estimated
using the Ludi 2 empirical scoring function for each
representative structure show that ionic, lipophilic, and H-
bond interactions display similar energy contribution
(Table 1). A comparison of the structure based pharmaco-
phore models suggest that drop in binding affinity can be
explained by the loss of key H-bond and ionic interactions
between GSH and TcGCL residues E55, E93, R179, C332
and W485. Several of these residues have been reported as
essential for the binding and stabilization of metal and L-
Glu positioning for further metal-dependent complexation
with L-Cys [2]. In particular Glu93, a metal binding
determinant, plays an important role by anchoring both
GSH-Cys and GSH-Gly amino groups, making this residue
less available to metal binding. Aliphatic interactions
between the carbon chain of GSH-Glu and the side-chain
of I385, and the interactions of the GSH-Cys side-chain
with the Cys binding site composed of the side-chain of
residues L173, R179, F180, M330 and W485, appears to
account for the Lipo component in binding energy. R179 is
highly conserved between GCLs and R179 to Ala alters the

Fig. 7 Representative binding modes for GSH during simulation
obtained by RMSD clustering of the binding site residues and their
corresponding pharmacophore models for GSH interaction binding
mode. (a) Cluster 1 (24%), (b) Cluster 2 (7%), and (c) Cluster 3

(69%). Gray exclusion spheres represent the sterical circumference of
the protein, red vectors are H-bond acceptor and green vectors H-bond
donors. Spiked red and blue spheres are negative and positive
ionizable groups

Table 1 Energy contribution of
GSH binding modes clusters,
according to Ludi 2 scoring
function

Cluster ΔG (kcal/mol) ΔG H-bond ΔG Lipo ΔG Ionic ΔG Rot

1 −8.237 −2.550 −3.137 −3.832 1.964

2 −5.100 −1.146 −2.946 −2.291 1.964

3 −8.673 −3.327 −3.027 −3.600 1.964
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active site and effects the substrate dependencies [24]. In
our model R179 plays a role highly relevant for GSH
binding, acting as a lid that allow the transition between a
high and a low affinity state through the formation of a
double salt-bridge with the carboxylate group of GSH-Gly.
Thus, targeting the residues involved in these relevant
interactions seems a reasonable strategy for the develop-
ment of GCLs modulators.

Conclusions

In this study, we present the first molecular model for
Trypanosoma cruzi glutamate cysteine ligase TcGCL.
Analysis of the results of the comparative modeling
procedure and MD simulations indicated that the theoretical
predictions and obtained fold is consistent with the known
set of experimental results available for Trypanosoma GCL
and other homologues. Molecular dynamics simulations
and binding energy contribution analyses highlight the
relevant forces involved in the GSH binding, and identify
E93 and R179 with putative roles as anchor and switch key
residues that could explain the differential binding mode of
GSH within the TcGCL active site. The prevalent binding
modes and their pharmacophore-derived models provide a
source for structure-based design of new GCL inhibitors.
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Abstract In modern drug discovery process, ADME/Tox
properties should be determined as early as possible in the
test cascade to allow a timely assessment of their property
profiles. To help medicinal chemists in designing new
compounds with improved pharmacokinetics, the knowl-
edge of the soft spot position or the site of metabolism
(SOM) is needed. In silico methods based on docking,
molecular dynamics and quantum chemical calculations can
bring us closer to understand drug metabolism and predict
drug–drug interactions. We report herein on a combined
methodology to explore the site of metabolism prediction of
a new cardioactive drug prototype, LASSBio-294 (1), using
MetaPrint2D to predict the most likely metabolites,
combined with structure-based tools using docking, molec-
ular dynamics and quantum mechanical calculations to
predict the binding of the substrate to CYP2C9 enzyme, to
estimate the binding free energy and to study the energy
profiles for the oxidation of (1). Additionally, the compu-
tational study was correlated with a metabolic fingerprint
profiling using LC-MS analysis. The results obtained using
the computational methods gave valuable information about
the probable metabolites of (1) (qualitatively) and also
about the important interactions of this lead compound
with the amino acid residues of the active site of
CYP2C9. Moreover, using a combination of different

levels of theory sheds light on the understanding of (1)
metabolism by CYP2C9 and its mechanisms. The meta-
bolic fingerprint profiling of (1) has shown that the
metabolites founded in highest concentration in different
species were metabolites M1, M2 and M3, whereas M8
was found to be a minor metabolite. Therefore, our
computational study allowed a qualitative prediction for
the metabolism of (1). The approach presented here has
afforded new opportunities to improve metabolite identi-
fication strategies, mediated by not only CYP2C9 but also
other CYP450 family enzymes.

Keywords Cytochrome P450 . Docking .Metabolism
prediction .Molecular dynamics . QM calculations

Introduction

More than half of drug candidates fail during clinical trials
due to an unsuitable pharmacokinetic profile. For this
reasons, the study of ADME/Tox properties (absorption,
distribution, metabolism, excretion, along with toxicity) has
become an essential task to reduce the attrition rate at the
late stages of the drug development process [1]. Cyto-
chrome P450s (CYPs) form a superfamily of heme-
containing proteins, which plays a crucial role in the
metabolism of endogenous and exogenous compounds
[2]. CYP enzymes participate in Phase I metabolism of
90% of all drugs [3]. The most important isoforms are
CYP1A2 (~5% of current drugs), CYP2C9 and CYP2C19
(~25%), CYP2D6 (~20%) and CYP3A4 (~48%) [4]. Since
CYP-450 enzymes metabolize the majority of xenobiotics,
it is necessary to know the CYP450-mediated metabolic
profiles of compounds during drug discovery and develop-
ment. As the importance of CYPs became clear, the interest
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in studying these protein systems both in vitro and in silico
increased [5–7].

CYP2C9 is the predominant member of the 2C family
with a major contribution to human drug metabolism [8, 9].
CYP2C9 exhibits selectivity for the oxidation of relatively
small, lipophilic neutral or acidic compounds [10]. In
particular, anti-inflammatory agents (diclofenac, flurbipro-
fen, ibuprofen, naproxen, piroxicam), anticoagulant com-
pounds (S-warfarin), hypoglycaemic agents (tolbutamide),
anticonvulsants (phenytoin) and loop diuretics (torsemide)
as well as progesterone are CYP2C9 substrates. However,
they represent just a few of the structurally diverse range of
compounds that are oxidized by CYP2C9 and, more
recently, the diversity of CYP2C9 substrates has widened
with phosphorus-containing thioether pesticides shown to
have significant CYP2C9 activity [11]. The importance of
CYP2C9 in drug metabolism has led the enzyme to be one
of the “standard” enzymes screened during the in vitro
investigation of the hepatic metabolism of xenobiotics,
particularly newly discovered drugs [9].

A detailed understanding of the metabolism mechanisms
and prediction of metabolites is thus a major challenge
being crucial to screen drugs in the early stage of lead
development [12]. Since experimental investigation of the
catalytically competent species in the metabolism already
requires the presence of a substrate to initiate the reaction
cycle, computational methods are very important to
accomplish this task. Such techniques involve docking in
the active site, pharmacophore modeling, molecular dy-
namics (MD) simulations, quantitative structure activity
relationship (QSAR) and/or quantum mechanical and
molecular mechanical (QM/MM) studies [13].

In this paper we focus on the compound 3,4-
methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294,
1), a novel cardioactive compound of the N-acylhydrazone
class [14] that was found to improve intracellular Ca2+

regulation [15] and prevent myocardial infarction induced by
cardiac dysfunction, which could potentially prevent heart
failure. In addition, (1) also promoted vasodilation in aortic
rings, mediated by the guanylate cyclase/cyclic guanylate
monophosphate pathway [16].

Herein, we show a successful application of a combined
computational approach to explore the site of metabolism
(SOM) prediction of a new drug candidate, using ligand-
and structure-based metabolism prediction tools and the
correlation with a metabolic fingerprint profiling using LC-
MS analysis. The study was subdivided into four parts: (a)
application of MetaPrint2D, a ligand-based tool to predict
the sites of metabolism (SOM) of (1); (b) docking studies to
address the prediction of the SOM based on the most likely
poses of substrate within the active site of CYP2C9
followed by molecular dynamics (MD) simulations of some
docked complexes to verify their stability; (c) QM

calculations to study the energy profiles for the oxidation
of (1); and (d) comparison with experimental results. Apart
from the ligand-based tool, all other theoretical calculations
aimed at predicting the CYP2C9 metabolism of LASSBio-
294 (1). Therefore, our goals were to combine methods to
improve the predictivity of SOM of (1), which have not
been widely explored, and to correlate with experimental
assays.

Material and methods

MetaPrint2D

MetaPrint2D is a tool for predicting the sites of a molecule
that are most likely to undergo Phase I metabolism, based
on their similarity to known and unknown sites of
metabolism to be metabolized [17]. The method builds on
a database of atom environments found in molecules
known to undergo metabolic transformation, such as the
data found in the Symyx(R) (previously MDL) Metabolite
database http://www.symyx.com/, which contains over
80,000 metabolic transformations of xenobiotics, curated
from reports in scientific literature. The software was used
on the web platform (http://www-metaprint2d.ch.cam.ac.
uk/metaprint2d/), by uploading the SMILES string of
LASSBio-294.

Preparation of protein and ligand for docking studies

The crystal structure of LASSBio-294 (1), obtained from
Cambridge Crystallographic Data Centre (CCDC code
707596), was energy-minimized using force field MMFF94x,
and the partial atomic charges were computed using the AM1
[18] semiempirical method implemented in the Molecular
Operating Environment (MOE) version 2008.10 software
(Chemical Computing Group Inc., Montreal, Canada). The
crystal structure of the human cytochrome P450 2C9 in
complex with flurbiprofen was obtained from the Protein
Data Bank (PDB code: 1R9O, resolution 2.0Å) [10]. Hydro-
gens atoms were added and minimized using the AMBER99
[19] force field and AMBER99 atomic charges [20] until the
RMS force was <0.01 kcal mol-1Å-1 with the truncated
Newton method. For the heme partial charges of CYP2C9,
RESP charges determined by quantum chemical calculations
were used [20]. The iron metal atom from the heme group
was set to a + 3 charge. Protonation states according to a pH
of 7 were assigned using the “Protonate 3D” option in MOE.
Protonation states of histidines were assigned according to
their H bonding environment. The net charge of the protein
was 6.0. For the docking studies, the enzyme was prepared
where: (i) ligand molecule was removed from the enzyme
active site; (ii) Water molecules were removed, keeping the
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active site water molecules (wat600, wat819 and wat842, as
described in ref [10] to be important for CYP2C9 substrate
binding); (iii) MOE Alpha Site Finder was used for the active
sites search in the enzyme structure and dummy atoms were
created from the obtained alpha spheres.

Docking studies

Docking studies were performed using the MOE-Dock
software [21] allowing side chains flexibility. Ligand
placement was performed using alpha PMI method, with
Affinity dG scoring function. The Alpha PMI placement
method generates poses by aligning ligand conformations'
principal moments of inertia to a randomly chosen subset of
alpha sphere dummies in the receptor site. The Affinity dG
is a scoring function that estimates the enthalpy contribu-
tion to the free energy of binding using a linear function of
hydrophobic, ionic, hydrogen bond and metal binding
terms (kcal mol−1 of total estimated binding energy) [22,
23]. The top 30 poses were retained and refined using
MMFF94x force field energy minimization with General-
ized Born solvation model [22], allowing the receptor side
chain residues within 6Å to relax around the mobile ligand.
The receptor side chains were tethered with a force constant
of 1.0 kcal mol-1Å-2). Energy minimization was stopped
when the root-mean-square (RMS) gradient cutoff of
0.01 kcal mol-1Å-2 was reached. Final poses were ranked
using the Affinity dG scoring method to calculate the free
energy of binding. In order to determine the possible
metabolic sites of the substrate, the distances between the
heme iron of CYP2C9 and the atoms of (1) were measured
for all docking results. A catalytically reactive distance
from the heme iron of CYP450 is generally known to be
within 5Å, thus, the atom sites within a catalytically
reactive distance from the heme iron were selected as
possible metabolic sites.

MD simulations

The most favorable docking results for the CYP2C9·LASS-
Bio-294 complexes were further optimized by molecular
dynamics (MD) simulations. All MD simulations were
carried out using the Desmond MD package version 2.2
[24] and the OPLS-AA 2005 force field [25]. MD
simulations were carried out to provide additional structural
relaxation and establishment of reasonable model hydrogen
bonding patterns. The system was solvated with SPC water
molecules generated via an orthorhombic box. The number
of solvated water molecules in each system is about 17,000
and the initial MD simulation cell dimension was about 95
Å×80Å×100Å and involved the complex being solvated
by a layer of water molecules of at least 10Å in all
directions. By assuming normal charge states of ionizable

groups corresponding to pH 7, sodium (Na+) and chloride
(Cl-) counter-ions at physiological concentration of
0.015 mol/L were added in the box in random positions
to ensure the global charge neutrality. The structures were
relaxed by performing equilibration dynamics at constant
temperature (300 K) and constant pressure (1 bar). The
constant pressure and temperature were controlled via
Langevin dynamics method [26]. The simulation time was
120 ps and the coordinates were stored every 1.2 ps.

Protein-bound ligand entropy calculation

SZYBKI (OpenEye Scientific Software Inc.) [27, 28]
was applied to predict the protein-bound ligand entropy
for the metabolism of (1) carried out by the active site of
CYP2C9 using our MD results as starting point for the
calculations.

Quantum-mechanical (QM) calculations

Starting structures were taken from the MD simulations
described above. The QM region comprised heme group
without side chains, the SH group of the cysteinyl ligand,
and the substrate (1). Jaguar 7.6 software [29] was applied
in order to study the energy profiles for the oxidation of (1).
The QM calculations were performed using the density
functional theory (DFT) with the spin-unrestricted
UB3LYP. Geometry optimizations (without constraints)
were performed with the LACV3P basis set on iron and
6-31 G* on the rest of the atoms (basis set BSI).
Subsequently, single point calculations were performed on
the optimized geometries using BSII, which corresponds to
LACV3P(Fe)/6-311 + G** (rest).

Biological data

The details of the methodology regarding the biological
data to study the metabolism of LASSBio-294 (1) have
been published in previous research articles [30, 31] and
are only summarized herein. For the in vivo metabolism
evaluation of (1), 12 plasma samples from beagle dogs
and rats were collected before and after 1.5 h of
administration of (1), and analyzed by LC-MS. Six urine
samples from dogs and rats treated with (1) were also
collected after 4 h of oral administration. The animal
handling protocol of this study had been reviewed and
approved by the Institutional Animal Care and Use
Committee of the Federal University of Goias (UFG).
The in vitro metabolism study of (1) was conducted using
the fungus Beauveria bassiana ATCC 7159. Twelve
whole-cell microorganism media samples were taken
every 24 hours, up to 96 hours of incubation with (1)
and analyzed by LC-MS.
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Metabolic fingerprinting using LC-MS

We have studied the metabolic fingerprint profiling of (1)
between different species. A general workflow simplified in
three stages was implemented for the metabolic fingerprint-
ing using LC-MS analysis. The first stage was concerned in
preparing the samples to be analyzed by LC-MS. The
second one was brought up to analyze and treat all samples
by MS’s software using the MassHunter software (Agilent
Technologies, Inc., USA) for targeted metabolites and
MZmine 2 [32] for un-targeted metabolites. At the third
stage, we were able to identify and quantify all detectable
metabolites produced in vitro by filamentous fungi.
Furthermore, using the data produced by un-targeted
metabolites from dogs, rats and filamentous fungi samples,
we have tried to identify the similarity across these species
taking advantage of the principal component analysis
(PCA) analysis. Therefore, we have performed post-
processing statistical analysis of all the experimental data
(in vitro and in vivo), using multivariate analysis (PCA) to
extract information from the complex data to obtain
metabolic fingerprints. High-resolution MS fingerprints
were acquired on a mass spectrometer (Agilent 6520
Accurate-Mass QTOF mass) in both positive and negative
electrospray ionization mode. The source temperature was
kept at 325 °C, Cap voltage (2100 V), fragmentor voltage
(175 V) and drying gas (5 L/min). The m/z ranges were
acquired (300–2000 for mass ranges, with an acquisition
rate 1.02 spectra/sec) for plasma, urine and whole-cell
microorganism samples analysis, respectively.

Results and discussion

Metabolite identification studies are performed relatively
late in the compound optimization process because they are
work intensive and generally aimed to understand the
metabolic pathway (generally in vivo) of an already potent
and optimized drug candidate. In modern drug discovery
process, ADME/Tox properties should be determined as
early as possible in the test cascade to allow a timely
assessment of their property profiles [33]. To help medic-
inal chemists in designing new compounds with improved
pharmacokinetics, the knowledge of the soft spot position
or the site of metabolism (SOM) is needed. In recent years,
driven by the development of new software and advances in
hardware technology, it has become evident that the
incorporation of quantum mechanical (QM) methods in
combination with standard classical approaches, in certain
stages of in silico drug metabolism studies [34, 35], leads to
many improvements.

The approach described herein is new in that it
introduces the combination of MetaPrint2D, a improved

algorithm for site of metabolism prediction, to predict the
most likely metabolites, with structure-based methodolo-
gies using docking, MD simulations and QM calculations
to improve predictivity of SOM of a new drug candidate
(1), which has not been widely explored, and the
correlation with a metabolic fingerprint profiling using
LC-MS analysis. Figure 1 shows a schematic diagram of
the approach described in this paper aiming at improving
drug metabolism studies using different levels of theory and
the correlation with experimental assays for complex matrix
analysis from different species.

Panel A from Fig. 1 shows the energy changes from
substrate binding to product formation in CYP450-
catalyzed drug metabolism. Therefore, the integration of
computational methods such as MetaPrint2D, docking,
molecular dynamics and QM calculations can bring us
closer to understand drug metabolism and predict drug–
drug interactions. Panel B shows the metabolic fingerprint
workflow for complex matrix analysis from different
species using LC-MS.

MetaPrint2D is a fast, efficient and accurate predictor of
both the sites and products of metabolism in small molecule
drugs. The approach adopted is a development of the
method of Boyer and co-workers [36] using circular
fingerprints and substrate/product ratios. The method has
been completely developed from scratch, fast algorithms
and extensive testing employed to maximize the perfor-
mance of the approach [17]. The sites of metabolism
prediction of LASSBio-294 (1) from MetaPrint2D are
shown in Fig. 2. The results are visualized so that atoms
are colored according to the likelihood of a metabolic site
being centered on this atom. This method has been
compared with other rule-based methods or based on expert
systems and is a promising option to use in combination
with other methods [37].

Accordingly to Fig. 2, MetaPrint2D predicted that the
sulfur (S14) in thiophene ring and the carbon atom (C1) of
the benzodioxolyl ring of (1) were most likely to be
metabolized (colored in red), followed by the group colored
in orange (N7) and then by the groups marked in green
(C13, O2, O2’ and C9). The structures of the possible
metabolites predicted by MetaPrint2D are presented in
Fig. 3.

The process of the metabolic reaction of xenobiotic
consists of a series of processes, including substrate binding
to the enzyme, catalytic reaction of a substrate by the enzyme,
and release of a metabolite from the enzyme. At first, the
substrate must bind in close proximity between the metabolic
reaction atom within the substrate and the catalytic site of the
CYP enzyme (i.e., heme oxygen). Force field based docking
techniques and molecular dynamics (MD) simulations can
mimic this complex formation process and the dynamic
motion of the substrate-enzyme complex [38]. Substrate
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orientation within the active site of CYP450s is a crucial
factor for CYP-mediated metabolism. Therefore, docking
studies can be particularly useful for gaining selectivity and
steric information about potential compounds, which can be
used to predict their sites of metabolism and possible toxic
metabolites. Previous studies with the principal human CYP
isoforms indicated by the decision tree for evaluating P450
specificity developed by Lewis [39] have pointed out that
CYP2C9 possess important molecular recognition pattern to
(1) [40].

As a measure of docking reliability, the root-mean-
square deviation (RMSD) was used to compare differences
between the atomic distances of the docked poses and the
co-crystallized structure. The CYP2C9-flurbiprofen com-
plex (PDB: 1R9O) [10] was used for the initial validation
run where flurbiprofen was docked into CYP2C9. Docking

using the MOE-Dock software [21] allowing side chains
flexibility, accurately predicted the crystallographic place-
ment of flurbiprofen in the crystal structure of human
CYP2C9, with a RMSD of 1.21Å.

The drug candidate (1) was docked into the active site of
CYP2C9 with three structural water molecules, which were
kept due its proximity with the binding site and its
importance for CYP2C9 substrate binding [10]. To score
our docking results for predictions of the sites of metabo-
lism, we considered any conformation in which a group or
an atom on (1) moiety was within 5Å of the heme iron a
successful prediction for (1) metabolism. Of the 30
conformations obtained, only five docking solutions had
the substrate in a favorable distance to the heme iron for
metabolism (less than 5Å) [10, 41]. These results are
shown in Table 1.

Table 1 also depicts the calculated binding energies of
the docked poses (ΔGcalc), using the affinity dG scoring
function, presented in the methods section [22]. One should
note that, given the difficulties of scoring functions to
approximate the binding energies, the ΔG differences
between the docked poses are not large enough to provide
specificity for a certain reaction site in the substrate. The
last column of Table 1 shows the calculated values of
entropy for the binding of the complexes protein-ligand,
using vibrational modes, based on the Hessian matrix from
the minimization, available on SZYBKI software, which
will be discussed further.

Figure 3 is our final prediction model, which summa-
rizes all the predicted metabolites for (1) in our study, using
a combination of computational methods, i.e., Meta-
Print2D, docking, MD simulations and QM calculations.

In Fig. 3, all predicted metabolites were included, even
those chemically labile compounds. As we can see from

Fig. 2 Plot of MetaPrint2D predictions. Site of metabolism: the atoms
in (1) that most will be metabolized are colored according to the
likelihood of a metabolic site: High: red, Medium: orange, Low:
green, Very low is not colored, and No data: gray. NOR indicates the
normalized occurrence ratio; a high NOR indicates a more frequently
reported site of metabolism in the metabolite database

Fig. 1 Workflow for metabolic investigation proposed in our work.
(a) Proposed computational methods to improve drug metabolism
studies using different levels of theory, showing the energy changes
from substrate binding to product formation in CYP450-catalyzed
drug metabolism. (b) Metabolic fingerprint workflow for complex

matrix analysis from different species. Stage I: the preparation of the
samples to be analyzed by LC-MS; Stage II: analyze the samples into
LC-MS and treat the data; and Stage III: identify and quantify all
detectable metabolites produced in vitro by filamentous fungi and
discover the similarity across the species using PCA analysis
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Fig. 3, the highest scored metabolites predicted by all
computational methods were M1, M2 and M8. The
metabolites M5 and M6 (Fig. 3) were only predicted by
Metaprint2D.

The docked complexes that predicted metabolically
active states were submitted to coupled energy minimiza-
tion and MD relaxation studies, to provide additional
structural relaxation and establishment of reasonable model
hydrogen bonding patterns. The relaxed complexes after
MD simulations were then visually analyzed to identify
active site residues that could potentially position (1) for
metabolism and/or stabilize transition states. The distances
of the substrate with key residues in the binding pocket of
CYP2C9 were calculated and shown in Table 2.

The association reaction of two molecules to form a
single complex must overcome a large entropic barrier, due
to the loss of translational and rotational degrees of
freedom. Therefore, to better estimate the protein-ligand

binding entropy we have used the Hessian matrix available
at SZYBKI software, using the complex LASSBio-294-
CYP2C9.

This methodology has shown that the Hessian matrix of
second derivatives built by a quasi-Newton optimizer
during geometry optimization of a molecule with a classical
molecular potential in the protein-receptor environment can
be used to predict vibrational entropies, being updated by
analyzing successive gradient vectors [28].

The five CYP2C9·LASSBio-294 complexes previously
optimized by MD simulations were used to estimate the
values for the ligand-protein of each docked pose, during
binding equilibrium protein + ligand protein·ligand.
These results are shown in Table 1. Remarkably, the lowest
values of protein-ligand binding entropy were found for the
SOM reaction types of S-oxidation (M1), aromatic hydrox-
ylation (M2) and dealkylation (M8) (Table 1), which
corroborate with the results achieved from MetaPrint2D

Fig. 3 Predicted metabolites for (1) using a combination of
computational methods: MetaPrint2D, docking, MD simulations and
QM calculations. The sites that are predicted both by MetaPrint2D and

docking are color-coded by likeness and binding energy. The
metabolites that were found experimentally are colored in red and
orange

Table 1 Metabolism site prediction from docking of LASSBio-294 into CYP2C9

Pose # Atom site of metabolism Metabolite ID da (Å) SOM reaction type ΔGcalc
b (kcal/mol) -TΔScalc (kcal/mol)

1 S tiophene ring M1 3.39 S-oxydation −4.89 21.0380

2 C13 tiophene ring M2 3.15 aromatic hydroxylation −4.81 21.2623

3 CH2 benzodioxolyl M8 3.06 CH2 dealkylation −4.77 21.3993

4 C12 tiophene ring M3 3.32 aromatic hydroxylation −4.69 21.5901

5 O benzodioxolyl M8 3.46 O-dealkylation −4.47 21.4010

a Indicates the distance between the site of metabolism and the heme iron of CYP2C9
b Calculated free energy of binding using the Affinity dG method
c Calculated values of entropy for the binding equilibria Protein + Ligand Protein-Ligand
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and docking, showing that these metabolites are the most
probable to be found experimentally.

The three docked poses of (1) that predicted the
metabolism of thiophene ring moiety (metabolites M1,
M2 and M3) are shown in Fig. 4. Inspection of the docked
structures (Fig. 4) suggests that the oxygen atoms of the
benzodioxolyl ring of (1) may be able to form hydrogen
bonds with Arg108 and Asn204 residues, which are well
recognized as important residues in the CYP2C9 active site
[10, 42]. This leaves the thiophene ring between 3.15 and
3.39Å from the iron heme (Table 1). This may reflect the
fact that the thiophene ring is an energetically favorable site
of metabolism, and may lead to sulfoxidated (M1) and
hydroxylated (M2 and M3) metabolites. The NH groups on
the Arg108 and Asn204 side chains were within hydrogen
bonding distance, approximately 2.3 - 3.8 and 1.9 - 2.8Å,
respectively, of the oxygen atoms of the benzodioxolyl ring
moiety, indicating that Arg108 and Asn204 residues could
potentially stabilize the binding mode of the ligand and also
the transition state during LASSBio-294 (1) metabolism.
Hence, Arg108 and Asn204 appeared to play a key role in

positioning (1) the thiophene ring moiety for metabolism
(Fig. 4).

In addition, Phe114, which is one of the most important
hydrophobic/aromatic complimentary site of CYP2C9
ligands, located at the entrance of the active site [43–45],
also appeared to play a role in positioning (1) for thiophene
ring moiety metabolism. The steric interactions between (1)
and the Phe114 residue come out to provide a hydrophobic
pocket. In addition to the steric interactions, LASSBio-
294’s benzene moiety was positioned to enable a π-bond
stacking with the Arg108 residue. These steric and
electronic interactions are shown to position the thiophene
ring moiety of (1) toward the heme, supporting the
sulfoxidation and hydroxylation pathways.

The other two metabolically active poses according to the
docking and MD simulations of (1) in the active site of
CYP2C9, predicted the metabolism of benzodioxolyl ring
moiety and are shown in Fig. 5. These orientations are
consistent with (A) CH2-dealkylation; and (B) O-dealkylation
of the benzodioxolyl ring, both for the formation of
metabolite M8.

Table 2 Distances of the poses of LASSBio-294 submitted to MD simulations with key residues in the binding pocket of CYP2C9

Docking solutions of LASSBio-294a

1 (M1) 2 (M2) 3 (M8) 4 (M3) 5 (M8)

Arg108 db (Å) 2.49±0.06 3.78±0.10 4.81±0.10 2.30±0.34 3.01±0.87

Asn204 d (Å) 2.78±0.15 1.88±0.32 5.37±0.22 2.35±0.07 3.63±0.43

Phe114 d (Å) 3.77±0.55 3.85±0.16 3.57±0.09 3.75±0.25 5.16±0.21

a The five docking solutions (and the metabolites ID) that had the substrate in a favorable distance to the heme iron for metabolism
b Distances calculated after MD simulations, with the standard deviations

Fig. 4 Binding poses of substrate in the active site of CYP2C9
(1R9O) predicted by docking and MD simulations. Orientations
consistent with (a) and (c) hydroxylation of thiophene ring, to
generate metabolites M3 and M2, respectively; (b) sulfoxidation, to
form metabolite M1. 3D representation including the heme group

(carbon atoms are shown in yellow), the active site water molecules
(red spheres) and LASSBio-294 (1) (cyan). (1) is shown in color-
coded sticks: carbon = cyan, nitrogen = blue, oxygen = red, sulfur =
yellow, and hydrogen = white. Green dot lines denote hydrogen bonds
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Active-site water molecules play an important role in
biological systems, facilitating promiscuous binding or an
increase in specificity and affinity. Studies of the water
molecules in the ligand-binding cavities of cytochromes
P450 indicate that their high mobility facilitates the
movement of the substrates and products into and out of
the active site [46, 47]. Therefore, we included three active-
site water molecules in molecular docking simulations of
the CYP2C9 enzyme. In Fig. 5(a and b), the hydrazone
nitrogen of (1) is involved in hydrogen bonding with one
active-site water molecule (Water 842), showing that this
water molecule could potentially stabilize the transition
state during benzodioxolyl ring moiety metabolism of (1).

As we can see from Fig. 5, the binding poses to generate
the metabolite M8 from both CH2-dealkylation (A) and O-
dealkylation (B) are not in a favorable position to form
hydrogen bonds with Arg108 and Asn204. Although these
poses have shown the lack of H-bonds, they have other
favorable interactions, such as a π-bond stacking between
the Arg108 residue and the thiophene ring of (1). Moreover,
the molecular recognition is reinforced by favorable
hydrophobic π-π stacking interactions among two phenyl-
alanine amino acids residues - Phe100 and Phe114 - with
thiophene ring of (1), as illustrated in Fig. 5. All these
interactions, are shown to support the dealkylation metab-
olism of (1), to form the metabolite M8.

Thus, for the five docked poses metabolically active
obtained, in all of them Arg108 residue was flagged as
potential substrate recognition moieties, in agreement with
previous studies [10, 42], providing solid evidence for the
preference of relatively small lipophilic anionic substrates
for CYP2C9.

Quantum chemical calculation is a major tool for predicting
CYP450 catalysis. From the calculated energy barrier value,
we can tell the absolute or relative oxidation potential in
xenobiotic metabolism [48–50]. The identification of the
active oxidant in the reaction process is fundamental to

understand the formation of products catalyzed by cyto-
chromes P450. According to experimental and computation-
al evidence, the major part of the large variety of reactions
catalyzed by P450 enzymes all involve the same active
species, a high-valent iron-oxo derivative of the active site
heme group, known as compound I (Cpd I) [34, 49]. Its
ground state has three unpaired electrons, two in Fe–O π*
orbitals, and one in a π-orbital of the porphyrin. Due to the
weak coupling between the Fe–O based and porphyrin
orbitals, the energy difference between the resulting quartet
and open-shell doublet states of Cpd I is very small, giving
rise to two-state reactivity (TSR) of P450 enzymes [51]. This
species reacts with substrates via oxygen atom transfer to
give oxygenated products. Indirect evidence of Cpd I
through kinetic isotope effects and product distributions has
implicated it to be the key oxidant involved in mono-
oxygenase reactions with substrates [52]. More recent low
pressure mass spectrometric studies [53, 54] on biomimetic
iron-porphyrins and computational modeling [49, 55] have
shown it to be a very efficient oxidant of substrate
hydroxylation and epoxidation reactions. The spin-
unrestricted UB3LYP hybrid DFT method was chosen as it
has been shown to predict accurately structures and
energetics for bioinorganic systems such as CYP450 Cpd I
and other transition-metal complexes [34, 49, 51].

In silico methods based on a combination of docking,
molecular dynamics and QM reactivity calculations can
bring us closer to understand drug metabolism and predict
drug–drug interactions. Therefore, we have carried out QM
calculations on two of the possible metabolic routes of (1),
aimed at an understanding of the mechanistic level of the
reactions to form the metabolites M1 and M2. These
metabolites were chosen to perform QM calculations to get
insight into how aromatic substrates are oxidized by human
P450 isoforms.

Figure 6 shows the potential energy profile and critical
species for the formation of M1 by Cpd I, in their lowest

Fig. 5 Binding poses of (1) in
the active site of CYP2C9. 3D
representation including the
heme group (carbon atoms are
shown in yellow), the active site
water molecules (red spheres)
and (1) (cyan). In both panels,
the water molecule Wat842 is
involved in hydrogen bonding
with (1), are shown as green
dotted lines. These orientations
are consistent with (a)
CH2-dealkylation; and
(b) O-dealkylation of the
benzodioxolyl ring, both for the
formation of metabolite M8
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doublet (2TSSO) and quartet (4TSSO) spin states as obtained
from QM modeling. The difference between doublet (low-
spin) and quartet (high-spin) states is mainly manifested in
the spin of the porphyrin ring; whether or not the porphyrin

ring’s spin is parallel to the unpaired spin on Fe and oxo
determines the multiplicity of the complex. The observed
mechanism is seen to involve an O-transfer step via
transition states 4,2TSSO that lead to the product complexes
4,2PSO. Although the doublet and quartet spin states are
degenerate for Cpd I, in the transition states, the doublet
spin state (2TSSO) is lower in energy than the quartet
(4TSSO) by 2.4 kcal mol-1 for CYP2C9. The 2TSPO is found
to lead to the porphyrin self-oxidation (PO) product 2PPO,
and this specie was previously reported [56]. The label
2TSPO signifies that this is a transition state for porphyrin
oxidation, leading to N-O porphyrin adducts found exper-
imentally [57]. The sulfoxidation reaction of (1) by Cpd I of
P450 is a concerted reaction via a transition state (2TSSO)
leading to sulfoxide product complex (2PSO). Thus, Cpd I
will carry out a fast sulfoxidation [58] of thiophene ring of
(1) with an energy barrier of 7.5 kcal mol-1, to form
metabolite M1.

The mechanism of aromatic hydroxylation of was
investigated for (1) hydroxylation using DFT calculations
of the whole reaction profile. Figure 7 shows the mecha-
nistic scheme for the aromatic hydroxylation of (1) by Cpd

Fig. 6 Potential energy profiles for the sulfoxidation of (1) by Cpd I,
to form the metabolite M1. Energies are in kcal mol-1 relative to the
reactant complex in the doublet (2TSSO; dashed line) and quartet
(4TSSO; plain line) spin states and contain zero-point corrections. All
data were obtained with DFT (UB3LYP) single-point calculations on
the optimized geometries using LACV3P(Fe)/6-311 + G**(rest)

Fig. 7 Mechanistic scheme for the aromatic oxidation of (1) by Cpd I.
Only the doublet low-spin (LS) mechanism is shown. The relative
energies (kcal mol-1) were taken from DFT (UB3LYP) single-point

calculations and were done on the optimized geometries using
LACV3P(Fe)/6-311 + G**(rest)
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I. The QM results show that during the reaction, thiophene
ring activation occurs by an initial attack on π-system of
the thiophene, which preferentially takes place via the
lower-energy doublet state (LS) to produce the transition
states that were found to have a hybrid nature with radical
(2TS1,2) and cationic (2TS1,3) characters [37, 59, 60]. This
hybrid character is retained in the tetrahedral intermediates,
which is neither fully cationic nor radicalar [59]. The levels
of the high-spin (HS) species are not shown, since the HS
transition states (TSs) are much higher in energy than the
LS state. The free energy of activation barrier for H
abstraction is 26.6 kcal mol-1 in the doublet state radical
(2TS1,2) and 27.4 kcal mol-1 in the doublet state cationic
(2TS1,3).

The main reaction path is electrophilic leading to the
cationic σ-complex, 23, while a minor path involves the
radical σ-complex, 22, and it is revealed to be the rate
determining step for all mechanism (Fig. 7). Ring closure in
these intermediates produces the epoxide product 24. The
epoxide product 24 does not rearrange to hydroxylated (26)
or ketone (27) at the thiophene moiety and requires an
appropriate media to protonate the epoxide or to catalyze its
ring opening. The computational study implicates that the
active species of the enzyme play a role as an internal base
and catalyzes directly the production of 26 e 27. This
enzymatic mechanism involves proton-shuttle mechanism
yielding to the protonated porphyrin intermediate 25. The
protonated porphyrin intermediate subsequently transfers the
proton back to the oxygen or to epoxy carbon that accounts
to hydroxylated or ketone by NIH shift mechanism. The
formation of M2 (26) via proton-shuttle mechanism is
predictive to be fast to compete with the post-enzymatic
conversion of epoxide (24) to the correspondent hydroxyl-
ation of thiophene by external acid catalysis.

As a result from our QM calculations, we suggest that
the formation of M1 catalyzed by the oxyferryl active site
of CYP2C9 is preferred in comparison to the thiophene ring
hydroxylation (M2), as the sulfoxidation pathway involves
a single step that occurs from the lowest-energy 2TSSO
species with a barrier of merely 7.5 kcal mol-1. In contrast,
the aromatic hydroxylation process has a higher energetic
barrier (26.6 kcal mol-1) established by the multi-step
proton-shuttle mechanism (Fig. 7).

Our laboratory has been performing a variety of in vitro
metabolism studies, using filamentous fungi, and in vivo
using rats and dogs [31, 61, 62]. Here, we have carried out
a metabolic fingerprint study, aimed to identify and quantify
all detectable metabolites produced in vitro by filamentous
fungi and to compare them with the mammalian metabo<
lites detected in dogs and rats. To achieve this goal, our
purpose was to use metabolic profiling for clustering the
similarity between the three studied species, taking advan-
tage of the principal component analysis (PCA) analysis.

In order to give a better understanding of the
metabolism of (1), a two-step LC-MS approach was
employed due to its wide dynamic range, reproducible
quantitative and quantitative analysis, and its ability to
analyze complex biological matrix. The samples were
analyzed using time-of-flight (TOF) mass spectrometry
(MS) followed by targeted identification of differentially
produced metabolites using quadrupole time-of-flight (Q-
TOF) MS/MS. An accurate-mass Q-TOF was applied to
preform targeted MS-MS analysis of a metabolite and
produce fragmentation information rule out candidate
identities generated previously by molecular formula
generation (MFG), to produce a list of possible molecular
formulas based on accurate-mass data and isotope patterns
for search at the METLIN personal metabolite database
[63]. According to the MS analysis, we proposed the
formation of metabolites M1, M2, M3 and M8. The
extracted ion chromatograms (EIC) for metabolites M1,
M2, M3 and M8 and the relative formation of each
product are shown in Fig. 8.

The compounds identified between each sample set
using molecular feature extraction (MFE), and then were
aligned for comparison using PCA. The objective was to
discover new components (variables), which account for
the majority of the differences in the data. The PCA plot
finds the relationships beyond pair-wise comparison and
enables biological interpretation through pathway analysis
clustering the data samples in distinct groups. Here, we
have clustered the data into four major groups (groups I to
IV) (Fig. 9). As we can see from Fig. 9, group IV shows
that the majority of samples could be found in all matrices,
i.e., dog, rat (plasma and urine) and whole-cell microor-
ganism media, and they produced frequently the same
metabolites.

In total, three different classes of biological matrix were
compared, and PCA analysis clearly distinguished the
common metabolites in the three different species. Minimal
differences on production of metabolites were founded
among them. MFA analysis accomplish to PCA pointed out
group IV as the major group of produced metabolites,
including the M1, M2, M3 and M8, in all mammalian
species and filamentous fungi strains studied here.

It is noteworthy that our final prediction model,
presented in Fig. 3, summarizes all the predicted metabo-
lites for (1) in our study, using a combination of
computational methods, i.e., MetaPrint2D, docking, MD
simulations and QM calculations. Moreover, the metabo-
lites that were found experimentally were marked in this
figure (as red and orange). The proposal of the integration
of different levels of theory for in silico prediction of drug
metabolism reported herein qualitatively predicted the
metabolites of (1), which was supported by the experimental
assays.
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Conclusions

Drug metabolism in the context of drug discovery is a
complex process that includes issues relating to metabolic
stability, enzyme identification, metabolite identification,
reactive metabolites, and enzyme inhibition properties. All
of these parameters are interrelated and need to be
considered in parallel in the development of new therapeu-
tic agents. Novel technologies that increase the probability
of making the right choice early save resources and
promote safety, efficacy and profitability.

In this work, we described the application of a combined
methodology to explore the site of metabolism prediction of
a new cardioactive drug prototype, (LASSBio-294, 1),
using MetaPrint2D, an improved algorithm for ligand-
based site of metabolism prediction, to predict the most
likely metabolites, combined with structure-based method-
ologies using docking, molecular dynamics and quantum
mechanical calculations, to predict the binding of the
substrate to CYP2C9 enzyme, to estimate the binding free
of energy and to study the energy profiles for the oxidation
of (1), along with comparison to a metabolic fingerprint

Fig. 9 PCA plot of samples for 16 h LC-MS positive runs after the
statistical analysis. PCA plot finds the relationships beyond pair-wise
comparison in complex experimental data and enables biological

interpretation through pathway analysis clustering the data samples in
distinct groups (I to IV)

Fig. 8 A two-step LC-MS approach employed in the metabolic
fingerprint profiling. The samples were analyzed using time-of-flight
(TOF) mass spectrometry (MS) followed by targeted identification of
differentially produced metabolites using quadrupole time-of-flight

(Q-TOF) MS/MS. (a) shows the EIC for metabolites M1, M2, M3 and
M8. (b) gives the relative proportion of formation of monitored the
ion transitions of the metabolites above by multiple reaction
monitoring (+MRM)
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profiling using LC-MS analysis. The results obtained using
the computational methods gave valuable information about
the probable metabolites of (1) (qualitatively) and also
about the important interactions of this lead compound with
the amino acid residues of the active site of CYP2C9.
Moreover, using a combination of different levels of theory
sheds light on the understanding of (1) metabolism by
CYP2C9 and its mechanisms.

The metabolic fingerprint profiling of (1) has shown that
three major metabolites were founded both in vitro and in
vivo studies in highest concentration (M1, M2, M3) and one
in lower concentration (M8). Therefore, our computational
study presented that Metaprint2D predicted M1 and M8 as
major metabolites. The docking predicted M1, M2, M3, and
M8 and QM calculations predicted the most favorable
energy barriers during the formation of M1. So, in
conclusion, M1 was correctly predicted, whereas M2 and
M3 would be expected to be minor products, and M8 should
be seen in small quantities.

The approach presented here has afforded new opportu-
nities to improve metabolite identification strategies. This
method can be also applicable for the qualitative prediction
of drug metabolism mediated by not only CYP2C9 but also
other CYP450 family enzymes.
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Abstract A systematic theoretical investigation on the
interaction energies of halogen-ionic bridges formed
between halide ions and the polar H atoms bonded to
N of protein moieties has been carried out by employ-
ing a variety of density functional methods. In this
procedure, full geometry optimizations are performed at
the Møller-Plesset second-order perturbation (MP2) level
of theory in conjunction with the Dunning’s augmented
correlation-consistent basis set, aug-cc-pVDZ. Subse-
quently, two distinct basis sets, i.e. 6-311++G(df,pd)
and aug-cc-pVTZ, are employed in the following single-
point calculations so as to check the stability of the
results obtained at the different levels of DFT. The
performance of DFT methods has been evaluated by
comparing the results with those obtained from the
rigorous MP2 theory. It is shown that the B98, B97-1,
and M05 give the lowest root-mean-square error
(RMSE) for predicting fluoride-binding energies, M05-2X,
MPW1B95, and MPW1PW91 have the best performance in
reproducing chloride-binding energies, B97-1, PBEK-
CIS, and PBE1KCIS present the optimal result for
bromide-binding energies, while B97-1, MPW1PW91,
and TPSS perform most well on iodide-binding ener-
gies. The popular B3LYP functional seems to be quite
modest for studying halide-protein moiety interactions.
In addition, the PBE1KCIS functional provide accuracies
close to the computationally expensive MP2 method for
the calculation of interaction energies of all halide-
binding systems.

Keywords DFT functional . Halide-binding energy . Halide
ion . Halide motif . Protein . Quantum-mechanics

Introduction

Water is the most common solvent and many of its unique
chemical and physical properties are determined by the
hydrogen-bonded network. Halide ions, especially chloride
ion, are among the most common anions present in nature,
and consequently numerous works have been addressed for
ascertaining the nature of halide ion-water interactions [1].
It is widely believed that the addition of halide ions to water
engenders structural changes in the hydrogen-bond network
well beyond the adjacent shell of solvating molecules,
which could affected the physicochemical properties of
aqueous solutions in viscosity, osmotic pressure, activity
coefficient, lowering of freezing point, refractive index and
optical rotation [2–4]. Apart from this, in recent years, there
have been a number of experimental and theoretical results
showing that halide ions are of fundamental importance in
chemical and biological systems when in studies of protein
stability and unfolding, enzymatic activity, membrane
permeability, in molecular forces in colloid science, ion
binding to micelles, ionic microemulsions, and so on [5–11].
Originally, it was thought that ion’s influence on water’s or
protein’s properties was caused at least in part by continually
forming and breaking hydrogen bonds through concerted
hydrogen bond rearrangements [12]. Both Ninham et al. and
Jungwirth et al. have done many works about the specific ion
effects on glycan, protein and colloid. They are convinced
that the dispersion forces are likely the foremost driving
forces for ion-specific surface phenomena [13–16]. Ninham
et al. found that the majority of the stabilization energy
between ions and protein charge groups or between ions and
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macroions stems from electrostatic force, and the specific ion
effects (also known as the Hofmeister effect [17]) on protein
stability could be explained by incorporating the ionic
dispersion potentials into classical double-layer theory [14,
18, 19]. In addition, Jungwirth et al. pointed out that the
polarizability is probably an important aspect for describing
ion’s behavior [20, 21]. Recent time-resolved and thermody-
namic studies of water molecules in salt solution, however,
suggested that, instead of remodeling water structure through
ions, direct ion-protein interactions as well as the ionic
interactions with water molecules that are bound to the
proteins seem to be also responsible for these effects [5].

Recently, by exhaustively surveying all high-quality
protein crystal structures deposited in the current Protein
Data Bank (PDB), we have found a striking magnitude
(>10 000) of halide ions located in the interior or attached
at the surface of proteins, from which we identified more
than 6000 halide motifs which we named halogen-ionic
bridges could show a potential role in conferring stability
and specificity for the structure of proteins and their
complexes with small ligands and nucleic acids [22]. In
these halide motifs, the halogen ions can bridge between
the spatially vicinal moieties in biomolecules, thus the role
of a water molecule in mediating the hydrogen-bond
network in biomolecules can be functionally replaced by a
halogen ion. This replacement is feasible because the
halogen-ionic bridge stabilization energy is estimated to be
generally more than 100 kcal·mol-1 for gas-phase states or
about 20 kcal·mol-1 for solution conditions, which is much
greater than that found in sophisticated water-mediated
(< 10 kcal·mol-1) and salt (~ 3.66 kcal·mol-1) bridges [22].
In addition, we also observed that most structured halide
motifs packed in protein crystals show a substantially
stabilizing effect on the protein architecture through direct
noncovalent interactions with their context [23].

Several specific intermolecular forces involved in ligand
recognition and binding by protein receptors have been
investigated in detail by means of the hybrid QM/MM
methodology [24–26]. These works confirmed that, if
reasonably collocated with a MM context, it is possible to
apply the expensive QM method to treat the nonbonding
interactions of interest in the whole biomacromolecular
framework. In our previous studies, we have applied a two-
layer ONIOM-based QM/MM methodology to investigate
the role and significance of the protein-ligand complexes
with structured halogen-ionic bridges in biological context
[22, 23]. These works have been done with some very
empirical rules for allocating seemingly appropriate DFT
theories to the QM layer, leading to the significant difficulty
in assessing the reliability of obtained results. This is
because in biomolecular systems, beyond the electrostatic
effect, the non-electrostatic factors, especially the dispersion
potential is also a critical factor governing the interaction

behavior of halides with protein moieties. In other words,
dispersion forces play an important role in halide ion-protein
interactions, but it cannot be treated properly using some
popular functionals, such as the B3LYP [27].

The density functional theory (DFT) has become the one of
most popular methods in computational chemistry community.
Because of its dramatic savings in computational effort, DFT
can be easily applied to considerably large molecular systems.
Nevertheless, it was also noted that, owing to the local-
corrected functional (LCF) used, DFT normally underappre-
ciated the dispersion force [28] which has been recognized as
an important factor affecting the physicochemical behavior
of the diffuse, polarizable anions [14, 15, 19]. Dispersion is
an intermolecular electron correlation effect, and the simplest
quantum mechanical (QM) method for electron correlation,
second-order Møller-Plesset perturbation theory (MP2),
describes dispersion well. Unfortunately, MP2 calculations
are far more expensive than DFT calculations. Its steep (N5)
scaling behavior prevents the application of MP2 to
relatively large biochemical entities. In the current condition,
it is difficult to calculate the effect of halide motifs on
biomacromolecular systems solely using the ab initio MP2
method, not to mention the much higher-level correlated
CCSD(T) method. Hence, it is significant to explore
strategies that are computationally less demanding but
describe these interactions with a similar accuracy as MP2
or higher levels of theory. A reasonable alternative is offered
by DFT methods, albeit the DFT approaches are less reliable
due to the lack of an appropriate description of the dispersion
aspect. Several previous studies have pointed out that the DFT
methods are able to provide the optimum compromise
between the accuracy and cost of computation [29–33].
Moreover, considering the vital significance of halide-
binding in proteins, it would be worth making large
biologically relevant systems associated with halide-binding
interactions tractable at a relatively reliable quantum-
mechanical level, which could reproduce the intermolecular
dispersion potentials best for a series of halide motifs in
biological context as that obtained at the MP2 level.

To better understand the significance of halide motifs in
functioning to protein and other biosystems, in the current
work, we launched a comprehensive investigation on the
interaction energetic properties of well-characterized halide
motifs forming by halide anions and electrophilic groups in
protein within the whole framework of protein-halide
complexes with particularly diverse DFT methods. These
halide motifs were found to ubiquitously exist in the
interior of proteins by exhaustively surveying all the protein
crystal structures deposited in the current Protein Data Bank
(PDB). TheMP2method is used as the reference because it can
well describe the long-range correlation effects that are usually
missing from the popular DFT functionals. Apart from this, we
evaluated the performance of 31 sophisticated DFT methods,
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one noncorrelation ab initio theory (Hartree-Fock), two semi-
empirical methods (AM1 and PM3) and one mechanical force
field (UFF) in comparison with the results obtained from the
accurate but expensive correlation ab initio MP2 theory.
Furthermore, several effective DFT functionals from the
comparison is applied to ONIOM-based QM/MM calculations
on real systems to render its feasibility.

Materials and methods

The geometry of halide motifs

To inspect the interaction profile of halogen ions with the
protein moieties of interest, a thorough search for all the low-
lying energy structures of halogen series (F−, Cl−, Br−, and I−)
binding to electrophilic hydrogen atoms of seven protein
groups, respectively, modeled by methanol (CH3OH) (for
hydroxyl group), N-methylformamide (HCONHCH3) (for
main chain’s amide), acetamide (CH3CONH2) (for side

chain’s amide), 3-methyl-1H-indole ( ) (for main

chain’s tryptophan), methylammonium (CH3NH3
+) (for

lysine’s ammonium), 4-methylimidazolium ( ) (for

histidine’s imidazolium), and N-methylguanidinium

( ) (for arginine’s guanidinium) were studied. In our

previous studies, we got the statistics about the distribution
states of halogen ions around different protein moieties
retrieved from the PDB [19], as shown in the first row in
Fig. 1, and the low-lying energy structures of Cl

−
in complex

with corresponding protein moieties obtained using a
thorough MP2/aug-cc-pVDZ search were depicted in the
second row in Fig. 1. In all cases, the halogen ions in the
ligands were observed to participate in halogen-ionic bridges
and interact with the hydrogen atoms of functional groups of

proteins. In geometry optimization procedure, the complex
model systems were fully optimized at the MP2/aug-cc-
pVDZ (or MP2/Lanl2DZ + (df) for iodine) level to avoid
secondary interactions between halogen ions and other
hydrogen atoms in these systems.

Quantum-mechanical (QM) calculations

All QM calculations were carried out using a locally
modified Gaussian suite of program [33, 34]. In this article,
we tested 31 practical DFT methods as follows: (a) six
GGAs: BP86 [35, 36], BLYP [36, 37], BPW91 [36, 38],
PW91 [38], HCTH [39], MPWLYP [36, 40], (b) two meta
GGA methods: PBEKCIS [41–44], TPSS [45, 46]; (c)
twelve hybrid GGA methods: B3LYP [37, 47, 48], B3P86
[35, 47], B3PW91 [38, 47], BH&HLYP [49], B97-1 [39],
B98 [50], MPW1PW91 [40], MPW1K [51], MPW3LYP
[37, 40, 52], O3LYP [53, 54], PBE1PBE [41], and X3LYP
[55]; (d) ten hybrid meta GGA methods: MPW1B95 [52],
MPWB1K [52], MPW1KCIS [56], MPWKCIS1K [56],
TPSS1KCIS [42–46, 57], PBE1KCIS [27, 41, 43], M05
[58], M05-2X [29], M06 [59], and M06-HF [60]. In
particular, we assessed one LSDA: SVWN5 [61, 62]. Since
the theory behind the various DFT functionals was clarified
fairly well in the original literature, we herein refer the
readers to these references for those details. Except two
more recent DFT methods, M06 and M06-HF, these
others tested density functionals that selected here for
evaluation were based on at least one of the following
reasons: (i) has been used to study the nonbonding
interactions in biomolecule systems [25, 27, 31, 52, 55,
63, 64]; (ii) has been used to investigate the bondings
involving halogens or halides [65–69], such as halogen-
water-hydrogen bridges [70], halogen bondings [71],
fluorine bondings [24]; (iii) has been used to determine
the intermolecular interaction potentials [72]; (iv) has been
used to study the hydrogen bonding systems [73–77]; (v)

Fig. 1 This figure is modified from our recent publication23
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has been used to predict the binding energies of some
dispersion-bound complexes [78].

Two basis sets, 6-311++G(df,pd) and the Dunning’s
augmented correlation consistent basis set, aug-cc-pVTZ,
were applied in the calculations so as to check the stability of
the results obtained at the DFT levels of theory. Since either
6-311++G(df,pd) or aug-cc-pVTZ is unavailable for iodine,
the Lanl2DZ basis set, augmented by a set of d and f
polarization functions (exponents 0.292 and 0.441,
respectively) and s and p diffuse functions (exponents
0.0569 and 0.0330, respectively), abbr. Lanl2DZ + (df),
was used for I−. This large version of a valence electron
orbit seems to be necessary for reliably describing the outer
electronic structure of diffuse anions, and previous theoretical
calculations which used this modified effective core potential
(ECP) basis set have been shown to give reasonably good
results for the I−-participating SN2 reactions [79] and the
OCS ··· I− van der Waals complexes [80].

Accurate estimation of nonbonded intermolecular potential
energies has long been a challenge in the computational
chemistry area. On the basis of a systematic study on a set of
nonbonded complexes, Rappe and Bernstein [81] concluded
that low levels of correlation theory such as the second-order
Møller-Plesset perturbation theory (MP2) can account for the
full range of intermolecular interactions, and the accuracy
mainly lies in the convergence with respect to the basis set
expansion. According to this claim, and also in consideration
of the size of the model complexes and the available computer
resources, we used MP2 theory to account for the correlation
energy and focused on the convergence. In addition, a detailed
examination of energetic profile of the simplest model
systems, water molecule (H2O) in complex with four kinds
of halogen ions (F−, Cl−, Br−, and I−) were carried out by
using the MP2 and CCSD(T) methods with two distinct basis
sets, 6-311++G(df, pd) and aug-cc-pVTZ (Table 1). As can be
seen, the results shown that the calculated interaction energies,

ΔEint, are very close to the experimental interaction energies
(in parentheses). Because the CCSD(T) calculations even with
the smaller 6-31G* basis set are extremely time-consuming,
this particularly stringent method was not considered here as
the reference method.

In order to comprehensively investigate the performance
of lower-level DFT calculations in reproducing halogen-
ionic bridges energies obtained at the expensive MP2 level,
other methods, including one noncorrelation ab initio
theory (HF) and two semi-empirical methods (AM1 and
PM3) were tested by performing calculations on seven
types of short halide-binding observed in crystal structures
of protein-ligand complexes deposited in the PDB. The
binding energies (ΔEint) calculated using QM methods were
obtained under the indirect supermolecule approach [82],
this method considers the difference between the total energy
of the complex and the sum energies of isolated monomers,
viz. ΔEint ¼ Ecomplex � Emonomer1 þ Emonomer2ð Þ, and the
associated basis set superposition error (BSSE) calculated
by MP2, DFT, and HF methods was eliminated by means of
the counterpoise strategy [83].

Database survey

Up to January 2010, there were 3391 protein records and 133
nucleic acid entries (solved at 3Å or better) deposited in the
PDB in which at least one nonbonded halogen ion is contained.
All selected complex structures were subjected to a pretreat-
ment procedure, that is, (i) remove water molecules, metal ions,
and other cofactors, except halogen ions and small organic
ligands; (ii) using the newly released SCWRL4 program [84] to
repair the missing side chains of protein residues; (iii)
according to the dictionary secondary structure of proteins
(DSSP) protocol [85] to assign the secondary structure class
for protein residues; (iv) using the REDUCE program [86] to
add hydrogen atoms for all protein and nucleic acid heavy

Table 1 Energetic parameters for the complexes of halogen ions with H2O serving as hydrogen donor

Complex ΔEint
a (kcal·mol-1)

Calculated Experimental

MP2/6-311++G(df, pd) MP2/aug-cc-PVTZ CCSD(T) /aug-cc-PVTZ

water-F‾ −21.87 −22.47 −26.61 −23.32 c

water-Cl‾ −13.90 −14.94 −14.11 −14.71 d

water-Br‾ −12.03 −12.70 −11.99 −11.71 d

water-I‾ b −9.47 −10.40 −9.80 −10.30 d

a ΔEint (kcal·mol-1 ) calculated at the MP2/6-311++G(df,pd) and MP2/aug-cc-pvtz theory and, if exist, experimental interaction energies
b Lanl2DZ + (df) basis set for iodine
c From gas-phase equilibrium measurements by high-pressure mass spectrometry [94].
d From gas-phase equilibrium measurements by pulsed electron beam high-pressure mass spectrometry [95]
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atoms (REDUCE was adopted here because this program was
tested in our previous study to be capable of precisely
reproducing the neutron diffraction-determined hydrogen’s
positions [87]); (v) using the PROPKA 2.0 program [88] to
define the protonation state of all charged residues at PH=7.0,
and (vi) using the I-INTERPRET program [89] to interpret the
structural information of small ligands, which are marked by
header ‘HETATM’ in the PDB files. This program reads an
assembly of ligands in standard PDB format and writes a
MOL2 file in which the atomic states, connection manners,
and neutral/charged hydrogen’s positions are assigned in a
considerable accuracy for these ligands. After that, the
following criteria were defined to describe the effective
biological interactions involving halogen ions: (i) for an
uncharged polar group, an ellipsoid with its center at the polar
H atom and its semi-minor/semi-major axis of 3.0/3.5Å was
constructed. Only those halogen ions occurring within
the ellipsoidal space and with the forming angle θ>120°
were considered; and (ii) for a charged basic group, the
halogen ions with their distances, D, to any one of the
heavy atoms in the group less than 4.5Å were considered.
In this way, a halogen-ionic bridge can be readily defined
as the entity in which a halogen ion effectively interacts
with two or more biomoleuclar groups simultaneously; the
number of the groups participating in bridging was called
the branch degree of this halogen-ionic bridge.

ONIOM-based QM/MM calculations on real systems

In this work, we also implemented the hybrid quantum
mechanical/molecular mechanical (QM/MM) calculations with
the help of the Gaussian 03 suite of programs [34] to examine
the structural and energetic properties for several well-
characterized halide motifs formed within the whole frame-
work of real protein-halide complexes. The structured halide
ion and the protein residues that are directly bound to the
halide ion were included in the QM layer and treated with a
high level of density functional theory (DFT/Lanl2DZ for
I− or DFT/6-31 + G* for other atoms/ions, from F− to I−, the
DFT functional is B98, M05-2X, B97-1, and MPW1PW91,
respectively, which were obtained fromTables 7, 8, 9, and 10),
while the of the rest atoms of protein in MM layer were
modeled by a low level of molecular force field (AMBER
parm96) [90]. The generalized AMBER force field (GAFF)
package was used for parameters not found in the AMBER
force field [91]. In addition, to mimic the real environment of
protein-ligand interactions, all of the water molecules in the
crystal structures were retained.

After QM/MM optimization, the QM layer of the model
was selected for higher-level single-point energy calculations,
which were performed by using the DFT (from F− to I−,
the DFT functional is B98, M05-2X, B97-1, and
MPW1PW91, respectively) and MP2 methods with two basis

sets, 6-311++G(df,pd) and aug-cc-pVTZ (or Lanl2DZ + (df)
for iodine). The interaction energy (ΔEint) was calculated as
described in the section of Quantum-Mechanical (QM)
calculation.

Results and discussion

Halide series with protein moieties

Using the criteria described in the section of database
survey, we selected the halide-binding with the polar
hydrogen atoms and positively charged groups of proteins
to conduct a systematical comparison of the DFT methods
in reproducing the interaction energies of halide series with
protein moieties (Fig. 1). From Fig. 1 it is seen that, as for
polar moieties like hydroxyl group, main chain’s amide, and
main chain’s tryptophan, each of them hold only one
hydrogen site to accommodate halogen ions, while the
congeneric side chain’s amide provides two hydrogen sites
for halogen ions. In addition, three charged moieties, i.e.
ammonium, imidazolium, and guanidinium, have a larger
surface to contact with surrounding halogen ions. In this
work, 10 kinds of low-lying energy structures of halogen
ions (F−, Cl−, Br−, and I−) binding to the electrophilic
hydrogen atoms of seven protein groups were calculated
(three kinds of low-lying energy structures for guanidinium
group of arginine and two for imidazolium group of
histidine, shown in Table 2). As can be seen from Table 2,
as might be anticipated, the mean intermolecular distances
for halogen-ionic bonds in biological systems increase with
the radius or polarizability of halide anions, namely
F−···H<< Cl−···H<Br−···H<I−···H. Note that the interaction
strength for these studied systems exhibits an opposite
tendency as that in intermolecular distances.

Interaction energy analysis

In this paper, we have assessed the ability of various DFT
methods for an accurate description of halide-binding com-
plexes. The interaction energies of these complexes (ΔEint)
were calculated by using the 31 appointed DFT methods in
conjunction with 6-311++G(df,pd) and Lanl2DZ + (df) basis
sets at respective optimized geometries. ΔEint was defined as
the minimum interaction energy between the halide ions and
their interacting partners. All model systems were arranged
in low-energy conformations (see Table 2). ΔEint calculated
using MP2/6-311++G(df,pd) theory as well as the other 34
QM methods and 1 MM method are tabulated in Tables 3, 4,
5 and 6. Subsequently, the MP2/6-311++G(df,pd) (or MP2/
Lanl2DZ + (df) for iodine) energies were used as the
“standard” values to evaluate the performance of all other
methods on the basis of these halide adducts.
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Table 2 Structure models of protein moieties in complex with different halide ions fully optimized at the MP2/aug-cc-PVDZ level

NO. F− Cl− Br− I−

1

N1-H ··· F− (1 F−) N13-H ··· Cl− (1 Cl−) N13-H ··· Br− (1 Br−) N13-H ··· I− (1 I−)

2

N2-H ··· F− (2 F−) N2-H ··· Cl− (2 Cl−) N2-H ··· Br− (2 Br−) N2-H ··· I− (2 I−)

3

N23-H ··· F− (3 F−) N23-H ··· Cl− (3 Cl−) N23-H ··· Br− (3 Br−) N23-H ··· I− (3 I−)

4

N1-H ··· F− (4 F−) N1-H ··· Cl− (4 Cl−) N1-H ··· Br− (4 Br−) N1-H ··· I− (4 I−)

5

N2-H ··· F− (5 F−) N2-H ··· Cl− (5 Cl−) N2-H ··· Br− (5 Br−) N2-H ··· I− (5 I−)

6

N-H··· F− (6 F−) N-H ··· Cl − (6 Cl−) N-H ··· Br− (6 Br−) N-H ··· I− (6 I−)

7

N-H ··· F− (7 F−) N-H ··· Cl− (7 Cl−) N-H ··· Br− (7 Br−) N-H ··· I− (7 I−)

8

O-H ··· F− (8 F−) O-H··· Cl − (8 Cl−) O-H ··· Br− (8 Br−) O-H ··· I− (8 I−)

9

N-H ··· F− (9 F−) N-H ··· Cl − (9 Cl−)

N-H ··· Br− (9 Br−) N-H ··· I− (9 I−)

10

N-H ··· F− (10 F−) N-H ··· Cl − (10 Cl−) N-H ··· Br− (10 Br−) N-H ··· I− (10 I−)
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To statistically evaluate the performance of the examined
methods, correlation coefficient (R2), root-mean-square
error (RMSE) and mean signed errors (MSEs) were
calculated for each of the method/basis set. Among them,
the MSE is taken as the difference between the values
calculated with the method tested and the correspondent
“true” value. In this case, the “true” value was calculated
based on the reference method (MP2). A negative MSE
indicates that the application of given methodology to the
type of halide-binding complexes considered overestimates
the value of interaction energies ΔEint, whereas a positive
MSE indicates that the value is underestimated.

Fluoride-binding energies

As seen from Table 3, the ΔEint based on MP2/6-311++G
(df,pd) shows that the strength of fluoride interactions with
polar moieties are quite modest, with their ΔEint falling into
the range of −33.440~−93.916 kcal mol-1. In contrast,
fluoride contacting with charged species, i.e. ammonium,
imidazolium, and guanidinium cations, giving rise to a
noticeably strong interaction energy (> −200 kcal mol-1),
which is much greater than the fluoride-binding energy
between the fluoride and the polar moieties. These
phenomena indicate that fluoride-binding in protein-ligand
interactions are mainly derived from electrostatic force,
which is more like the ionic bonding and much greater than
the hydrogen bonding (hydrogen bonding is imparted more
covalent and polar components) [92]. Fluoride interacting
with polar hydrogen atoms in acetamide (CH3CONH2 ··· F

−)
has received a slighter attraction (−47.230 kcal mol-1 as by
MP2) compared with the interacting with polar hydrogen
atom in main chain’s tryptophan (C8H8NH ··· F−), of which
the attractive energy is more than −90 kcal mol-1 as
determined by MP2. This difference could be owing to
the presence of aromatic ring in tryptophan, suggesting
that the fluorides in ligands are involved in nonbonding
interactions with the π-cloud of aromatic residues in the
protein matrix. Besides, by natural bond orbital (NBO)
[93] analysis of charge transfers (CTs) between the
fluoride and the polar hydrogen atom, we also found that
a lot of electrons are transferred to hydrogen from fluoride
upon the bonding.

The statistics of ΔEint calculated using the 34 lower-level
QM methods, 1 MM method and the corresponding R2,
RMSE and MSEs as the measures against that derived from
the rigorous MP2/6-311++G(df,pd) are also listed in Table 3.
As can be seen, most of the DFT methods perform very
well in reproducing MP2-based ΔEint; the greatest RMSE is
only 0.880 kcal mol-1, as obtained by the M05 functional.
While other DFT methods like SVWN5, BP86, BPW91,
M06, PBEKCIS, MPWLYP and BLYP are incapable of
reproducing well the MP2-based ΔEint with correspondingT
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RMSE of 6.121, 6.372, 6.443, 6.698, 7.051, 8.732 and
9.607 kcal mol-1, respectively.

Chloride-binding energies

As expected, the ΔEint obtained from MP2/6-311++G(df,
pd) shows that three charged moieties possess a much
stronger chlophilicity than the polar counterparts (Table 4).
The energies of chloride interactions with the three
charged moieties are in the range from −107.073
to −173.769 kcal mol-1, which is about 60~100 kcal mol-1

higher than the corresponding fluoride-binding energies. The
differences in the ΔEint between the chloride interacting with
hydroxyl group (CH3OH ··· Cl−) and its interactions with
polar hydrogen in main chain’s tryptophan (C8H8NH ··· Cl−)
is about 10 kcal mol-1 (by MP2). Note that this value is
significantly smaller than the interaction energy of the
corresponding fluoride-involved bonding, which is about
60 kcal mol-1 (by MP2), indicating that the changes in
complex affinity are not only contributed by the form of
halide bonds but also result from the indirect effects of
fluoride altering the electron distribution of protein moieties.

It is evident from Table 4 that most of the DFT methods
are much capable of reproducing chloride-ionic bridging
energies obtained at the MP2/6-311++G(df,pd) level, such
as MPWKCIS1K, BH&HLYP, MPW1PW91, and M05
functionals, with the corresponding RMSE are as follows:
0.907, 0.996, 1.252, and 1.281 kcal mol-1, respectively.
Both the SVWN5 and BLYP methods perform not very
well in reproducing MP2-based ΔEint.

Bromide-binding energies

The interaction energy ΔEint relative to the formation of the
bromide-ionic complexes are summarized in Table 5. As
can be seen, the ΔEint value from MP2/6-311++G(df,pd)
shows that the binding strengths of the ammonium ··· Br−

and imidazolium ··· Br− complexes are increased by about
50~70 kcal mol-1 when compared with the corresponding
chloride-binding counterparts as given in Table 4, while
increased by only 2~8 kcal mol-1 for the remaining species.
In addition, when reproducing the bromide-binding
energies obtained at the MP2/6-311++G(df,pd) level,
most of the DFT methods perform as well. 27 out of
the 31 density functionals gave the RMSE<1.5 kcal mol-1.
The worst performance functional is SVWN5 with a
particularly significant RMSE value of 8.315 kcal mol-1.

Iodide-binding energies

The ΔEint values of the iodide-ionic adducts are tabulated in
Table 6, from which the three charged complexes stand
more stably (ranging from −92.375 to −111.300 kcal mol-1)T
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as compared to those of remaining polar complexes
(ranging from −10.712 to −17.954 kcal mol-1). This
tendency is clearly consistent with the ΔEint of the other
halide-binding moieties in Tables 3, 4 and 5, indicating that,
compared to polar halide-bindings, charged are more
long-range and hold a considerable strength. In addition,
the fundamental difference between polar and charged
halide-bindings in long-range interaction behavior renders
their natures of ionic hydrogen bonding and ionic
bonding, respectively.

From the values of RMSE in Table 6, it is found that the
lowest RMSE with a value of 0.646 kcal mol-1 is obtained
from the PBE1KCIS functional, while the largest RMSE of
8.036 kcal mol-1 is associated with the SVWN5 method.
Other DFT methods like B98, B97-1, M05, MPW1K,
MPW1B95, MPW1KCIS, MPWB1K, MPW3LYP,
MPW1PW91, MPWKCIS1K, MPWLYP, and TPSS seem
to be capable of effectively reproducing the ΔEint calculated
at the MP2/6-311++G(df,pd) level.

From the data in Tables 3, 4, 5 and 6, it is evident that
the binding energies are basically consistent with the
complex geometries (Table 2), from I− to F− ion, the
complexes with shorter N-H ··· X− bonds have larger
binding energies, which reflects the decreasing tendency of
the size of halide ions. It is worth noting that the fluoride-
binding energies are much greater than that of other halide
adducts, probably because of the electro-negativity of
fluorine element is much stronger than other halogens. As
can be seen from Tables 3, 4, 5 and 6, the capability of 31
density functionals in determination of halide-bridging
energies was evaluated on a representative database of
seven protein moieties. In this study, most of these
functionals performed with the 6-311++G(df,pd) basis set
are thought to be good candidates of the stringent MP2/6-
311++G(df,pd) methods, such as PBE1KCIS, B98, B97-1,
B3PW91, M05, MPW1B95, MPW1K, MPW1PW91,
MPWB1K, and MPWKCIS1K. However, the SVWN5 is
a rather poor method with its RMSE>6.0 kcal mol-1, which
may be due to the fact that the SVWN5 functional fail to
account for important dispersion components. Overall, the
hybrid functionals generally yield deviations that are
smaller than the corresponding pure ones. Notably, good
performance of 6-311++G(df,pd), a relatively small basis
set considered here, is inspiring, specifically with regard
to bromide and iodide adducts, since one of the
attractive features of DFT is its application to large
systems for which larger basis sets can be very
demanding in routine calculations. The other QM
methods employed here, such as the ab initio HF theory
and the semi-empirical AM1 and PM3, all have a
noticeable feature to largely underestimate binding ener-
gies of all halide complexes, especially for fluoride
complexes, given by the great RMSE of 7.610, 39.760,T
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and 29.212 kcal mol-1, respectively. This is because, first,
the electron correlation is completely neglected by ab
initio HF theory, and second, the core electrons are not
included in the calculation using semi-empirical method
and only a minimal basis set was used. In addition, the
results obtained by UFF method are unsatisfactory.

To evaluate the dependence on basis set effect, we
performed additional calculations by using the 10 best
functionals in conjunction with the aug-cc-pVTZ basis set
for each halide-binding complex to reproduce the ΔEint of
halide complexes obtained at the more rigorous MP2/aug-
cc-pVTZ level of theory, the results are shown in Tables 7,
8, 9 and 10. These 10 DFT methods were selected from
Tables 3, 4, 5 and 6 with the lowest root-mean-square error
(RMSE) and highest correlation coefficient (R2). Attention
should be paid that the more widely used three-parameter
function, B3LYP, is not among the 10 best functionals, since
its average absolute deviations amount to 2.129 kcal mol-1

for halide-binding energy. The poor performance of B3LYP
is not only undergone with the halide-bound complexes, but
also encountered in hydrogen-bonded systems [27]. As can
be seen, when the basis set size increases from 6-311++G
(df,pd) to aug-cc-pVTZ, the MP2-based ΔEint values
decrease a litter (by 2.0~4.0 kcal mol-1 or less) in cases of
bromide and iodide adducts (Tables 5, 6 and Tables 9, 10),
while for the other two halide-bound systems in Tables 7, 8,
the ΔEint at the MP2/aug-cc-pVTZ level are very close to
those of MP2/6-311++G(df,pd). This could be attributed to
that the size of electron clouds increases from F− to I−, as
for Br− and I−, the electron diffusion are relatively larger
than that of F− and Cl−, the aug-cc-pVTZ basis set could
describe the large electron diffusion system more precisely
and therefore could obtain more stable energies. While for
the F− and Cl− cases, 6-311++G(df,pd) is a good compro-
mise between the accuracy and efficiency of computation.
In these tested DFT functionals, the B98, B97-1, and M05
gave the lowest RMSE for fluoride-binding energies, the
optimal performances of chloride-binding energies were
obtained with M05-2X, MPW1B95, and MPW1PW91, the
best results of bromide-binding energies were obtained with
the B97-1, PBEKCIS, and PBE1KCIS, meanwhile, B97-1,
MPW1PW91, and TPSS gave the lowest RMSE for iodide
interaction energies. Overall, the statistics listed in Tables 7,
8, 9 and 10 showed that the PBE1KCIS functional is a good
candidate for the general purpose of analyzing interaction
behavior of biological adducts involving halide ions.

QM/MM analysis of halide-bindings in protein-ligand
complexes

To better understand the effects of halide-binding and
further prove the feasibility of DFT functionals obtained
by above analysis based on small model systems, theT
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crystal structures of haloalkane dehalogenase (DhlA) in
complex with F−, Cl−, Br− and I− were selected to perform
ONIOM-based QM/MM calculations, in which the halide
ions and the vicinal residues Trp125 and Trp175 that directly
bound to the halide ions were included in the QM layer.

The complex structures of these studied systems were
fully optimized using the two-layered QM/MM scheme, as

described in the section of ONIOM-based QM/MM
calculations on real systems. The electrostatic interactions
between QM and MM layers were treated in terms of the
mechanical embedding strategy to save computational cost.
The optimized structures of QM layer with the presence of
halide ions are depicted in Fig. 2, and corresponding
geometrical and energetic parameters are assembled in

Fig. 2 Superposition of model QM layers, which were optimized with
the presence of halide ions (PDB: 2eda). Binding by and fluoride (a),
chloride (b), bromide (c). It is worth noting that the QM/MM

optimization procedure for the iodide ion model structure did not
reach the convergence

Table 11 Geometrical and energetic parameters for halide motifs depicted in Fig. 2

PDB Ion 1CIJ F− 1CIJ Cl− 1CIJ Br−

d(N···H)Trp125 (Å) CSa 1.000 1.000 1.000

OSb 1.053 1.019 1.021

d(HTrp125···X
−) (Å) CS 2.616 2.616 2.616

OS 1.695 2.360 2.524

d(N···H)Trp175 (Å) CS 1.000 1.000 1.000

OS 1.101 1.029 1.034

d(HTrp175···X
−) (Å) CS 2.300 2.300 2.300

OS 1.437 2.135 2.271

∠NTrp125HTrp125X
− (°) CS 172.465 172.465 172.465

OS 159.640 145.920 137.113

∠HTrp125X
−HTrp175 (°) CS 164.941 164.941 164.941

OS 162.916 166.603 174.556

∠NTrp175HTrp175X
− (°) CS 145.584 145.584 145.584

OS 163.320 169.408 169.821

Energy (kcal/mol) Trp125···F− Trp175···F− Trp125···Cl− Trp175···Cl− Trp125···Br− Trp175···Br−

ΔEint [MP2/6-311++G(df,pd)] −36.016 −45.147 −20.148 −22.611 −17.806 −20.659
ΔEint [MP2/aug-cc-pVTZ] −37.577 −47.050 −22.068 −24.556 −19.583 −22.198
ΔEint [DFT

d/6-311++G(df,pd)] −37.130 −46.086 −20.910 −22.701 −17.854 −20.346
ΔEint [DFT

d/aug-cc-pVTZ] −37.062 −46.180 −21.410 −23.236 −17.987 −20.469

a Crystal structure
b Optimized structure
c Root mean-square derivation of the QM layer of the models relative to X-ray crystal structures
d From F¯ to Br¯, the DFT functional is B98, M05-2X, and B97-1, respectively

J Mol Model (2012) 18:2079–2098 2095



Table 11. As seen, the calculated interatomic X− ··· H−N
distances are in the range 1.437~2.524Å. These values are
smaller than the sums of the van der Waals radii of the
atoms involved. In fact, the QM/MM optimizations fail to
converge for the model system with the presence of iodide
ion, implying a morbid feature associated with the potential
energy surface of this artifact, since the iodine ion is too
large to be inserted in the halophilic site of DhlA.
Furthermore, the halide-binding energies are calculated to
be in the range −19.583 to −47.050 kcal mol-1 at the MP2/
aug-cc-pVTZ level via single-point calculations. Note that
these values are significantly smaller than the interaction
energy of isolated fluoride-binding system and very
close to those of isolated chloride- and bromide-binding
counterparts, indicating that in this protein structure, the
distances to the two tryptophans (residues Trp125 and
Trp175) are optimized for chloride and bromide (around
2Å). Unfortunately, fluoride binding requires a much
smaller binding distance of about 1Å, which cannot be
satisfied at both sides in such short QM/MM simulation
time. From Table 11 it is seen that, in comparison with the
MP2 method, the DFT method gives binding energies very
close to those obtained at the MP2 level with the same
basis set. These results suggest that the B98, M05-2X, and
B97-1 are good choices for accurately determining the
fluoride-, chloride-, and bromide-binding energy of moderate
systems, respectively.

Conclusions

In this article, we report a systematical comparison of 31 DFT
methods in reproducing the energetic behaviors of halide
series (F−, Cl−, Br−, and I−) binding to the polar and charged
moieties of proteins. All model complex structures are fully
optimized by using the MP2 method in conjunction with the
aug-cc-pVDZ basis set. Two basis sets, 6-311++G(df,pd) and
aug-cc-pVTZ, are used to calculate the interaction energy
ΔEint involved in halide complexes so as to check the
stability of the results obtained using various DFT theories.
Meanwhile, the performance of 31 DFT methods and other
methods, including one noncorrelation ab initio theory (HF),
two semi-empirical methods (AM1 and PM3) and one
mechanical force field (UFF), has been assessed on the basis
of the database obtained with MP2 calculations. The results
are imparted with the following remarks: (1) most DFT
methods perform well in determining ΔEint of halide-binding
complexes, among the tested DFT functionals, besides, the
hybrid functionals generally yield deviations generally
smaller than the corresponding pure ones; (2) the perfor-
mance of the relatively small basis set, 6-311++G(df,pd), is
an appropriate choice that could precisely describe the ΔEint

of fluoride and chloride interacting with model protein
moieties; (3) the HF, AM1, and PM3 methods tested in this
work have a strong tendency to underestimate binding
energies of all halide adducts, especially for fluoride-
binding complexes, while the UFF method can’t be used to
describe the interaction energy of halide-binding complexes;
(4) the widely used function, B3LYP, seems not to be the best
functional for describing the ΔEint of halide-moiety
interactions; (5) the B98, B97-1, and M05 give the lowest
RMSE for fluoride-binding energies, the best performances of
chloride-binding energies are obtained with M05-2X,
MPW1B95, and MPW1PW91, the best results of bromide-
binding energies are determined by B97-1, PBEKCIS, and
PBE1KCIS, meanwhile, B97-1, MPW1PW91, and TPSS
give rise to the lowest RMSE for iodide-binding energies. In
addition, the PBE1KCIS functional provides accuracies close
to the computationally expensive MP2 method for the
calculation of the ΔEint of halide adducts.
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Abstract In Ti02 nanostructured dye-sensitized solar cells
indole based organic dyes D149, D205 exhibits greater
power conversion efficiency. Such organic dye molecules
are easily undergone for aggregation. Aggregation in dye
molecules leads to reduce electron transfer process in dye-
sensitized solar cells. Therefore, anti-aggregating agents
such as chenodeoxycholic acid are commonly added to
organic dye solution in DSSCs. Studying aggregation of
such dye molecules in the absence of semiconductors gives
a detailed influence of anti-aggregating agents on dye
molecules. Atomistic level of molecular dynamics (MD)
simulations were performed on aggregation of indole type dye
molecules D149, D205 and D205-F with anti-aggregating
agent chenodeoxy cholic acid using AMBER program. The
trajectories of the MD simulations were analyzed with order
parameters such as radial atom pair distribution functions g(r),
diffusion coefficients and root mean square deviations values.
MD results suggest that addition of chenodeoxy cholic acid to
dyes significantly reduces structural arrangement and
increases conformational flexibility and mobility of dye
molecules. The influence of semi-perfluorinated alkyl chains
in indole dye molecules was analyzed. The parameters such as

open-circuit voltage (Voc) and power conversion efficiency
(η) of dye-sensitized solar cells are corroborated with
flexibility and diffusion values of dye molecules.

Keywords MD simulation . Diffusion coefficients (D) .

Dye-sensitized solar cells . Flexibility . Indole dyes . Radial
atom pair distribution function g(r) . Root mean square
deviations (RMSD)

Introduction

Dye-sensitized solar cells (DSSCs) are current topic of
research in the field of green chemistry and renewable energy
resources. Regan et al. [1] have shown the significance of
dye-sensitized solar cells. Greater performance of DSSCs
above 11% power conversion efficiency under standard AM
1.5 solar illumination was obtained with electrolytes con-
sisting of organic solvents [2, 3]. Organic dye molecules
have considerable importance in comparison with inorganic
dye molecules by their applicability to green chemistry in
DSSCs. Several types of organic dyes have been reported
including near IR dyes for DSSCs applications [4–6].
However, greater power conversion efficiency of DSSCs
was observed in indole based organic dye molecules D149
and D205 [7–9]. The limitations of organic dyes are reduced
in molar absorption coefficient and increased dye aggrega-
tion. Especially, dye aggregation suppresses electron transport
from the excited dye molecule to TiO2 semiconductor surface
resulting in lower DSSCs performance. Therefore, an anti-
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aggregating agent such as chenodeoxy cholic acid (CDCA) is
used with organic dyes to enhance the electron transport for
larger power conversion efficiency of DSSCs [10–12]. Ito et
al. show the effect of adding CDCA to indole dye molecules
D149 (ethyl), D205 (octyl alkyl chain) in DSSCs perfor-
mance [8]. The performance of DSSCs with D149 and D205
dyes and CDCA is presented in Table 1. D205 dye with octyl
alkyl chain shows larger open circuit voltage Voc and power
conversion efficiency values than D149 dye with an ethyl
alkyl chain in DSSCs. Moreover, addition of CDCA to D205
and D149 dye molecules results in increased DSSCs
performance in both dyes. However, exact contribution of
CDCAwith organic dye molecules in DSSCs performance is
not clearly reported. There are limited theoretical studies
performed on the role of CDCA in aggregation of organic
dyes with TiO2 semiconductor surface. Recently, time
dependent density functional theory studies on isolated
D149, D102 and D131 dye molecules were carried out with
respect to their conformational and absorption spectra [13].
Also, ab initio and second order Möller-Plesset perturbation
level of theories were adopted to study the aggregation of
D102 and D149 dyes in the presence of TiO2 surface in
which two dye molecules are attached on the (TiO2)82 surface
to consider the interaction between dye molecules and TiO2

surface [14].
Shlyk-Kerner et al. and Nojiri et al. showed the relation

between conformational flexibility of the molecule and the
electron transfer process. Mainly, in the photosynthesis
process protein flexibility and their conformational changes
are very important for conversion of solar energy into
electrochemical potential as well as in biological systems
where the electron transfer process completely depends on
the functional protein's flexibility [15, 16]. Therefore in this
work, we performed atomistic level of molecular dynamics
(MD) simulations on the clusters (128 molecules) of D149,
D205 and D205-F dye molecules with CDCA in order to
get some qualitative information about aggregation, con-
formational flexibility and diffusion values of dye mole-
cules in the presence of CDCA. In this simulation study, we
have not considered TiO2 semiconductor surface because

we are interested in the effect of adding CDCA to dye
molecules on flexibility and aggregation of dyes.

Results and discussion

The structures of the considered dye molecules and CDCA
are presented in Fig. 1. D205-F model dye is different from
D205 dye by the semi-perfluorinated alkyl chain (see
Fig. 1). MD simulations were carried out on clusters of
dyes and CDCA with implementing AMBER10 version
using “GAFF” force field [17, 18]. The applicability of this
force field on the organic molecules was shown with in the
AMBER program [19–22]. Atomic net charges for the
molecules were adapted from the fit to reproduce electro-
static potential within the HF/6-31G(d) level. The proce-
dure is consistent with the defined atomic charges for
amino-acid fragments in the AMBER program [23]. The
starting structures of clusters were arranged by 128
monomers. MD simulations were performed in five
different clusters. The clusters are (1). CDCA/128cluster,
(2). D149/128cluster, (3). D205/128cluster, (4). D205-F/
128cluster, (5). mixture: (64CDCA+64D149)/128cluster.
Clusters were arranged by (4x4x4x2) layer arrangement of
monomers. In cluster (5), CDCA and D149 molecules were
arranged alternatively in layer arrangement. The MD
simulations on clusters were performed with total simula-
tion time of 6 ns with time step of 2 fs at temperature 300 K
including heating phase. The systems were heated from 0 K
to 300 K in the first 500 ps time period and equilibrated
with NVT condition for 2.5 ns at 300 K. Finally systems
were equilibrated for 3 ns with NPT condition at 300 K.
The final 3 ns MD run have been considered for analysis of
trajectories. The periodic boundary conditions were adopted
during the MD run. The shake algorithm used for the
hydrogen atoms and heavy atoms bonds during MD run
[24]. The non-bonded interactions were calculated with a
cut-off radius of 800 pm. The MD results were analyzed
with AMBER10 standard analysis tool PTRAJ. The
aggregation and structure formation in the clusters can be

Table 1 Performance of DSSCs
with D149 and D205 dyes in
the absence and presence of
CDCA [Ref.8]

Photovoltaic characteristics In the absence of CDCA In the presence of CDCA

D149 D205 D149 D205

Short-circuit current (Jsc) (mA/cm2) 19.08 18.99 19.86 18.68

Open-circuit voltage (Voc) (V) 0.638 0.656 0.644 0.710

Fill factor (FF) 0.682 0.678 0.694 0.707

Efficiency (%) 8.26 8.43 8.85 9.40
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Fig. 1 Structures of dye molecules with anti-aggregating agent: (1).
Chenodeoxycholic acid (CDCA); (2). Dye: D149; (3). Dye: D205; (4).
Model dye: D205-F; The reference carbon atom “C*“ is in the

carboxylic group (−C*OOH) of CDCA and dye molecules (which is
considered in g(r) calc.)

J Mol Model (2012) 18:2099–2104 2101



analyzed by the calculation of radial atom pair distribution
function g(r) [25]. The g(r) values were calculated related to
the reference carbon atom “C” in the carboxylic group of
the dye and CDCA molecules (see Fig. 1). The conforma-
tional flexibility of dye molecules core part and terminal
(alkyl /semi-perfluorinated alkyl) chain part estimated by
root mean square deviation (RMSD) values of the
corresponding atoms. The mobility of dye molecules in
the clusters was investigated by diffusion coefficients which
is calculated by Einstein model <Δr2> = 6Dt within the
MD trajectories where <Δr2> is the mass weighted mean
square displacements and D can be obtained by a linear fit
[25].

The calculated radial atom pair distribution function g(r)
results for the clusters are given in Figs. 2 and 3. In Fig. 2,
g(r) curves of cluster of CDCA (1) and cluster of D149 (2)
molecules are shown. In results both molecules show
maxima of g(r) slightly different values but the pattern of

both curves almost same. In Fig. 3, g(r) values of cluster (5)
(mixture: D149/64+CDCA/64) is presented. In a mixture of
CDCA and D149 molecules, lower g(r) value and broaden
curve are observed for D149 molecules. It indicates
comparatively reduced long range order in D149 dye
molecules than CDCA molecules. Moreover, a distinct g
(r) curve of CDCA indicates more structure formation in
CDCA molecules than D149 molecules in a mixture of
such molecules. The g(r) results for the clusters (3) D205/
128 and cluster (4) D205-F/128 are given with cluster (2)
D149/128 in Fig. 4. It results in influence of semi-
perfluorinated, ethyl and octyl alkyl chains on structure
formation. The maxima of g(r) value for D149 (ethyl) are
larger thanD205 (octyl) and D205-F (semi-perfluorinated octyl
alkyl chain) which indicates reduced aggregation in D205,
D205-F dyes in comparison to D149 dye. The g(r) values of
D205-F dye molecules show two maxima at 3.9Å and 4.3Å

Fig. 2 Radial atom pair distribution function g(r) for CDCA in cluster
(1) CDCA/128 and D149 in cluster (2) D149/128; [T=300 K, t=3 ns]

Fig. 3 Radial atom pair distribution function g(r) for CDCA and
D149 in cluster (5) (CDCA/64+D149/64); [T=300 K, t=3 ns]

Fig. 4 Radial atom pair distribution function g(r) for the cluster D149
in (2): D149/128; D205 in cluster (3). D205/128 and D205-F in
cluster (4). D205-F; [T=300 K, t=3 ns]

Fig. 5 Root mean square deviations values for CDCA and D149 in
cluster (1). CDCA/128 and cluster (2). D149/128; [T=300 K, t=3 ns]
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which results in the possibility of different arrangement of
D205-F dye molecules.

The conformational flexibility of dye molecules are
estimated by root mean square (RMSD) values. The RMSD
values of clusters (1) CDCA/128, cluster (2) D149/128 and
cluster (5) mixture; [(CDCA/64+D149/64)/128] are given
in Figs. 5 and 6. In individual clusters CDCA molecules
show larger conformational flexibility than D149 dye
molecules (see Fig. 5). However, addition of CDCA to
D149 dye molecules slightly increases conformational
flexibility of both molecules in cluster (5) than in their
individual clusters (1) and (2) (see Fig. 6). The conforma-
tional flexibility of the core and terminal chain parts of
D205 and D205-F dye molecules was estimated in cluster
(3) D205/128 and cluster (4) D205-F/128. The RMSD
values for these two clusters (3) and (4) are given in Fig. 7.
The core part of D205-F dye molecule shows larger
conformational flexibility than D205 dye molecules. It

indicates semi-perfluorinated alkyl chain have influence on
conformational flexibility of core part of D205-F which is
not observed by octyl alkyl chain (D205).

The calculated diffusion coefficients values of five
different clusters are presented (see Table 2). The D205-F
(semi-perfluorinated alkyl chain) dye shows larger diffusion
value than D149, D205 dyes and CDCA molecules. The
addition of CDCA to D149 dye molecules leads to larger
diffusion value for D149 and lower value for CDCA
molecules. The D205 (octyl) dye shows larger diffusion
value than D149 (ethyl) molecule. The calculated diffusion
coefficients values are supporting conformational RMSD
findings. Moreover, diffusion value of dye molecules show
correlation with open-circuit voltage (Voc) and power
conversion efficiency (η) values of DSSCs (see Tables 1
and 2).

Conclusions

Atomistic MD simulation results adding CDCA to D149 dye
molecules significantly increases conformational flexibility,
diffusion values of dye molecules as well as reduce
aggregation in dye molecules. Dye molecule D205 with
longer alkyl chains shows larger mobility than D149 dye with
shorter alkyl chain. Replacing alkyl chains (D205) by semi-
perfluorinated alkyl chains (D205-F) in dyemolecules leads to
increase in conformational flexibility and significantly much
larger diffusion coefficients values in perfluorinated dye
molecules. Increased conformational flexibility, diffusion
values of dye and reduced aggregation of dye are directly
correlated with faster electron transfer from excited state of
dye to TiO2 semiconductor in DSSCs. Therefore designing
highly flexible and conjugated dye molecules are necessary
for complete harvesting of sun light in DSSCs. Thus open-
circuit voltage and power conversion efficiency of DSSCs
are directly correlated with larger conformational flexibility
and diffusion values of organic dye molecules.

Fig. 7 Root mean square deviations values of core and terminal chain
part of D205, D205-F dye molecules in cluster (3): D205/128 and
cluster (4): D205-F/128; [T=300 K, t=3 ns]

Table 2 Diffusion coefficients of the clusters (T=300 K, t=3ns)

Cluster name D (10-12m2s-1)

(1) CDCA/128 47.80

(2) D149/128 24.80

(3) D205/128 46.88

(4) D205-F/128 73.64

(5) (CDCA+D149)/128; CDCA/64 34.98

(5) (CDCA+D149)/128; D149/64 30.46

Fig. 6 Root mean square deviations values for CDCA and D149 in
cluster (5). (CDCA/64+D149/64) ; [T=300 K, t=3 ns]
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Abstract The explosive sensitivity upon the formation of
molecule-cation interaction between the nitro group of 3,4-
dinitropyrazole (DNP) and H+, Li+, Na+, Be2+ or Mg2+ has
been investigated using the B3LYP and MP2(full) methods
with the 6-311++G** and 6-311++G(2df,2p) basis sets.
The bond dissociation energy (BDE) of the C3–N7 trigger
bond has also been discussed for the DNP monomer and
the corresponding complex. The interaction between the
oxygen atom of nitro group and H+ in DNP…H+ is partly
covalent in nature. The molecule-cation interaction and
bond dissociation energy of the C3–N7 trigger bond follow
the order of DNP…Be2+ > DNP…Mg2+ > DNP…Li+ >
DNP…Na+. Except for DNP…H+, the increment of the
trigger bond dissociation energy in comparison with the
DNP monomer correlates well with the molecule-cation
interaction energy, natural charge of the nitro group, electron
density ρBCP(C3–N7), delocalization energy E(2) and NBO
charge transfer. The analyses of atoms in molecules (AIM),
natural bond orbital (NBO) and electron density shifts have
shown that the electron density of the nitro group shifts
toward the C3–N7 trigger bond upon the formation of the
molecule-cation interaction. Thus, the trigger bond is
strengthened and the sensitivity of DNP is reduced.

Keywords 3,4-dinitropyrazole . Molecule-cation
interaction .MP2 . Sensitivity . Trigger bond

Introduction

The search for new and thermally stable insensitive
explosives has long been a primary goal in the field of
energetic materials chemistry in order to avoid the
catastrophic explosions in use and meet the requirements
of military applications [1–4]. Therefore, recently much
attention has been paid to investigate the relationship
between the sensitivity and structure of the energetic
compounds [5–21]. Introducing the desensitizing agents
(such as aquadag, stearic acid and superpolymer) and
certain functional groups into the structures of explosives
have become the main methods to reduce explosive
sensitivity [22].

The experimental measure of the sensitivity is dangerous
and difficult. Thus, the theoretical prediction of the
sensitivity and selection to the way of reducing the
sensitivity become very urgent. Peter et al. have examined
the effects of electric fields upon the trigger bonds using the
B3PW91/6-31 G** method. It was found that the fields
interact favorably energetically with the molecules and
increase the stretching frequencies of the trigger bonds. The
results show that the field-induced effects can have a direct
bearing upon sensitivity to accidental detonation [23, 24].
Furthermore, many theoretical investigations have shown
that the explosive sensitivity has a good linear relationship
with the bond dissociation energy (BDE) of the trigger
bond or the charge of nitro group [9, 10, 12–14, 16, 17, 20,
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21]. In particular, it has been confirmed that the intermo-
lecular interaction can reduce the explosive sensitivity [22].
It is well known that molecule-cation interaction is one of
the strongest interactions [25–31]. This suggests that the
molecule-cation interaction may reduce available explosive
sensitivity. However, to our knowledge, no investigation
into the effect of the molecule-cation interaction on the
explosive sensitivity or the BDE of the trigger bond has
been presented.

For the explosive with nitro group, many researchers
believe that the weakest bond linked nitro group, such as
C–NO2, N–NO2 or O–NO2, is the trigger spot [32, 33]. If
the molecule-cation interaction can occur between cation
and nitro group, the π3

4 system of nitro group may be
destroyed due to the π-electron rearrangement upon
metal cation addition. Thus, the π-electron might
transfer easily from nitro group to the C–N, N–N and
O–N bonds. As a result, the trigger bond may be
strengthened and the sensitivity of the explosive with
nitro group might be reduced.

Recently, our group has been devoted to investigations
on the synthesis and properties of 3,4-dinitropyrazole
(DNP) [34], which is reported as a melt-cast explosive for
replacing TNT [35]. To find out the way of reducing the
sensitivity of DNP, in this paper, we will investigate
theoretically the correlation of the sensitivity with the
molecule-cation interaction between the nitro group of DNP
and H+, Li+, Na+, Be2+ or Mg2+. On the other hand, lots of
investigations have shown that the intensity of trigger bond
correlates with the bond length and bond dissociation
energy of trigger bond as well as the nitro group charges
[16, 36]. Therefore, we will also analyze the changes of the
bond length and bond dissociation energy of the trigger
bond as well as nitro group charge upon the formation of
the molecule-cation interaction. The analyses of atoms in
molecules (AIM), natural bond orbital (NBO) and electron
density shifts will be applied to explain the nature of
these changes.

Computational details

As a cheap and effective approach, density functional
theory (DFT) is feasible to optimize the geometry of the
high energetic materials, while for the energetic stability,
the value by the MP2 method is quite close to the
experimental result [37–42]. In addition, the high quality
basis set is a crucial factor for calculating the property of
the complex [43, 44]. Taking the factors above in balance,
we decide to use the DFT-B3LYP and MP2(full) methods
with the 6-311++G** and 6-311++G(2df,2p) basis sets in
this work.

All calculations have been performed with Gaussian 03
programs [45]. The title complexes have been fully
optimized using the DFT-B3LYP and MP2(full) methods
with the 6-311++G** and 6-311++G(2df,2p) basis sets, and
the structures corresponding to the minimum energy points
at the molecular energy hypersurface (NImag=0) have been
obtained. Single point energy calculations have been
carried out at the same levels. The NBO method [46] and
the shifts of the electron density [47] that accompanies the
formation of the complex have been analyzed at B3LYP/6-
311++G(2df,2p) level, and the topological charge density
has been displayed by the AIM method [48] using
AIMPAC program [49] at the same level.

The BDE of the C–NO2 bond has been calculated. It is
defined as:

BDE ¼ E R�ð Þ þ E �NO2...Mð Þ � E RNO2...Mð Þ: ð1Þ

R· is 4-nitropyrazole radical. M is H+, Li+, Na+, Be2+

or Mg2+.
Molecule-cation interaction (Eint.) has been investigated

with the definition of the energy difference between the
complex and isolated monomer.

Eint: ¼ E DNP...Mð Þ � E DNPð Þ � E Mð Þ ð2Þ

Eint. is corrected with the basis set superposition error
(BSSE) [50, 51] and zero-point energy (ZPE) corrections.

The nitro group charge QNO2 is calculated as Eq. 3.

QNO2 ¼ QN þ QO1 þ QO2 ð3Þ

The QN, QO1 and QO2 are the charges on the N and the O
atoms of the nitro group, respectively.

Results and discussion

The structures and bond critical points (BCPs) of the
complexes are shown in Fig. 1. The selected geometric
parameters are listed in Table 1. The molecule-cation
interaction energies of the complexes and the bond
dissociation energies of trigger bonds are presented in
Table 2. The analyses of AIM and NBO, Mulliken and
natural charges are given in Tables 3, 4 and 5, respectively.

Our preliminary calculations show the C3–N7 bond is
longer than the C4–N8 bond in the DNP monomer at both
B3LYP/6-311++G(2df,2p) and MP2(full)/6-311++G**
levels, indicating that the C3–N7 bond might be the
trigger bond. So in this work, we will mainly pay
attention to the molecule-cation interaction between C3–
NO2 and H+, Li+, Na+, Be2+ or Mg2+.

2106 J Mol Model (2012) 18:2105–2115



Fig. 1 Molecular structures, bond critical points of the complexes at B3LYP/6-311++G(2df,2p) level. Small purple spheres (unlabeled) represent
bond critical points

Table 1 Selected bond length (in Å) of the DNP monomer and the complexes

Parameters DNP DNP…H+ DNP…Li+ DNP…Na+ DNP…Be2+ DNP…Mg2+

O11…M14a 0.983b 0.982c 2.043 2.031 2.397 2.392 1.592 1.576 2.046 2.016

0.983d 2.076 2.438 1.618 2.074

C3–N7 1.469 1.466 −0.062e –0.062 −0.045 –0.044 −0.032 –0.031 −0.144 –0.145 −0.107 –0.107

1.451 –0.050 –0.025 –0.016 –0.103 –0.078

C4–N8 1.441 1.436 0.023 0.024 0.016 0.017 0.011 0.013 0.030 0.031 0.027 0.028

1.443 0.013 0.006 0.004 0.022 0.016

N7–O10 1.217 1.215 1.184 1.182 1.237 1.236 1.231 1.229 1.317 1.316 1.277 1.277

1.229 1.202 1.241 1.237 1.305 1.271

N7–O11 1.218 1.216 1.335 1.333 1.238 1.236 1.233 1.230 1.311 1.309 1.275 1.273

1.231 1.319 1.242 1.238 1.296 1.271

N8–O12 1.222 1.220 1.219 1.217 1.221 1.219 1.223 1.221 1.219 1.217 1.220 1.218

1.230 1.228 1.231 1.232 1.227 1.228

N8–O13 1.227 1.224 1.215 1.213 1.217 1.216 1.218 1.216 1.205 1.203 1.209 1.207

1.231 1.226 1.226 1.226 1.221 1.224

a M14 is H+ , Li+ , Na+ , Be2+ or Mg2+ in the corresponding complexes
b At B3LYP/6-311++G** level
c At B3LYP/6-311++G(2df,2p) level
d At MP2(full)/6-311++G** level
e The difference of C–N bond in the complex in comparison with the monomer DNP
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Structure of the complex

From Fig. 1, all the complexes are C1 symmetry. As can
be seen from Table 1, the O11…M14 distance is 2.076
and 2.438 Å in DNP…Li+ and DNP…Na+ at MP2(full)/6-
311++G** level, respectively. In the molecule-cation
complex Li+(CH3NO2), the O…Li+ distance is predicted
to be 2.930 Å using CNDO method [52]. For the
molecule-cation system of paranitroaniline (PNA) with
Na+, the distance of O…Na+ is 2.302 Å at the B3LYP/6-

31+ G* level [53]. For comparison, we have also
obtained the corresponding O…Li+ and O…Na+ distan-
ces of 2.091 and 2.371 Å by employing the MP2(full)/6-
311++G** method for Li+…(CH3NO2) and PNA…Na+,
respectively. Comparing the results at the MP2(full)/6-
311++G** level, it can be seen that the O…Li+ and
O…Na+ distances in the title complexes are close to those
in Li+(CH3NO2) and PNANa+, respectively. In BeO and
MgO, the experimental values of O–Be and O–Mg bond
lengths are 1.331 and 1.749 Å, respectively [54]. The

Table 2 Interaction energy −Eint. (kJ mol-1) and bond dissociation energy (BDE (kJ mol-1)) of the complexes

Parameters DNP DNP…H+ DNP…Li+ DNP…Na+ DNP…Be2+ DNP…Mg2+

Eint. 782.02 a −b 171.37 168.85 127.88 125.60 937.31 933.04 531.79 528.07

(750.28 c)d 163.87 122.55 927.03 524.68

786.80 e − 174.47 171.75 129.77 126.35 963.43 962.10 544.41 540.77

(755.00) 166.73 123.36 955.45 537.20

772.08f − 166.29 155.12 123.52 114.84 884.16 855.48 487.65 472.11

(741.18) 149.89 111.62 850.58 468.38

BDEC3–N7
g 275.58 276.98 520.44 519.04 449.66 449.19 407.93 407.35 1021.98 1022.47 760.26 754..92

375.76 675.68 534.98 496.78 1069.67 823.30

BDEC4–N8 312.85 319.46 261.99 266.88 277.54 281.96 287.32 291.58 243.05 247.77 251.82 252.44

400.8 323.75 365.43 378.29 − −

a The energies are uncorrected at B3LYP/6-311++G** level
b The interaction energies with BSSE-corrected
c The values in parenthesis are energies with ZPE corrections
d The interaction energies with ZPE and BSSE correction
e The energies are uncorrected at B3LYP/6-311++G(2df,2p) level
f The energies are uncorrected at MP2(full)/6-311++G** level
g The BDE is the difference between the complex and the 4-nitro group radical as well as the 3-nitropyrazole radical with the M cation

Table 3 The selected bond
critical point properties (in a.u.)
within the complexes and
that of the monomer DNP at
B3LYP/6-311++G(2df,2p) level

Parameters DNP DNP…H+ DNP…Li+ DNP…Na+ DNP…Be2+ DNP…Mg2+

ρBCP(O11…M14) – 0.3493 0.0246 0.0186 0.0981 0.0484

▽2ρBCP(O11…M14) – −2.7301 0.1532 0.1041 0.6028 0.3190

ρBCP(O10…M14) – – 0.0240 0.0171 0.1010 0.0489

▽2ρBCP(O10…M14) – – 0.1481 0.0930 0.6205 0.3227

ρBCP(C3–N7) 0.2775 0.2902 0.2872 0.2826 0.3354 0.3140

▽2ρBCP(C3–N7) −0.8156 −0.7338 −0.8567 −0.8683 −0.4923 −0.6164
ρBCP(N7–O10) 0.5170 0.5608 0.4923 0.4999 0.4033 0.4431

▽2ρBCP(N7–O10) −1.0752 −1.3329 −0.9403 −0.9849 −0.5016 −0.6872
ρBCP(N7–O11) 0.5160 0.3879 0.4927 0.4987 0.4109 0.4478

▽2ρBCP(N7–O11) −1.0692 −0.5281 0.1228 −0.9833 −0.5441 −0.7220
ρBCP(C4–N8) 0.2882 0.2805 0.2827 0.2839 0.2808 0.2796

▽2ρBCP(C4–N8) −0.8794 −0.7913 −0.8218 −0.8375 −0.7485 −0.7790
ρBCP(N8–O12) 0.5104 0.5149 0.5122 0.5099 0.5147 0.5133

▽2ρBCP(N8–O12) −1.0270 −1.0427 −1.0323 −1.0216 −1.0366 −1.0310
ρBCP(N8–O13) 0.5050 0.5196 0.5165 0.5156 0.5331 0.5286

▽2ρBCP(N8–O13) −0.9946 −1.0660 −1.0519 −1.0487 −1.1404 −1.1221

2108 J Mol Model (2012) 18:2105–2115



O11…M14 distance is 1.618 and 2.074 Å in DNP…Be2+

and DNP…Mg2+ at MP2(full)/6-311++G** level, respec-
tively, which are only about 0.3 Å larger than those in the
ionic compounds BeO and MgO, suggesting that the
molecule-cation interactions in title complexes might be
significant. For the complex DNP…H+, the O11–H14
bond length is only 0.983, 0.982 and 0.983 Å at B3LYP/6-
311++G**, B3LYP/6-311++G(2df,2p) and MP2(full)/6-
311++G** levels, respectively. Here, we have also
calculated the structure of H3O

+ and the O–H bond
length is found to be 0.9803, 0.9791 and 0.9778 Å at
B3LYP/6-311++G**, B3LYP/6-311++G(2df,2p) and MP2
(full)/6-311++G** levels, respectively. The O–H bond
lengths in DNP…H+ are very close to those in H3O

+ at
three levels, indicating that the interaction between O11
and H14 in DNP…H+ is partly covalent in nature.

As is shown in Table 1, the order of the O11…M14
distance is DNP…Be2+ < DNP…Mg2+ < DNP…Li+ <
DNP…Na+ at three levels, suggesting that the order of the
molecule-cation interaction might be DNP…Be2+ > DNP…
Mg2+ > DNP…Li+ > DNP…Na+.

From Table 1, the C3–N7 bond length in molecule-cation
complex decreases in comparison with that in the DNP
monomer. For example, the decrease is 0.025, 0.016, 0.103
and 0.078 Å in DNP…Li+, DNP…Na+ , DNP…Be2+ and
DNP…Mg2+ at MP2(full)/6-311++G** level, respectively,
showing that the C3–N7 trigger bond is strengthened upon
the formation of the molecule-cation interaction. The
stronger the trigger bond of the explosive molecule, the

greater the insensitivity [36], suggesting that the sensitivity
might be reduced upon the formation of the molecule-
cation interaction. The decrease of the C3–N7 bond length
is the same order of DNP…Be2+ > DNP…Mg2+ > DNP…
H+ > DNP…Li+ > DNP…Na+ at three levels, suggesting
that the sensitivity might be DNP…Be2+ < DNP…Mg2+ <
DNP…H+ < DNP…Li+ < DNP…Na+.

The N7–O10 and N7–O11 bond lengths are almost close
to each other in the DNP monomer and the complexes
DNP…Li+, DNP…Na+, DNP…Be2+ and DNP…Mg2+.
However, in the complex DNP…H+, the N7–O10 bond
length decreases while the N7–O11 bond length increases.
The difference between them is up to 0.151, 0.151 and
0.117 Å at B3LYP/6-311++G**, B3LYP/6-311++G(2df,2p)
and MP2(full)/6-311++G** levels, respectively, suggesting
that the conjugated system of nitro group is destroyed and
the π-electron rearrangement occurs upon the H+ addition.
It should be noted that, in the complex DNP…Li+, DNP…
Na+, DNP…Be2+ or DNP…Mg2+, the distance of metal
cation with the two oxygen atoms of the nitro group is
equal to each other, but in DNP…H+, the distance of H+…
O11 is only 0.983 Å while that of H+…O10 is up to
2.244 Å at MP2(full)/6-311++G** level.

Energies and stabilities

Table 2 gives the molecule-cation interaction energy and
bond dissociation energy in the DNP monomer and
complex. From Table 2, for the DNP…H+, the interaction

Table 4 NBO occupation numbers for the C3–N7 and M (H+, Li+, Na+, Be2+, Mg2+) bonds , their respective orbital energies ε, the second-order
perturbation energies E(2) and the NBO charge transfer of the monomers DNP in their complexes (Q) at B3LYP/6-311++G(2df,2p) level

Parameters DNP…H+ DNP…Li+ DNP…Na+ DNP…Be2+ DNP…Mg2+

Occ.(O10/O11)a 1.7723sp99.99sp99.99 1.9044sp99.99 1.9015sp99.99 1.8740sp6.75 1.8830sp23.01.

ε{(O10/O11)}b −0.5986 −0.5352 −0.5049 −0.9085 −0.7582
Occ.(M14)* 0.4724sp99.99sp99.99 0.0360sp0.11 0.0313sp0.06 0.1468sp0.08 0.1271sp0.02

ε{(M14)*} −0.3710d 0.0098 −0.0704 −0.2429 −0.3852
E(2)

(O10/O11)→(M14)*
c 203.54 17.31 9.99 171.88 77.45

Occ.(N7–O11) 1.9870sp3.33s 1.9955sp2.26sp3.21 1.9937sp2.19sp3.17 1.9933sp2.69sp4.41 1.9936sp2.46sp3.65

ε{(N7–O11)} −1.0146 −1.2853 −1.2711 −1.4043 −1.4041
Occ.(C3–N7)* 0.0773sp2.65sp1.45 0.0885sp2.65sp1.62 0.0936sp2.68sp1.71 0.0533sp2.31sp1.18 0.0634sp2.44sp1.38

ε{(C3–N7)*} 0.0935 0.1162 0.1171 0.0429 0.0404

E(N7–O11)→(C3–N7)*
(2) 16.10 4.39 3.93 7.15 6.19

Q(DNP)e 0.00 46.50 36.04 230.71 145.73

a Occ.: occupation number. The Occ.(O10/O11) in DNP…H+ is Occ.(O11) and in DNP…Li+ or DNP…Na+ DNP…Be2+ or DNP…Mg2+ is
Occ.(O10)
b In a.u. The ε{(O10/O12)} in DNP…H+ is ε (O11) and in DNP…Li+ or DNP…Na+ DNP…Be2+ or DNP…Mg2+ is ε(O10)
c In kJ mol-1

d The bold Occ.(M14)* and ε{(M14)*} for DNP…H+ is Occ.(N7–O10)*and ε{(N7–O10)*}. The bold Occ.(N7–O11) and ε{(N7–O11)} for
DNP…H+ is Occ.(O11–H14) and ε{(O11–H14)}
e In me
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energy is up to 782.02, 786.80 and 772.08 kJ mol-1 at
B3LYP/6-311++G**, B3LYP/6-311++G(2df,2p) and MP2
(full)/6-311++G** levels, respectively. These values are
close to the σ-binding energy of our previous study on the
system of the HB with H+ (894.03 kJ mol-1 at B3LYP/6-
311++G(2df,2p) level) [25], suggesting that the σ-binding
interaction may have occurred between O11 and H+, as is in
agreement with the analysis of the structure of DNP…H+.

As is shown in Table 2, the molecule-cation interaction
energy is the same order of DNP…Be2+ > DNP…Mg2+ >
DNP…Li+ > DNP…Na+ at three levels, as is in agreement
with the analysis of structure. In DNP…Li+ and DNP…
Na+, the molecule-cation interaction energy is only 166.29
and 123.52 kJ mol-1 at MP2(full)/6-311++G** level,
respectively, while for DNP…Be2+ and DNP…Mg2+, it is
up to 884.16 and 487.65 kJ mol-1, respectively. The
molecule-cation interaction in the complex of the alkali
metal cation with DNP is much weaker than that in the
corresponding system of the alkaline-earth metal cation, as
is very similar to the cation-π interaction [55]. For example,
in our previous investigation, for the complex HB=BH…
Li+ or HB=BH…Na+, the cation-π interaction is just equal
to 112.88 or 75.84 kJ mol-1, and it amounts to 708.08 and
405.45 kJ mol-1 for the Be2+ and Mg2+ complexes at MP2
(full)/aug-cc-pVTZ level, respectively [55].

The proportion of corrected molecule-cation interaction
energies for the complexes to their total inteaction energies,
defined as [(−Eint.)-(−Eint.(BSSE))]/(−Eint.), is only 1.78%,
2.64% and 7.02% at B3LYP/6-311++G**, B3LYP/6-
311++G(2df,2p) and MP2(full)/6-311++G** levels, respec-
tively. Although it is not notable at three levels, the BSSE
corrections for molecule-cation interaction energies are
not negligible. In fact, there is a standard computational
protocol, which requires BSSE corrections for molecule-
cation interaction energies. Only in case of a complete
basis set, the correction for BSSE is not needed. The
ZPE correction is up to 4.06%, 4.04% and 4.00% at
B3LYP/6-311++G**, B3LYP/6-311++G(2df,2p) and
MP2(full)/6-311++G** levels, respectively. In our pre-
vious investigation on the cation-π bonded complexes
of cations ( Li+, Na+, Be2+ and Mg2+) with the B=B double
bond, the ZPE corrections amount to 2.52% and 2.77% at
B3LYP/6-311++G(2df,2p) and MP2(full)/6-311++G(2df,2p)
levels [55].

As can be seen from Table 2, the bond dissociation
energy of the C3–N7 bond in the DNP monomer is 275.58,
276.98 and 375.76 kJ mol-1 at B3LYP/6-311++G**,
B3LYP/6-311++G(2df,2p) and MP2(full)/6-311++G**
levels, respectively. The results from the B3LYP methods
are close to the experimental values of the bond
dissociation energies of the C–N bonds linked the 1-
nitro group of the 1,3-dinitrobenzene (278.10 kJ mol-1)
and 1,4-dinitrobenzene (280.19 kJ mol-1) [56]. In surprise,T
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the dissociation energy obtained at MP2/6-311++G** level
is about one hundred kJ mol-1 greater than the one obtained
at B3LYP/6-311++G** level. Many theoretical investiga-
tions have shown that the B3LYP method correctly
describes the BDE value. However, the MP2 method cannot
be used to adequately describe the BDE value [57–59]. In
1995, the investigations by Jursic et al. confirmed that, for
the O–O and O–C bond dissociation energies, the MP2
model gave unsatisfactory results, and calculation with the
DFT-B3LYP method was required in order to obtain the
satisfactory bond dissociation energy [60]. In 2002,
Budyka et al. found that electron correlation correction
at the MP2/6-31 G*//HF/6-31 G* level overestimated the
C–N BDE value by about 67 kJ mol-1 compared to the
experiment for PhNHCH3, and B3LYP-calculated BDE
value was in good agreement with experimental one [57].
Barckholtz et al. have also calculated the BDEs of the C-H
and N-H bonds in monocyclic aromatic molecules [61].
They have also found that the B3LYP method yields BDEs
that are on average lower than experiment by ∼5-
10 kJ mol-1, and it provides the best agreement of the
computed BDEs of the smaller aromatic hydrocarbons
with experiment [61]. However, most of the MP2 BDEs
calculated are about 72.0 kJ mol-1 higher than experiment.
In addition, the MP2 calculations of the radical species
suffer from significant spin contamination, with < S2 > as
high as 1.4 for the radicals formed from benzene and the
azabenzenes [61]. Indeed, in title compounds, for the MP2
method, the values of < S2 > are up to 1.15 for the
nitropyrazole radical, while for the B3LYP method, they
are about 0.75. Thus, those results from the MP2 method
could not be close to experimental values due to the
serious spin contamination. Therefore, in this paper,
B3LYP is selected to elucidate the trends in the calculated
bond dissociation energies of the complexes.

From Table 2, the bond dissociation energy of the C3–
N7 bond in complex is greater than that in the DNP
monomer. Especially for DNP…Be2+, the bond dissocia-
tion energy of the C3–N7 bond is up to 1021.98, 1022.47
and 1069.67 kJ mol-1 at B3LYP/6-311++G**, B3LYP/6-
311++G(2df,2p) and MP2(full)/6-311++G** levels, respec-
tively. It is three times more than that in the DNP
monomer (275.58, 276.98 and 375.76 kJ mol-1) at three
levels. This result shows that the strength of the C3–N7
trigger bond is enhanced and the explosive sensitivity is
reduced upon the formation of molecule-cation interaction,
as is in agreement with the analysis of structure. The order of
the C3–N7 bond dissociation energy is DNP…Be2+ >
DNP…Mg2+ > DNP…H+ > DNP…Li+ > DNP…Na+ >
DNP at three levels, which is in accordance with the
molecule-cation interaction energy.

The correlation between the bond dissociation energy
of C3–N7 bond and the C3–N7 bond length is given in

Fig. 2 at B3LYP/6-311++G(2df,2p) level. The correlation
coefficient is up to 0.9940.

BDE ¼ �5:087� 103r þ 7:707� 103 ð4Þ
BDE is in kJ·mol-1 and r is the C3–N7 bond length (in Å).
The relationship between the molecule-cation interaction

energy (Eint.) and increment of the C3–N7 bond dissocia-
tion energy in comparison with the DNP monomer (ΔBDE)
is shown in Fig. 3 at B3LYP/6-311++G(2df,2p) level. The
correlation coefficient is 0.9976 and they fit the Eq. 5:

ΔBDE ¼ �0:741Eint: þ 45:895 ð5Þ
ΔBDE and Eint are in kJ·mol-1.

Fig. 2 The C3–N7 bond dissociation energy (BDE) of the DNP
monomer and complex versus the C3–N7 bond length except for
DNP…H+

Fig. 3 The increment of C3-N7 bond dissociation energy (ΔBDE) in
complex in comparison with the monomer DNP except for DNP…H+

versus interaction energy (−Eint.)
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AIM analysis

According to the AIM analysis at B3LYP/6-311++G(2df,2p)
level, there is a bond path linking the cation M with the
oxygen atom of the nitro group accompanied by a BCPs (see
Fig. 1). From Table 4, except for DNP…H+, the values of
the electron densities ρBCP(O10…M14) are within the range of
0.0186−0.0484 a.u., which just falls into the common
accepted values for intermolecular interactions (0.002–
0.04 a.u.) [48]. Moreover, their Laplacians▽2ρBCP are all
positive, suggesting the typical closed-shell kind of inter-
actions in complexes. It is noted that, the ρBCP(O10…H14)

value in DNP…H+ is 0.3493, and its ▽2ρBCP is negative,
indicating that the interaction between O11 and H14 in
DNP…H+ is partly covalent, as is in agreement with the
analysis of structure.

As can be seen from Table 3, the electron density ρBCP at
the C3–N7 bond in the complex is larger than that in the
DNP monomer. The increment in comparison with the DNP
monomer is the order of DNP…Be2+ > DNP…Mg2+ >
DNP…Li+ > DNP…Na+, as is in accordance with the bond
length and bond dissociation energy of the C3–N7 bond as
well as molecule-cation interaction energy of complex.

The correlation between the electron densities (ρBCP(C3–N7))
and the increment of the C3–N7 bond dissociation energy in
comparison with the DNP monomer (ΔBDE) at B3LYP/6-
311++G(2df,2p) level is also found (see Fig. 4). The
correlation coefficient is up to 0.9995.

ΔBDE ¼ 1:167� 104rBCP C3�N7ð Þ � 3:175� 103 ð6Þ
In general, charge density at the BCP of a given bond

can be used as an estimator of the bond strength. Therefore,

the ρBCP(C3–N7) values at the C3–N7 BCP should display a
certain correlation with the BDE involved in the radical
formation. The reason is the energy difference between the
radicals and initial molecule mainly depends on the strength
of the C3–N7 bond broken, which is similar to many of the
previous investigations [62–64].

NBO analysis

The NBO results show all the complexes have two units
except for DNP…H+. The delocalization effects between

Fig. 4 The increment of C3-N7 bond dissociation energy (ΔBDE) in
complex in comparison with the monomer DNP except for DNP…H+

versus the bond critical point properties (ρBCP(C3–N7))

Fig. 5 The increment of C3–N7 bond dissociation energy (ΔBDE) in
complex in comparison with the monomer DNP except for DNP…H+

versus the delocalization energy E(O10/O11)→(M)*
(2)

Fig. 6 The increment of the C3-N7 bond dissociation energy (ΔBDE)
in complex in comparison with the monomer DNP except for DNP…H+

versus NBO charge transfer (QNBO charge transfer see A) and the change
of the nature charge in the nitro group (ΔQNO2 see B)
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two units can be identified from the presence of off-
diagonal elements of the Fock matrix in the NBO basis,
and the strengths of these delocalization interactions,
E(2) [46], can be estimated by second-order perturbation
theory. The delocalization interactions E(O10/O11)→(M)*

(2)

have stabilized the systems by 17.31, 9.99, 171.88 and
77.45 kJ mol-1 for DNP…Li+, DNP…Na+, DNP…Be2+

and DNP…Mg2+ (see Table 4). The correlation between
the delocalization energy E(O10/O11)→(M)*

(2) and the incre-
ment of C3–N7 bond dissociation energy in comparison with
the DNP monomer (ΔBDE) at B3LYP/6-311++G(2df,2p)

level is given in Fig. 5. The correlation coefficient is up
to 0.9884.

ΔBDE ¼ 3:801E 2ð Þ
O10=O11ð Þ! Mð Þ» þ 118:611 ð7Þ

NBO gives the value of net charge transfer, which is
evaluated to be from DNP to M by 46.50, 36.04, 230.71
and 145.73 me for DNP…Li+, DNP…Na+, DNP…Be2+

and DNP…Mg2+, respectively. The charge transfer of
DNP…Be2+ is the greatest, suggesting the molecule-
cation interaction may be the strongest, as is consistent
with the above. The correlation between the NBO charge
transfer (QNBO charge transfer) and the increment of C3–N7 bond
dissociation energy in comparison with the DNP monomer
(ΔBDE) at B3LYP/6-311++G(2df,2p) level is given in Fig. 6
(see A), and the correlation coefficient is up to 0.9999.

ΔBDE ¼ 3:137QNBOcharge transfer þ 21:518 ð8Þ
To our interest, the delocalization interaction is also

found between the N7–O11 bond and C3–N7 anti-bond
orbitals. E(N7–O11)→(C3–N7)*

(2) is 16.10, 4.39, 3.93, 7.15 and
6.19 kJ mol-1 in DNP…H+, DNP…Li+, DNP…Na+,
DNP…Be2+ and DNP…Mg2+, respectively. This result
shows that the order of this delocalization interaction is
DNP…Be2+ > DNP…Mg2+ > DNP…Li+ > DNP…Na+.
The correlation between the delocalization energy
(E(N7–O11)→(C3–N7)*

(2)) and the increment of C3–N7 bond
dissociation energy in comparison with the DNP mono-
mer ΔBDE at B3LYP/6-311++G(2df,2p) level is shown in
Fig. 7. The correlation coefficient is up to 0.9901.

ΔBDE ¼ 188:406E 2ð Þ
N7�O11ð Þ! C3�N7ð Þ» � 638:713 ð9Þ

Fig. 7 The increment of C3-N7 bond dissociation energy (ΔBDE) in
complex in comparison with the monomer DNP except for DNP…H+

versus the delocalization energy (E(N7–O11)→(C3–N7)
(2))

Fig. 8 Shifts of electron density
as a result of formation of the
complex between DNP and H+,
Li+, Na+, Be2+, Mg2+. Purple
regions denote gain, and
yellow regions represent loss

J Mol Model (2012) 18:2105–2115 2113



Recently, lots of investigations have indicated that the
more negative charges the nitro groups carry, the more
insensitive the explosives are [16, 17, 21]. From Table 5,
the natural charge of nitro group O10–N7–O11 in the DNP
monomer is −0.1671 e. The difference between the natural
charge of nitro group in the complex and that in the
DNP monomer is 0.1347, –0.1792, –0.1349, –0.6228
and −0.4065 e in DNP…H+, DNP…Li+, DNP…Na+,
DNP…Be2+ and DNP…Mg2+, respectively. These results
show that the natural charge of nitro group has reduced in
complex in comparison with the DNP monomer except for
DNP…H+, indicating that much negative charge concen-
trates on the nitro group O10–N7–O11. Thus, the
sensitivity is reduced upon the formation of the complex,
as is in accordance with the above analysis. The order of
the natural charge of nitro group is DNP…Be2+ > DNP…
Mg2+ > DNP…Li+ > DNP…Na+, indicating that the order
of the sensitivity follows DNP…Be2+ < DN…Mg2+ <
DNP…Li+ < DNP…Na+, as is in agreement with the
analyses of structure, energy, AIM and NBO. The
relationship between the change of the nature charge of
the nitro group (ΔQNO2) and the increment of C3–N7
bond dissociation energy in comparison with the DNP
monomer (ΔBDE) at B3LYP/6-311++G(2df,2p) level is
shown in Fig. 6 (see B). The correlation coefficient is up
to 0.9997.

ΔBDE ¼ �1:278ΔQNatural charge � 47:566 ð10Þ

Analysis of the electron density shifts

It is known that changes in the electron density distribution
in both donors and acceptors are the most important
consequence of the formation of the non-bonded interaction
[65, 66]. To display visually the nature of the molecule-
cation interaction of DNP with H+, Li+, Na+, Be2+ and
Mg2+, the shifts of electron density is calculated and
illustrated in Fig. 8. Purple regions represent the accumu-
lation of additional electron density; yellow regions indicate
loss of density.

As is shown in Fig. 8, the M cation is filled with much
purple area and the nitro group O10–N7–O11 is around
yellow region, suggesting that the electron density of the
nitro group has been lost toward cation and the molecule-
cation interaction has formed between DNP and M.
Moreover, the purple area around the M is the most
significant in DNP…Be2+, indicating that the molecule-
cation interaction between Be2+ and DNP is the strongest. It
is noted that, for DNP…H+, the purple area concentrates on
O–H bond, showing that the interaction between the oxygen
atom of the nitro group and H+ is partly covalent, as is in
agreement with the analysis of geometry and energy.

It is interesting that much purple area is around the C3–
N7 bond, showing that the electron density also shifts from
the nitro group toward the C3–N7. It is well known that the
more intensive an electron between two atoms, the more
chances foroverlapping. As a result, the strength of the C3–
N7 bond is improved. As can be seen in Fig. 8, the purple
area around the C3–N7 bond of DNP…Be2+ is the most
significant, suggesting that the strength of the C3–N7 bond
in DNP…Be2+ is the most and the sensitivity is the lowest,
as is in agreement with the bond length and bond
dissociation energy of the C3–N7 bond.

Thus, we can draw a conclusion that the electron density
shift from the nitro group O10–N7–O11 to the C3–N7 bond
upon the formation of the molecule-cation interaction. The
C3–N7 bond is enhanced and the sensitivity is reduced, as
is in according with the analyses of structure, energy, AIM
and NBO.

Conclusions

The explosive sensitivity upon the formation of molecule-
cation interaction between the nitro group of DNP and H+,
Li+, Na+, Be2+ or Mg2+ has been investigated using the
B3LYP and MP2(full) methods with the 6-311++G** and
6-311++G(2df,2p) basis sets. The bond dissociation energy
of the C3–N7 trigger bond has also been discussed. The
interaction between the oxygen atom of nitro group and H+

in DNP…H+ is partly covalent in nature. The molecule-
cation interaction and bond dissociation energy of the C3–
N7 trigger bond follow the order of DNP…Be2+ > DNP…
Mg2+ > DNP…Li+ > DNP…Na+. The increment of the
BDE of the trigger bond correlates well with the molecule-
cation interaction energy, natural charge of the nitro group,
electron density ρBCP(C3–N7), delocalization energy E(2) and
NBO charge transfer except for DNP…H+. The analyses of
AIM, NBO and electron density shifts have shown that the
electron density of the nitro group shifts toward the C3–N7
trigger bond upon the formation of the molecule-cation
interaction. Thus, the trigger bond is strengthened and the
sensitivity of DNP is reduced.
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Abstract Human ocular albinism type 1 protein (OA1)—a
member of the G-protein coupled receptor (GPCR) super-
family—is an integral membrane glycoprotein expressed
exclusively by intracellular organelles known as melano-
cytes, and is responsible for the proper biogenesis of
melanosomes. Mutations in the Oa1 gene are responsible
for the disease ocular albinism. Despite its clinical
importance, there is a lack of in-depth understanding of
its structure and mechanism of activation due to the absence
of a crystal structure. In the present study, homology
modeling was applied to predicting OA1 structure follow-
ing thorough sequence analysis and secondary structure
predictions. The predicted model had the signature residues
and motifs expected of GPCRs, and was used for carrying
out molecular docking studies with an endogenous ligand,

L-DOPA and an antagonist, dopamine; the results agreed
quite well with the available experimental data. Finally,
three sets of explicit molecular dynamics simulations were
carried out in lipid bilayer, the results of which not only
confirmed the stability of the predicted model, but also
helped witness some differences in structural features such

as rotamer toggle switch, helical tilts and hydrogen
bonding pattern that helped distinguish between the
agonist- and antagonist-bound receptor forms. In place
of the typical “D/ERY”-motif-mediated “ionic lock”, a
hydrogen bond mediated by the “DAY” motif was
observed that could be used to distinguish the agonist
and antagonist bound forms of OA1. In the absence of
a crystal structure, this study helped to shed some light
on the structural features of OA1, and its behavior in
the presence of an agonist and an antagonist, which
might be helpful in the future drug discovery process
for ocular albinism.

Keywords G-protein coupled receptor . Ocular albinism .

L-DOPA . Dopamine . Homology modeling .Molecular
docking .Molecular dynamics simulation

Introduction

G protein-coupled receptors (GPCRs) comprise the largest
superfamily of membrane proteins in the human body,
being coded by 3–4% of the entire genome [1]. These
extensive and diverse membrane receptors are involved in
several kinds of signal transduction pathways using their
cognate G-proteins as mediators for transmitting signals.
These receptors are responsible for the metabolic, physio-
logical and neurological maintenance of most biological
systems in all eukaryotes [2]. Various stimuli, such as light,
ions, odorants and specific ligands—hormones, amino
acids, nucleotides etc.—bind to the extracellular regions
of these receptors, bringing about conformational changes
leading to the activation of downstream G-proteins. The
physiological importance of GPCRs is underlined by the
fact that several diseases, for example retinitis pigmentosa,
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migraine, asthma, hypertension, congestive heart-failure,
Parkinson’s, schizophrenia and glaucoma, are caused by
their malfunctioning [3]. As a consequence, these receptors
have become important drug targets (up to 50–60% of the
drugs on the market target these receptors), largely for
molecules that either enhance or inhibit signal amplitude by
modulating their structure [2, 4].

Until recently, structure-based drugs designed to target
GPCRs were generated mostly using an empirical structure
of the receptor and its extracellular loop regions. The
crystal structure of rhodopsin [5, 6] offered a real template
and changed the mode of analysis of possible structures for
new receptors. Almost a decade later, more structures have
been published, including that of human β2-adrenergic
receptor (β2-AR) [7] and its subsequent active-state
structures [8, 9], human A2A-adenosine receptor [10],
squid rhodopsin [11], human CXCR4 receptor [12] and
human metarhodopsin II [13]. The advantage with these
receptors is that people now have receptor structures with
agonist ligands bound to them, thereby providing the active
state conformations of the receptors. As the natural
abundance of most of these receptors is very low, and large
scale expression and purification of recombinant proteins
has proved to be extremely difficult, structural studies on
these membrane receptors remain an arduous task. In the
absence of a structure for the GPCR of interest, structure-
based drug discovery and other functional studies related to
their modes of activation rely on reasonable molecular
models of GPCRs generated through various computational
approaches, such as homology modeling based on the
present set of crystal structures and simulation studies [14–
20]. These new structures have become useful for GPCR
structure–function studies and the application of molecular
dynamics (MD) simulations through the use of knowledge-
based constraints to refine the generated homology models
[21–24] will help provide novel insights into the mode of
action of these newer receptors. Moreover, the activation
mechanism—the process by which these receptors switch
between their active and inactive conformations—of most
GPCRs (e.g., rhodopsin) spans a millisecond time-scale,
making them very difficult to study [25, 26].

Ocular albinism (OA) is a genetic disorder caused by a
hypopigmentation of ocular tissues [27, 28]. OA can be
linked to a gene on the X chromosome, Oa1, that produces
a 404-amino-acid protein: a GPCR referred to as ocular
albinism type I protein or OA1 (GenBank: GP143) [29, 30].
Evidence to this effect has come from work by Schiaffino et
al. [31, 32] showing that OA1 binds to several Gα- as well
as Gβγ-subunits, and Innamorati et al. [33], who illustrated
its β-arrestin association even in the absence of any ligand.
OA1 is a unique member of the GPCR superfamily, being a
fully intracellular protein localized primarily to the endoly-
sosomal compartment and melanosomes rather than to the

cell surface [34, 35]. A more recent study by Lopez et al.
[36] has shown that L-DOPA acts as an endogenous ligand
for OA1, while the receptor shows a complicated trafficking
behavior in the presence of agonist L-DOPA and antagonist
dopamine.

The present communication reports a thorough structural
investigation of OA1 from a computational perspective, with
particular emphasis on the early events of its possible
activation mechanism. The seven transmembrane (7TM)
helices of OA1—a feature of all GPCRs—and their location
with respect to its primary sequence, were established through
analysis of primary and secondary structure. This led to the
final construction of a model for OA1, wherein the stereo-
chemical qualities were validated fully through extensive MD
simulations. Themode of binding of OA1with its endogenous
ligand L-DOPA and antagonist dopamine was also investi-
gated. The key structural differences of the receptor in the
absence and presence of an agonist and an antagonist, as
elucidated through MD simulation studies carried out for all
the three systems—apo-OA1, OA1-L-DOPA and OA1-
dopamine—in the presence of a lipid bilayer and explicit
water, are illustrated. The MD simulations not only refined
the predicted model of OA1 but also helped witness some of
the signature “switches” that are seen during the normal
activation of GPCRs like rhodopsin and β2-AR and help to
distinguish between the different forms of the receptor in the
presence of agonist/antagonist.

Materials and methods

Homology modeling

In the absence of a crystal structure, the 3D structure of
OA1 was predicted by homology modeling using extensive
primary and secondary structural knowledge. First, se-
quence alignments were performed to identify conserved
residues and motifs that might have structural and func-
tional implications. The sequence of OA1, consisting of
404 residues, was retrieved from the SWISSPROT database
[37] and used as a query to search the PFam database [38]
for homologous sequences. It was also used as a query for
the PSI-BLAST search [39], in order to isolate distant
homologs, since GPCR proteins share a very low percent-
age of sequence identity. From these two searches, a total of
45 related sequences were identified and subjected to
multiple sequence alignment (MSA). MSA was performed
using ClustalX (version 2.0.10) [40] to identify conserved
regions. Secondary structure information was also applied
from predictions derived using the TMHMM [41] and
PredictProtein [42] transmembrane prediction servers to
identify the exact location of 7TM helices, intracellular
loops (ICLs), and extracellular loops (ECLs).
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The crystal structure of human β2-AR (PDB ID: 2RH1)
[43]—an amine GPCR—was used as a template for the
construction of the OA1 model since it was found to be a
more suitable template than bovine rhodopsin (PDB ID:
1U19) [44] in terms of sequence identity. Using knowledge
of primary and secondary structure (as mentioned above),
the final alignment between OA1 and β2-AR was edited
manually using BioEdit (version 7.0.9.0) [45] to retain high
equivalence of conserved regions. The 3D model was
finally generated using the software MODELLER (version
9.6) [46] with 2RH1, using the 2.4 Å resolved crystal
structure of β2-AR retrieved from the RCSB database as a
template. As a result, 50 models were generated for OA1,
and rated according to the GA341 and DOPE scoring
functions available with MODELLER. The loop regions
were refined using the in-built “loopmodel” class available
with MODELLER. The stereochemical properties of the
final selected model were validated using the PROCHECK
[47] program and VERIFY3D server [48].

Molecular docking

Docking of OA1 was performed using the QM-polarized
ligand docking (QPLD) workflow of the Schrödinger
software suite (Maestro version 9.0.109) [49] with the
endogenous ligand L-DOPA, as well as the possible
antagonist dopamine, for a more accurate QM/MM docking
[50]. The ligands L-DOPA and dopamine were built using
the Maestro suite in the Schrödinger suite with only the
polar aromatic hydrogen atoms, which is in compliance
with the gromos96 force field. Internally, QPLD uses QSite
and Glide to carry out the docking algorithm. Initially, QPLD
performs a conventional docking to produce the prescribed
number of initial poses for each ligand. With these initial
docked poses, QM/MM single energy calculations are run on
each of the poses with only the ligand as the QM region,
producing new sets of atomic charges on the ligand by ESP
(electrostatic potential) fitting. Finally, a re-docking is
performed with these new atomic charges and the best scoring
pose is selected. In the present study, QPLD (version 2.0) was
used, which employs Glide (version 5.5) and QSite (version
5.5). The gridwas generated to define the binding cavity as the
entire transmembrane region, and a flexible ligand model was
used throughout the docking protocol. The initial number of
poses for the ligand was set to ten and, for the QM part,
B3LYP function was used in density functional theory (DFT)
calculations. All calculations were performed in extra preci-
sion (XP) mode.

Molecular dynamics simulations

Three systems were built for explicit MD simulation in
lipid bilayer: (1) apo-OA1, (2) OA1-L-DOPA and (3) OA1-

dopamine. MD simulations were performed using the
GROMACS version 4.0.7 package [51] with gromos
ffG43a2 force field, extended to improve the lipid compo-
nents of the force field. The topology and other force field
parameter for both ligands (L-DOPA and dopamine) were
obtained from the PRODRG server [52] and were examined
carefully for any discrepancies with previous results. The
lipid bilayer consisted of a pre-equilibrated layer of 288
molecules of 1-palmitoyl-2oleoyl-sn-glycerophosphocho-
line (POPC), generously gifted by X. Periole. All the
Berger lipid parameters including those for POPC were
obtained from P. Tieleman’s site at http://moose.bio.
ucalgary.ca/Downloads. The protein was inserted carefully
into the lipid bilayer using the InflateGro program [53]. The
entire lipid bilayer was inflated and then slowly compressed
around the protein until an area per lipid value of 69 Å2 was
reached, which is just above the experimental value of
65 Å2 for pure POPC. Each compression step was followed
by a round of steepest descent energy minimization to relax
the lipid molecules, keeping the protein restrained. The
entire system was then solvated with a single-point charge
(SPC) water model and neutralized with Cl− counter-ions.
Each of the three systems contained a total of 135,218;
135,237; and 135,232 atoms respectively.

All three systems were then energy minimized using the
steepest descent algorithm present in the GROMACS
package. A 100 ps position-restraining simulation was then
carried out to restrain the protein by a 1,000 kJ mol−1

harmonic constraint to relieve the close contacts with POPC
and water under NVT ensemble conditions, with a V-
rescale (modified Berendsen) temperature coupler [54].
This was followed by another 1 ns equilibration run under
NPT ensemble conditions, before a final production run of
15 ns. The three systems were then run at 310 K, i.e., above
the phase transition temperature of pure POPC, to ensure
that the lipids maintained their proper density, and 1 bar
pressure under isothermal-isobaric ensemble (NPT) for
15 ns each. Nosé-Hoover (which is used widely for
membrane NPT simulations) temperature and Parrinello-
Rahman pressure couplers were used to maintain the
temperature and pressure values with the protein, ligands,
lipids and water (plus ions) molecules coupled separately
with a coupling constant of τt=0.1 ps. Semi-isotropic
pressure coupling was set with τp=2 ps, allowing the
bilayer to deform in the x–y plane independently of the z-
axis. Since interfacial systems like membrane–water sys-
tems have a tendency to move laterally, the motion of the
bilayer center-of-mass (COM) and solvent COM were reset
separately so that the overall COM for the system is
unchanged as the phases may drift in opposite directions. A
time-step of 2 fs was used throughout with periodic
boundary conditions. LINCS constraint algorithm [55]
was used to maintain the geometry of the molecules.
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Long-range electrostatic interactions were calculated using
the particle-mesh Ewald (PME) method. Van der Waal’s
interactions and Coulomb interactions were cut off at 12 Å
with updates every five steps. All simulations were
performed on PARAM Yuva, using 64 Intel Xeon
2.93 GHz Quad Core processors. The results were analyzed
using the in-built analysis package of GROMACS,
LIGPLOT [56], XMGRACE [57] and in-house-developed
scripts. The trajectories were visualized using VMD [58]
and all the images were rendered using PyMol [59]. The
overall health of the simulated systems was also checked
with respect to temperature, pressure and potential energy
of the systems. The data shown in Supplementary Fig. S1
show that all three simulated systems were in thermody-
namic equilibrium during the production simulation runs,
confirming the convergence of individual trajectories.
Various properties of the lipid bilayer, like area per lipid
and bilayer thickness (Supplementary Fig. S2) were also
checked to ensure that the lipid bilayer did not enter a gel
phase during the simulations.

Results and discussion

Homology modeling

OA1 or GPR143 (GenBank) is a 404-residue-long protein,
expressed exclusively on the intracellular organelles known as
melanosomes. The sequence of OA1 was retrieved from the
NCBI database (NCBI Reference Sequence: NP_000264). To
retrieve sequences homologous to, or belonging to the same
superfamily as, OA1, the FASTA sequence of OA1 was
submitted to the PFam database. The search returned a total of
23 sequences, all belonging to the GPCR superfamily. Next, a
PSI-BLAST search was performed against the nr (non-
redundant) database of NCBI using OA1 as the query
sequence. PSI-BLAST mainly helps retrieve distantly related
homologous sequences. Finally, with a total of 45 sequences
retrieved from PFam database and PSI-BLAST search, MSA
was performed to identify the conserved residues and motifs
of OA1 that are present throughout the GPCR superfamily,
e.g., the “DAY” (“D/ERY” in other GPCRs) motif at the end
of intracellular helix TM3, and residues like C116, C184,
D78, W162 and P210, mutations in which lead to OA disease
in humans. Some specific proline residues that are present in
the middle of the TM helices, e.g., P96 on TM2, P210 on
TM5 and P300 on TM7, that confer distinctive “kinks” were
also identified. Apart from primary sequence alignments,
secondary structure predictions were also performed to
identify the exact locations of the TM helices and the loop
regions. Predictions from the TMHMM and PHD web-
servers were used to reach a consensus about the exact stretch
of TM helices. Table 1 shows the residue-wise distribution of

TM helices, ICLs, ECLs and the conserved residues
contained within them, along with some of the mutations
that have been reported to be causative agents of OA [60].

GPCRs are known to exhibit structural conservation,
particularly in the TM domains, in the form of 7TM helices.
This is often considered a signature property of GPCRs.
Therefore, in spite of very low sequence similarity,
homology modeling and other computational prediction
methods are often used to predict the structures of several
GPCRs based on their TM conservation [14–20]. The same
principle has been followed here and, despite having an
overall identity of only 17.8% (and 30.7% similarity) with
β2-AR, 2RH1—the human β2-AR crystal structure—was
used as the template for modeling OA1. The final
alignment used for model building is shown in Fig. 1; the
extents of the TM helices are shown, and the conserved
residues are marked in solid colors. The final alignment
was edited manually in order to arrive at this alignment,
which has the maximum number of conserved residues
aligned together.

This alignment was then provided as input to MOD-
ELLER to produce homology models for OA1. All the
models produced were energy minimized using conjugate
gradient algorithms and short MD simulations, as part of
the MODELLER protocol in order to refine the side-chain
orientations. The loop regions were refined using the in-

Table 1 Residue-wise distribution of transmembrane (TM) helices,
intracellular (IC) and extracellular (EC) loops along with their
conserved residues

Topology Residue
range

Conserved residues and mutations

Extracellular
tail

1 – 27 R5C mutation

TM1 28 – 53 G35D mutation

ICL1 54 – 72

TM2 73 - 101 D78N, G84R mutations

ECL1 102 – 112

TM3 113 – 146 “DAY” motif; C116R, G118E, Q124R,
W133R, A138V mutations

ICL2 147 – 151

TM4 152 – 175 W162; S152N, A173D mutations

ECL2 176 – 190 C184

TM5 191 – 224 P210

ICL3 225 – 243 G229V, T232K, E235K, I244K
mutations

TM6 244 – 269 W257 in the middle of TM3; I261N
mutation

ECL3 270 – 289 E271G

TM7 290 – 314 W292G, P300

Eighth helix 315 – 327

Cytoplasmic
tail

328 – 404
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built “loopmodel” class of MODELLER. Out of the 50
models generated by MODELLER, the best model was
chosen based on the GA341 and DOPE scores reported by
MODELLER. The stereochemical properties of the selected
structure were then analyzed further.

The Ramachandran plot (Fig. 2) obtained from PRO-
CHECK analysis confirms the stereochemical stability of
the generated model, with 98.8% of the residues falling
within the allowed regions (91.6% in the “most favored
regions” and 7.2% in the “additional allowed region”). The
only residue found in the disallowed region, D189, is
located in region ECL2 of the model. The structure was
also evaluated using the VERIFY3D program. The portions
of the structure that were found to occur in the negative
region of the VERIFY3D plot (not shown), were found to
occur in the N-terminal (residues 1–28) and C-terminal
(residues 325–404) regions. The residues found in the
disallowed region of the Ramachandran plot and negative
region of the VERIFY3D plot, correlated mainly to the loop
regions of the structure, which showed very low sequence
identity with the template sequence. Moreover, the occur-
rence of conserved domains and residues in the predicted
model seem to tally well with other GPCR crystal
structures, e.g., the presence of the “DAY” motif at the
end of TM3, D78 on TM2, W162 on TM4, P210 on TM5,
sequential C256 and W257 in the middle of TM6, C116 on
TM3 and C184 on ECL3. Another signature feature of
GPCRs is the presence of a Trp residue in the middle of

TM6, which acts as a “toggle switch” upon activation [61–
63]. In the predicted model, W257 was also found to occur
in the middle of TM6 and acts as the toggle switch. N299
and P300—part of the “NPxxY” conserved motif—were
found on TM7. Most of the Pro residues were found to
occur in the loop regions, with a few exceptions, e.g., P96
on TM2, P201and P210 on TM5 and P300 on TM7, which
confers characteristic kinks on the TM helices. The 7TM
helices, ICLs and ECLs are shown schematically in Fig. 3.
The figure also highlights the conserved GPCR residues,
missense mutations that cause OA and missense mutations
that abolish binding of the receptor to G proteins, as well as
the signature features discussed above.

Molecular docking

OA1 is known to have a single saturable binding pocket for
both L-DOPA and dopamine [36]. The structures of the
ligands are shown in Supplementary Fig. S3. The docking
studies performed here confirmed this, revealing that both
L-DOPA and dopamine bind to OA1 in roughly the same
pocket surrounded by TM3, TM5, TM6 and ECL2
extending from TM4. From among the ten poses for each
of the ligands generated by the QPLD workflow, the final
selection was based on the GScore provided by Glide. The
GScore takes into account multiple factors, such as
hydrogen bonds, hydrophobic, Van der Waal’s, Coulomb
and polar interactions in the binding pocket, as well as the

Fig. 1 Target template align-
ment. The final alignment of
the ocular albinism type 1
(OA1) protein sequence (NCBI
Reference Sequence:
NP_000264) with 2RH1, the
PDB entry for human β2-AR, as
supplied to MODELLER. This
final alignment was obtained
using the BioEdit program. Red
outlined boxes Transmembrane
helices (TM). Amino acids are
colored according to their
chemical properties; solid
colored bars conserved
residues
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penalty for buried polar groups and freezing rotatable
bonds. The conformation of L-DOPA finally selected had
a GScore of −5.99 kcal mol−1 while that of dopamine
was −4.97 kcal mol−1. The subsequent 15 ns MD
simulations further refined the binding modes of the ligands
to the receptor. Figure 4a and b show the binding pockets
within OA1 of L-DOPA and dopamine, respectively, at the
end of 15 ns of MD simulation, as seen in the top view
from the extracellular side. The selected docked poses of
both ligands were found to be similar conformationally to
that of the recently determined crystal structure of β2-AR
in the active state with a bound ligand [8, 9]. Both ligands
were found to be stabilized in their binding pockets through
a network of hydrogen bonds, as discussed in detail below.
Some residues engaged in hydrogen bonding with the
docked ligands have been found to be associated with OA
upon mutation, e.g., Q124, I261 and W292 [30, 34]. Indeed
this provides further support for the selection of the

particular docked poses of the ligands in binding pocket
of OA1. Even after 15 ns of MD simulation, both ligands
were found to remain in that binding pocket with ECL2
closing as a lid over them, as is also observed in the crystal
structures of rhodopsin, β2-AR and other GPCRs [5–10,
61, 62].

Molecular dynamics simulations

A set of three simulations, each performed for a time-scale
of 15 ns, helped to shed some light on the conformational
changes of OA1 and its behavior in the presence of an
agonist (L-DOPA) and a possible antagonist (dopamine).
All three simulations, apo-OA1, OA1 with L-DOPA and
OA1 with dopamine, were carried out for 15 ns each, after
embedding the protein in a POPC bilayer and solvating the
entire system with explicit water and counter-ions (Cl−).
However, comparisons between the three systems were

Fig. 2 Stereochemical property
analysis of the predicted model
of OA1. Ramachandran Plot
obtained from PROCHECK
analysis of the selected model
from MODELLER. The plot
confirms the stereochemical
quality of the model, with
98.8% of the residues falling
within the “allowed regions”.
The only residue found in the
disallowed region, D189, is
located in the loop region of the
model (ECL2)
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performed from 5 ns onwards, considering the first 5 ns as
the equilibration phase required to allow the systems to
become stabilized.

Apo-OA1 simulations

Upon comparing the initial structure of apo-OA1 obtained
from homology modeling to the structure obtained after
15 ns of simulation, some differences were observed,
mainly in the orientation of the loop regions. Plots of root
mean square deviation (RMSD; Fig. 5) clearly show that
the 7TM helices maintained their arrangements as com-
pared to the loop regions. The low RMSD value of about
3 Å for the 7TM helices shown in Fig. 5a, which was
maintained from 5 ns onwards, clearly indicates that the
7TM helices of OA1 maintained their structure and
quaternary packing during the simulation. The RMSD
values shown in Fig. 5a are quite stable, which in turn
validates the quality of the generated model. The low
RMSD values are indications of the fact that the protein
maintains its 3D structure and arrangement in the POPC
bilayer during the simulation. Hence, the MD simulation

thus verifies the structural properties of the predicted model
and further refines it [21, 24]. However, Fig. 5b shows a
much higher deviation to about 10 Å, accounting for the
overall movement of the entire protein. The higher value of
RMSD is due mainly to the rearrangement of the long
cytoplasmic tail (consisting of about 79 residues) and other
loop regions, whose fluctuation is clearly shown in the root
mean square fluctuation (RMSF) plot in Fig. 5c, which
takes into account fluctuations of the residues between 5 ns
and 15 ns.

A closer look at the RMSD values (Fig. 6a) of the
individual TM helices (including the eighth helix, which
remains parallel to the lipid bilayer and is a characteristic of
some GPCRs) shows that, in the apo-OA1 system, TM5
shows a steady increase in RMSD value to about 2.5 Å. But
TM3 and TM6, which are involved in the activation
process of most GPCRs, including rhodopsin and β2-AR,
do not show much deviation, with a steady RMSD value of
about 2 Å and 1.5 Å, respectively. The radius of
gyration plot (Fig. 7a) shows a decreasing trend in its
values in the production phase of the last 10 ns, giving a
clear indication that the protein attains a more compact

Fig. 3 Schematic representation of OA1 structure showing the 7TM
helices, intracellular loops (ICLs) and extracellular loops (ECLs). The
conserved GPCR residues, missense mutations that cause ocular albinism

(OA) and missense mutations that abolish binding of the receptor to G
proteins are also shown, as well as the “DAY” motif at the end of TM3
and “rotamer toggle switch” (W257 in the middle of TM6)
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form as the long cytoplasmic tail and other loop regions fall
back into their native conformations, which is in accor-
dance with the RMSF plot. The fall in solvent accessible
surface area (SASA) values (Fig. 7b) for the last 10 ns also
reflects the same phenomenon of the loops attaining more
compact forms.

OA1-L-DOPA simulation

L-DOPA has been shown to be an agonist for OA1 that
activates the receptor upon binding [36]. When the OA1-
L-DOPA system was simulated, a reduced motion of the
loop regions was observed, which can be seen from the
RMSD value ranging below 10 Å for the entire structure
shown in Fig. 5b, indicating a more compact structure
overall. Thus L-DOPA seems to stabilize the loop regions,
ECL2 (residue 176–190) in particular, which will also be
shown later through analysis of hydrogen bonding
patterns. The RMSF plot shown in Fig. 5c also indicates
this by clearly showing reduced fluctuation of ECL2 in the
presence of L-DOPA as compared to the other two

systems. However, there is a small increase in the RMSD
value of the 7TM regions, which indicates movement of
the 7TM helices relative to the ligand molecule during the
simulation. A closer look at the RMSD values of the
individual helices (Fig. 6b) shows that the RMSD values
of TM5 and TM6 increase gradually with time. TM5
shows a particularly marked increase in RMSD value to
about 3 Å. In the presence of L-DOPA, the intracellular
end of TM5 from residue 213 to 224 shows a marked
deviation from the normal of the z-axis, which is not
observed in the other two systems. There is also an
interesting hydrogen bond formation between TM5 and
TM3 in this region, which is discussed below. The RMSF
plot reveals a comparatively higher fluctuation of TM2
(residue 73–101) in the presence of L-DOPA than in the
other two systems. The movements of TM2, TM5 and
TM6, which also surround the ligand, clearly discriminate
the conformations of the receptor in the presence of the
agonist and antagonist, which is also observed during the
activation of rhodopsin, β2-AR and other GPCRs [63–
66]. From the RMSF plot (Fig. 5c), it can be seen that

Fig. 4 Receptor-ligand interac-
tions. Top (a, b) and side (c, d)
views of the binding pockets of
the two ligands L-DOPA (a, c)
and dopamine (b, d) within the
receptor. L-DOPA and dopamine
bind to OA1 in roughly the
same pocket surrounded by
TM2, TM3, TM5, TM6 and
ECL2. The initial (0 ns) docked
pose of the ligands are shown in
orange “line” representation,
while “stick” representation in
green (carbon atoms), red
(oxygen atoms) and blue (nitro-
gen atoms) represent the average
structures of the ligands forming
hydrogen bonds with OA1.
L-DOPA is seen to form
hydrogen bonds with Y178 (on
ECL2) and N260 (on TM6), and
dopamine forms a hydrogen
bond with H194 (on TM5). OA1
residues with which the ligands
form stable hydrogen bonds
(Y127, M198, E264 and F293)
are also shown in “stick”
representation. The hydrogen
atoms are not shown in the
figure. The figure was rendered
using PyMOL
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ECL1 (residues 102–112) and ICL3 (residues 224–244)
exhibit increased fluctuations. The fall in the radius of
gyration values (Fig. 7a) reveals that the structure of OA1

becomes more compact in the presence of L-DOPA,
whereas there is an increase in the SASA value (Fig. 7b)
from 20,000 Å2 to 21,500 Å2 as compared to that of the
apo-OA1 system from 5 ns onwards. This can be

Fig. 6 RMSD plots of individual TM helices. a, b and c show the
RMSD of the individual TM helices of apo-OA1, OA1-L-DOPA and
OA1-dopamine systems, respectively. The plots also include the
RMSD of the eighth helix, which remains parallel to the lipid bilayer.
The plots were prepared using XMGRACE

Fig. 5 Root mean square deviation (RMSD) and root mean square
fluctuation (RMSF) plots. RMSD plots of the 7 TM helices (a) and the
entire protein (b) are shown for all three simulated systems. (c) RMSF
plot of the three systems. The colors indicate apo-OA1 (blue), OA1-L-
DOPA (green) and OA1-dopamine (red) systems. The plots were
prepared using XMGRACE
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explained by the observation that the TM helices in the
intracellular side, particularly TM5, open up, which is
reflected in the SASA values, whereas the radius of
gyration falls because the cytoplasmic tail and other loop
regions become more compact. Visual inspection of the
trajectory of the OA1-L-DOPA system also reveals lateral
movements of TM1 and TM2 with respect to the z-axis,
leading to increased accessibility to the binding pocket,
whereas an opening in the intracellular end due to the
movements of TM5 and TM6 might facilitate G-protein
binding. This phenomenon is also reflected in Fig. 8b,
which clearly shows that the tilt angles of TM1 and TM2
(with respect to the z-axis) for OA1-L-DOPA system
fluctuate above 40°, whereas in the apo-OA1 (Fig. 8a)
and OA1-dopamine (Fig. 8c) systems, the value remains
below 40°. The other TM helices, however, maintain tilt
angles of around 15–20°.

OA1-dopamine simulation

Dopamine is thought to act as an antagonist against OA1,
which competes and binds in the same pocket as L-DOPA
[36]. The results obtained in the present study indicate that,
in comparison to L-DOPA, dopamine imparts more rigidity
to OA1, making it more compact than even the apo-OA1
structure. The 7TM helices show an average RMSD of
2.5 Å ,while the RMSD value of the entire structure lies in
the region of 8 Å (Fig. 5a,b) from 5 ns onwards, which is
lower compared to the apo-OA1 and OA1- L-DOPA
systems for which the values are in the range of 11 Å and
9 Å, respectively. Fluctuation in the radius of gyration
value, which is relatively high compared to that in the
presence of L-DOPA, shows that dopamine does not affect
the loop regions so much. A look at the individual TM
helix RMSD (Fig. 6c) shows enhanced movement of the
eighth helix from its initial conformation, with a value of
about 3 Å. The eighth helix shows minimal fluctuation in
the other two simulations. TM5 maintains a relatively stable

value below 2 Å from 5 ns onwards. The decreased
movements of these regions are reflected in the RMSF plot
(Fig. 5c), which also shows increased fluctuation for ECL2
(residue 176–190) and ECL3 (residue 270–291). Interest-
ingly, the final structure obtained after 15 ns simulation
shows the occurrence of an anti-parallel β-sheet on ECL2,
which is not observed in the other two simulations.
However, the template 2RH1 shows the presence of an α-
helix on ECL2 [7]. The ICLs show no notable movement in
the presence of dopamine. The SASA value for OA1-
dopamine remains almost constant at about 21,000 Å2 from
5 ns onwards (Fig. 7b), indicating a closed conformation of
the GPCR as compared to OA1-L-DOPA system.

Agonist- and antagonist-induced structural changes
of the receptor

Hydrogen bonding pattern

Hydrogen bonds play an important role in describing how a
small molecule like L-DOPA or dopamine interacts with a
protein, and in bringing about conformational changes
switching it from one conformational state to another.
OA1 is known to have a single saturable binding site for
both L-DOPA and dopamine [36]. Docking studies per-
formed here have also shown that both L-DOPA and
dopamine dock into the same binding pocket surrounded
by TM3, TM5, TM6 and ECL2, and stabilizes the entire
complex by forming a dynamic network of hydrogen bonds
with the receptor. All the different hydrogen bonds that
have been formed between OA1 and the ligands throughout
the entire simulation period of 15 ns are listed in
Supplementary Table S1. Figure 4a and b show the top
view from the extracellular side; Fig. 4c and d show the
side view of the binding pocket, showing the average
structures of L-DOPA forming hydrogen bonds with Y178
(on ECL2) and N260 (on TM6), and dopamine forming
hydrogen bonds with H194 (on TM5), respectively. Figure 4

Fig. 7 Radius of gyration and
solvent accessible surface area
(SASA) plots. Plots show the
change in a radius of gyration
and b SASA for all three
systems over time. The sharp
fall in the SASA plot is due
mainly to rearrangements of the
loop regions and the
cytoplasmic tail. The plots were
prepared using XMGRACE
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also shows, in “stick” representation, the other residues of
the receptor with which the ligands persistently form stable

hydrogen bonds. These hydrogen bonds are found consis-
tently throughout the simulation as seen from Table 2. The
two hydrogen bonds formed by Y178 on ECL2 with L-
DOPA remain stable from 2 ns onwards with intermittent
breakages, while the two formed by N260 remain from
1.8 ns onwards (Fig. 9a). Two more dominant hydrogen
bonds were also observed throughout the entire 15 ns
simulation between L-DOPA and D189 on ECL2 (Fig. 9a).
The hydrogen bonds formed by dopamine with E264 and
H194 were found to occur for a considerable time period
(Fig. 9b) during the production phase. Dopamine also
forms an intermittent hydrogen bond with D189 on ECL2
(Fig. 9b). As a result, ECL2, which acts as a closing lid,
does not remain so firmly over the binding pocket as it does
in the case of L-DOPA. Also, both L-DOPA and dopamine
were found to form hydrogen bonds with Q124 on TM3,
the mutation of which to Arg causes OA [34]. Dopamine
also forms a hydrogen bond with I261 and W292, mutation
of which to Asn and Gly, respectively, have also been
reported in patients suffering from OA [34].

Figure 10 shows the distribution of clusters of OA1
conformations that have maintained zero, one, two, three,
four, five, six or seven hydrogen bonds with either L-DOPA
(black bars) or dopamine (grey bars). It is clear that L-
DOPA forms a higher number (maximum of 7) of hydrogen
bonds with OA1 than dopamine, throughout the entire
simulation period. On average, L-DOPA maintains about
two to three hydrogen bonds with the receptor, while
dopamine maintains an average of one hydrogen bond
throughout the simulation period or does not form
hydrogen bonds with the receptor at all. These extra
hydrogen bonds might help L-DOPA to stimulate OA1,
thus acting as an agonist. It is also clear from Supplemen-
tary Table S1 that the total number of hydrogen bonds
formed by dopamine is much higher than the number
formed by L-DOPA with the receptor (50 vs 32), but most
of these hydrogen bonds formed by dopamine are transient
and maintained for only a few pico-seconds, while L-DOPA
forms a more stable network of hydrogen bonds. Table 2
lists the hydrogen bond pairs between OA1 and the two
ligands that are maintained at a distance below 3.5 Å, thus
indicating hydrogen bonds, for at least 2 ns. From Table 2 it
is clear that L-DOPA forms a strong network of hydrogen
bonds with residues on TM5, TM6 and ECL2, which is also
reflected in Fig. 9. As suggested for other GPCRs [5–10,
61, 62], in the case of OA1, ECL2 also plays an important
role in keeping ligands in the binding pocket of the
receptor.

Another interesting observation with respect to the
hydrogen bonding pattern is that, in the OA1-L-DOPA
system, a hydrogen atom of the aromatic ring of Y142 on
TM3 was found to form a stable hydrogen bond with an
oxygen atom of L212 on TM5 from 4 ns onwards (Fig. 11a,

Fig. 8 Axis tilts of 7 TM helices. Tilts of the individual 7TM helices
with respect to the z-axis were plotted for the entire simulation length
for a apo-OA1, b OA1-L-DOPA and c OA1-dopamine systems. The
tilt angle was calculated as the angle between a best-fit cylinder to the
helix axis relative to the bilayer normal, using the GROMACS
analysis package. All three systems show fluctuations in the tilt angles
of all the 7 TM helices, with the difference between the maximum and
minimum tilt angle shown by each helix ranging from 10° to 15°. The
plots were prepared using XMGRACE
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b), which was not seen in the other two systems. This
hydrogen bond clearly differentiates the conformations of
the receptor in the presence of the agonist and the
antagonist.

Rotamer toggle switch on TM6

The transition from the active to inactive state of GPCRs
involves the release of an important molecular constraint
referred to as the “rotamer toggle switch”, which is
represented on TM6 by a change in rotameric conformation
on a tryptophan residue [67–69]. The crystal structures of
both rhodopsin and β2-AR show the presence of this toggle
switch. In rhodopsin, W265 acts as the switch, which
toggles upon activation, while in β2-AR this function is
provided by W286. In OA1, there is also a Trp residue in
the middle of TM6, whose indole ring side-chain faces the
interior of the protein, as observed in the crystal structures
of both rhodopsin and β2-AR. However, the recent
elucidation of the active-state crystal structures of human
β2-AR [8, 9] and human metarhodopsin II [13], show that

the indole ring torsion angles of W286 and W265 are
similar to those of their inactive-state crystal structures.
Hence, there is a fair amount of debate regarding
consideration of this rotamer toggle switch as a discrimi-
nating feature between the active and inactive states of
GPCRs. In most GPCRs, this tryptophan residue occurs in a
“WxP” motif, but in the case of OA1 this motif is absent
from TM6. However, from the current observations it can
be envisaged that W257 on TM6 acts as this toggle switch
and distinguishes between the two distinct conformations of
the receptor. The W257 torsion angle formed between CA–
CB–CG–CD1 of the 0 ns structure of OA1 (shown in white
color in Supplementary Fig. S4) has a value of 112°.
Supplementary Fig. S4 depicts the two distinct conforma-
tions of the W257 rotamer in white (0 ns) and blue (after
15 ns simulation) colors. Interestingly, rotameric toggling is
observed to occur quite clearly in both the apo-OA1
(Supplementary Fig. S4a) and OA1-dopamine systems
(Supplementary Fig. S4c) with the CA–CB–CG–CD1
torsion angle values changing to 41° and −165°, respec-
tively, from the initial value of 112°. However, the position

Table 2 Hydrogen bonds
formed between the receptor and
L-DOPA and dopamine that are
maintained for at least 2 ns
continuously during molecular
dynamics (MD) simulations

Atom pairs (donor–acceptor) Receptor topology Remarks

Hydrogen bonds formed between OA1 and L-DOPA

ASN260HD22–LDP405OE2 TM6 Maintained at ≈2.5 Å from 1.8 ns onwards

MET198H–LDP405OE2 TM5 Maintained at ≈3 Å for first 2 ns, then increased
over 7 Å

TYR178HH–LDP405O ECL2 Initial at 10 Å, reduced to ≈1.7 Å from 2 ns onwards
with intermittent increase to 3 Å

TYR178HH–LDP405OXT ECL2 Initial at 10 Å, reduced to ≈1.5 Å from 2 ns onwards
with intermittent increase to 3 Å

LDP405HZ–MET198N TM5 Maintained at ≈3.2 Å with fluctuations throughout

LDP405HE2–HISB194NE2 TM5 Maintained at ≈3 Å for first 2.5 ns

LDP405HE2–HISB194O TM5 Maintained at ≈3.5 Å for first 2.5 ns

LDP405HE2–ASN260OD1 TM6 Maintained at ≈3.4 Å from 5 ns onwards with
fluctuations

LDP405H1–ASP189OD1 ECL2 Maintained at ≈3.4 Å throughout

LDP405H1–ASP189OD2 ECL2 Maintained at ≈3 Å throughout

LDP405H1–GLU264OE1 TM6 Maintained at ≈3 Å between 9 and 12 ns

LDP405H1–GLU264OE2 TM6 Maintained at ≈3 Å for first 5 ns and last 2.5 ns

Hydrogen bonds formed between OA1 and dopamine

ILE297H–DOP405O1 TM7 Maintained at ≈3.5 Å between 1.5 and 3.4 ns and
between 6.2 and 9.6 ns

ILE261H–DOP405O1 TM6 Maintained below 3.5 Å for the first 5.5 ns

TYR127HH–DOP405O2 TM3 Maintained at ≈3.5 Å for first 10 ns with
fluctuations

DOP405H12–GLY187O ECL2 Maintained at ≈3 Å for first 6 ns and then sudden
jump above 10 Å

DOP405H12–ASP189OD1 ECL2 Maintained at ≈3.3 Å for first 12 ns

DOP405H12–HISB194ND1 TM5 Maintained at ≈3 Å for the last 9 ns

DOP405H12–GLU264O TM6 Maintained at ≈3 Å between 6 and 13 ns

DOP405H11–PHE293O TM7 Maintained at ≈3.3 Å between 6 and 10 ns

2128 J Mol Model (2012) 18:2117–2133



of the W257 rotamer in the presence of L-DOPA remains
same throughout the 15 ns simulation (Supplementary
Fig. S4b). The aromatic rings of both L-DOPA and
dopamine are found to be docked roughly in the same
position, surrounded by TM3, TM5, TM6 and ECL2, and
engage this toggle switch. The toggling of the W257
rotamer also depends on the relative movement of TM6,
and both events occur in a concerted manner.

Helical tilts

Site-directed spin labeling (SDSL) studies have shown that
rigid body motions, in terms of helical tilts of TM6 and TM3,
play a vital role in the photo-activation of rhodopsin—the
most well understood system in the GPCR superfamily [70–
74]. Hence, we examined whether OA1 also shows any such
rigid body motions represented in terms of helical tilts, in the
presence of the two ligands. The helical tilts were calculated
for all TM helices for all three systems during the 15 ns
simulations. The tilt angle was calculated as the angle
between a best-fit cylinder to the helix axis relative to the
bilayer normal. Each helix was divided into top and bottom
sections on the basis of the kinks and bends present in each
helix. The difference between the maximum and minimum
tilt angle shown by each helix ranged between 10° and 15°.
For the apo-OA1 system, all the TM helices were observed
to show some fluctuations at around roughly 5 ns (Fig. 8a).
Among them, TM1, TM2, TM4, TM5 and TM6 show some
abrupt changes in their tilt angles around 6 ns. In the OA1-L-
DOPA system, it was observed that the tilt angle values for
all the helices decrease initially and the value for TM5 then
increases by about 10° from 5 ns onwards, due mainly to
movement at the intracellular end of the helix. The relatively
higher tilt values of TM1 and TM2 were correlated with
visual observation of the trajectory, which revealed lateral

Fig. 9 Distance fluctuation between receptor–ligand hydrogen bond
donor–acceptor pairs. The plot shows the distance fluctuation between
those hydrogen bond donor–acceptor pairs that are maintained below
3.5 Å for at least 2 ns during the simulation, for a the OA1-L-DOPA
system, and b the OA1-dopamine system, between the receptor and
the ligands. It can be seen that L-DOPA forms a greater number of
stable hydrogen bonds with OA1 than does dopamine. The plots were
prepared using XMGRACE

Fig. 10 Variation in the number
of conformations of OA1 having
a different number of hydrogen
bonds with the ligand. The
histogram shows the number of
OA1 conformations having a
particular number of hydrogen
bonds with L-DOPA (black bars)
or dopamine (grey bars). The
conformations were analyzed
every 2 ps. It can be seen that
the number of conformations of
OA1 having hydrogen bonds
with L-DOPA is greater than that
with dopamine
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movement of TM1 and TM2 creating a slight opening of the
binding pocket. The OA1-dopamine system showed some
random fluctuations in tilt angle values, with the maximum
being shown by TM3, TM4 and TM6. These abrupt changes
in tilt angles, besides fast fluctuations, show that the TM
helices of OA1, and GPCRs in general, are dynamic
structures with various dynamical modes.

“DAY” motif on TM3

Extensive experimental and computational studies have
shown that the activation process of both bovine rhodopsin
and human β2-AR involves the breaking of an “ionic lock”
[75–79] that is formed between the Arg residue on the “D/
ERY” motif at the end of TM3—a signature of these
GPCRs [69, 80]—and a conserved Glu residue on TM6.
However, in the case of OA1 this Arg residue is replaced by
an Ala residue, forming a “DAY” motif at the end of TM3.
Being a non-polar amino acid, Ala is unable to form any

salt bridge with E264 on TM6. However, some variations
in the SASA value of the “DAY” motif for the OA1-L-
DOPA system were observed. From Fig. 11c it can be seen
that the apo-OA1 and OA1-dopamine systems (Fig. 11c)
maintain almost a constant SASA value of about 270 Å2

throughout the simulation for the “DAY” motif, while OA1-

L-DOPA system (Fig. 11c) shows a slight decrease in the
value at the beginning, followed by a gradual increase to
about 270 Å2. An interesting observation revealed that, in
the OA1-L-DOPA system, the end residue of the “DAY”
motif, Y142, on TM3 formed a stable hydrogen bond with
L212 on the middle of TM5 from 5 ns onwards. The
distance fluctuation plot (Fig. 11a) between the hydrogen
atom on the aromatic ring of Y142 and the oxygen atom of
L212 clearly shows that L-DOPA helps the receptor to form
and maintain this hydrogen bond (shown diagrammatically
in Fig. 11b). As a result, the lower end of TM3 holds the
middle of TM5 together. However, the intracellular end of
TM5 (residues 213–224) forms a bend at this point of the

Fig. 11 “DAY” motif analysis.
A Distance fluctuation between
the hydrogen atom on the
aromatic ring of Y142 on TM3
and the oxygen atom on L212
on TM5, which form a hydrogen
bond in the presence of L-DOPA
(green). This hydrogen bond is
shown diagrammatically in B.
The relative movement of TM5
away from the z-axis normal in
the presence of L-DOPA (blue)
can be seen, while in the pres-
ence of dopamine (white), TM5
does not show such deviation. C
Variations in the SASA of the
“DAY” motif for the systems (a)
apo-OA1, (b) OA1-L-DOPA and
(c) OA1-dopamine. The plots
were prepared using
XMGRACE and the figure was
rendered using PyMOL

2130 J Mol Model (2012) 18:2117–2133



helix and deviates away from the z-axis normal, as can be
clearly seen from Fig. 11b. This forms an opening in the
intracellular end of the receptor surrounded by TM3, TM5
and TM6 which might act as the possible binding site
of G-protein to OA1. The same can also be inferred
from the gradual increase of receptor SASA in presence
of L-DOPA as shown in Fig. 7b. However, this hydrogen
bond was found to be absent in the case of both the apo-
OA1 and OA1-dopamine systems where the intracellular
end of TM5 did not deviate substantially to form this
opening. In both these cases, the aromatic ring of Y142
was found to point away from the TM helices. This
hydrogen bond mediated by the “DAY” motif is another
feature that distinguishes between the agonist- and
antagonist-bound forms of the receptor.

Conclusions

Being a GPCR that is expressed exclusively on intracellular
organelles—the melanosomes—OA1 poses a unique challenge
as a system for study. The present study attempted to address
several issues, starting from model building to MD simulations
in the presence and absence of ligands—steps that are vital to
the proper understanding of the actual mechanism of the
functioning of GPCRs and that are also useful in the drug
discovery process. The predicted structure of OA1 was found
to stand up to scrutiny, with about 92% of the residues falling
within the most favored regions of the Ramachandran plot,
while its quality was further refined and established through
MD simulations. The simulations showed that the structure is
stable in an explicit lipid bilayer environment over the
period of the performed simulations, and that the helical
conformations, including the eighth helix—a characteristic
feature of rhodopsin family of GPCRs, which remains parallel
to the lipid bilayer—were preserved.

The predicted structure of OA1 is attributed with some
of the signature characteristics of GPCRs in conformation-
ally correct positions, e.g., the “DAY” motif at the end of
TM3, the rotameric toggle switch in the form of W257 in
the middle of TM6, and some of the Pro residues in the
middle of TM2, TM5 and TM7 that make the characteristic
kinks in the TM helices. The binding pockets on OA1 for
both L-DOPA and dopamine show that both ligands bind in
a region similar to the ligand binding pocket of β2-AR. The
predicted binding sites and energetics of these ligands agree
quite well with the available experimental results, showing
that both ligands bind to a single binding pocket. The
selected binding poses of the ligands were found to form
hydrogen bonds with some important residues such as
Q124, I261 and W292, mutations in which are known to
cause OA. It was also seen that ECL2 acts as a “closing lid”
over the binding pocket in the case of both ligands and in a

way stabilizes the conformation of that region, which is
also observed for β2-AR. In β2-AR, ECL2 harbors a small
α-helix, while the predicted model of OA1 did not show
the presence of any such helical conformation. Interestingly,
among the structures obtained after 15 ns of simulation, in
the presence of dopamine OA1 showed the occurrence of
an anti-parallel β-sheet on ECL2, whereas the apo-OA1
and OA1-L-DOPA structures retained only the loop
conformations on ECL2.

Further investigations through MD simulations helped to
shed more light on some of the structural features of the
receptor in the presence of L-DOPA and dopamine. There is
a clear difference in the rotameric conformations of W257
in the agonist- and antagonist-bound forms of the receptor.
The hydrogen bonding pattern shows that L-DOPA imparts
more stability to OA1 through a network of hydrogen
bonds that is stronger than that in the presence of
dopamine. Most of the hydrogen bonds formed with TM5
and TM6, suggesting that TM5 and TM6 might play an
important role in the conformational switching of OA1. On
average, L-DOPA maintains two to three hydrogen bonds
with OA1 throughout the simulation. These bonds, which
are mediated by the agonist, might stimulate the receptor in
long time-scale cellular processes. The reliability of the MD
simulations is also verified by the fact that the ligands were
found to interact with residues like Q124, W292 and I261,
mutations in which cause OA. The MD results also
emphasize the fact that these ligands have bound to the
correct pockets on the receptor and play a role in keeping
the receptor in distinct conformations by engaging impor-
tant residues. However, no “ionic lock” was observed
between TM3 and TM6, which can be explained by the fact
that OA1, unlike rhodopsin family GPCRs, does not have a
“D/ERY” motif, but instead has a “DAY” motif. This
“DAY” motif in turn was found to be involved in a
hydrogen bond between TM3 and the middle of TM5 only
in the presence of L-DOPA, which distinguishes the two
conformations of OA1. As a consequence, the cavity
formed due to movement of the intracellular end of TM5
away from the z-axis normal, and surrounded by TM3 and
TM6, might act as the binding pocket for G-proteins.
Besides these, the fluctuations harbored by the TM helices
of OA1 reveal the dynamic nature of the receptor switching
between several dynamical modes.

The present study on OA1 sheds light on the structural
aspects of an important GPCR—a protein superfamily of
paramount medical importance. This computational modeling
study in conjunction with MD simulations has successfully
predicted the structure and provided insight into the structural
features of the receptor and its dynamically changing
conformations in the presence of an agonist and an antagonist.
This might help to design future experiments and further the
understanding of this novel receptor.

J Mol Model (2012) 18:2117–2133 2131



Acknowledgments A.G., U.B.S. and R.R.J. gratefully acknowledge
the Department of Information Technology (DIT), Government of
India, New Delhi, for providing financial support. This work was
performed using the “Bioinformatics Resources and Applications
Facility (BRAF)” at C-DAC, Pune, funded by DIT, New Delhi. A.G.
K. and A.S.K. gratefully acknowledge funding support from IIT
Madras, Department of Science and Technology (DST) and Department
of Biotechnology (DBT), Government of India.

References

1. Schöneberg T, Schulz A, Gudermann T (2002) The structural
basis of G-protein-coupled receptor function and dysfunction in
human diseases. Rev Physiol Biochem Pharmacol 144:143–227

2. Lundstrom K (2009) An overview on GPCRs and drug discovery:
structure-based drug design and structural biology on GPCRs.
Methods Mol Biol 552:51–66

3. Wilson S, Bergsma D (2000) Orphan G-protein coupled receptors:
novel drug targets for the pharmaceutical industry. Drug Des
Discov 17:105–114

4. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many
drug targets are there? Nat Rev Drug Discov 5:993–996

5. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H et
al (2000) Crystal structure of rhodopsin: a G protein-coupled
receptor. Science 289:739–745

6. Ballesteros J, Palczewski K (2001) G protein-coupled receptor
drug discovery: implications from the crystal structure of
rhodopsin. Curr Opin Drug Discov Dev 4:561–574

7. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS
et al (2007) Crystal structure of the human beta2 adrenergic G-
protein-coupled receptor. Nature 450:383–387

8. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P et al
(2011) Structure of a nanobody-stabilized active state of the β(2)
adrenoceptor. Nature 469:175–180

9. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D et al
(2011) Structure and function of an irreversible agonist-β(2)
adrenoceptor complex. Nature 469:236–240

10. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY et al
(2008) The 2.6 angstrom crystal structure of a humanA2A adenosine
receptor bound to an antagonist. Science 322:1211–1217

11. Murakami M, Kouyama T (2008) Crystal structure of squid
rhodopsin. Nature 453:363–367

12. Wu B, Chien EY, Mol CD, Fenalti G, Liu W et al (2010)
Structures of the CXCR4 chemokine GPCR with small molecule
and cyclic peptide antagonists. Science 330:1066–1071

13. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF et al (2011)
Crystal structure of metarhodopsin II. Nature 471:651–655

14. Patny A, Desai PV, Avery MA (2006) Homology modelling of G-
protein coupled receptors and implications in drug design. Curr
Med Chem 13:1667–1691

15. Kanagarajadurai K, Malini M, Bhattacharya A, Panicker M,
Sowdhamini R (2009) Molecular modeling and docking studies of
human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identifi-
cation of hotspots for ligand binding. Mol BioSys 5:1877–1888

16. Miedlich SU, Gama L, Seuwen K, Wolf RM, Breitwieser GE
(2004) Homology modeling of the transmembrane domain of the
human calcium sensing receptor and localization of an allosteric
binding site. J Biol Chem 279:7254–7263

17. Dastmalchi S, Church WB, Morris MB (2008) Modelling the
structures of G protein-coupled receptors aided by three-
dimensional validation. BMC Bioinforma 9:S14

18. Niv MY, Skrabanek L, Filizola M, Weinstein H (2006) Modeling
activated states of GPCRs: the rhodopsin template. J Comput
Aided Mol Des 20:437–448

19. Costanzi S (2008) On the applicability of GPCR homology
models to computer-aided drug discovery: a comparison between
in silico and crystal structures of the β2-adrenergic receptor. J
Med Chem 51:2907–2914

20. Lavecchia A, Cosconati S, Novellino E (2005) Architecture of the
human urotensin II receptor: comparison of the binding domains
of peptide and non-peptide urotensin II agonists. J Med Chem
48:2480–2492

21. Periole X, Weinstein H (2002) Key issues in computational
simulation of GPCR function. J Comput Aided Mol Des
16:841–853

22. Ivetac A, Sansom MS (2008) Molecular dynamics simulations and
membrane protein structure quality. Eur Biophys J 37:403–409

23. Fan H, Mark AE (2004) Refinement of homology-based protein
structures by molecular dynamics simulation techniques. Protein
Sci 13:211–220

24. Kobilka B, Schertler GF (2008) New G-protein-coupled receptor
crystal structures: insights and limitations. Trends Pharmacol Sci
29:79–83

25. Klein-Seetharaman J (2002) Dynamics in rhodopsin. ChemBioChem
3:981–986

26. Vilardaga JP, Bünemann M, Krasel C, Castro M, Lohse MJ (2003)
Measurement of the millisecond activation switch of G protein-
coupled receptors in living cells. Nat Biotechnol 21:807–812

27. Shen B, Samaraweera P, Rosenberg B, Orlow SJ (2001) Ocular
albenism type I: more than meets the eye. Pigment Cell Res
14:243–248

28. Incerti B, Cortese K, Pizzigoni A, Surace EM, Varani S et al
(2000) Oa1 knock-out: new insights on the pathogenesis of ocular
albinism type I. Hum Mol Genet 9:2781–2788

29. Bassi MV, Schiaffino MV, Renieri A, De Nigris F, Galli L et al
(1995) Cloning of the gene for ocular albinism type I from the
distal short arm of the X chromosome. Nat Genet 10:13–19

30. Schiaffino MV, Bassi MV, Galli L, Renieri A, Bruttini M et al
(1995) Analysis of the OA1 gene reveals mutations in only one-
third of the patients with X linked ocular albinism. Hum Mol
Genet 4:2319–2325

31. Schiaffino MV, d’Addio M, Alloni A, Baschirotto C, Valetti C et
al (1999) Ocular albinism: evidence for a defect in an intracellular
signal transduction system. Nat Genet 23:108–112

32. Schiaffino MV, Tacchetti C (2005) The Ocular Albinism type I
(OA1) protein and the evidence for an intracellular signal
transduction system involved in melanosome biogenesis. Pigment
Cell Res 18:227–233

33. Innamorati G, Piccirillo R, Bagnato P, Palmisano I, Schiaffino
MV (2006) The melanosome/lysosomal protein OA1 has proper-
ties of a G protein coupled receptor. Pigment Cell Res 19:125–135

34. d’Addio M, Pizzigoni A, Bassi MT, Baschirotto C, Valetti C et al
(2000) Defective intracellular transport and processing of OA1 is
a major cause of ocular albinism type 1. Human Mol Genet
9:3011–3018

35. Palmisano I, Bagnato P, Palmigiano A, Innamorati G, Rotondo G
et al (2008) The ocular albinism type 1 protein, an intracellular G
protein coupled receptor, regulates melanosome transport in
pigment cells. Human Mol Genet 17:3487–3501

36. Lopez VM, Decatur CL, StamerWD, Lynch RM,MacKay BS (2008)
L-DOPA is an endogenous ligand for OA1. PLoS Biol 6:e236

37. Bairoch A, Apweiler R (1998) The SWISS-PROT protein
sequence data bank and its supplement TrEMBL in 1998. Nucleic
Acids Res 26:38–42

38. Bateman A, Coin L, Durbin R, Finn RD, Hollich V et al
(2004) The Pfam protein families database. Nucleic Acids Res
32:138–141

39. Altschul SF, Madden TL, Schäffer AA (1997) Gapped BLAST
and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25:3389–3402

2132 J Mol Model (2012) 18:2117–2133



40. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan
PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics
23:2947–2948

41. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001)
Predicting transmembrane protein topology with a hidden markov
model: application to complete genomes. J Mol Biol 305:567–580

42. Rost B, Yachdav G, Liu J (2004) The PredictProtein Server.
Nucleic Acids Res 32:W321–W326

43. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF,
Thian FS et al (2007) High-resolution crystal structure of an
engineered human β2-adrenergic G protein-coupled receptor.
Science 318:1258–1265

44. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P et al (2004)
The retinal conformation and its environment in rhodopsin in light
of a new 2.2 Å crystal structure. J Mol Biol 342:571–583

45. Hall TA (1999) BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/NT.
Nucleic Acids Symp Series 41:95–98

46. Šali A, Blundell TL (1993) Comparative protein modelling by
satisfaction of spatial restraints. J Mol Biol 234:779–815

47. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993)
PROCHECK: a program to check the stereochemical quality of
protein structures. J Appl Cryst 26:283–291

48. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment
of protein models with three-dimensional profiles. Methods
Enzymol 277:396–404

49. Schrödinger Suite (2009) QM-polarized ligand docking protocol;
Glide version 5.5; Jaguar version 7.6; QSite version 5.5.
Schrödinger, LLC, New York, NY

50. Chung JY, Hah JM, Cho AE (2009) Correlation between
performance of QM/MM docking and simple classification of
binding sites. J Chem Inf Model 49:2382–2387

51. Hess B, Kutzner C, van der Spoel D, Lindahl EJ (2008)
GROMACS 4: algorithms for highly efficient, load-balanced,
and scalable molecular simulation. Chem Theor Comput 4:435–
447

52. Schuettelkopf AW, van Aalten DMF (2004) PRODRG—a tool for
high-throughput crystallography of protein–ligand complexes.
Acta Crystallographica D60:1355–1363

53. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running
molecular dynamics simulations of membrane proteins. Methods
41:475–488

54. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling
through velocity rescaling. J Chem Phys 126:014101

55. Hess B (2008) P-LINCS: a parallel linear constraint solver for
molecular simulations. J Chem Theor Comput 4:116–122

56. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a
program to generate schematic diagrams of protein-ligand
interactions. Prot Eng 8:127–134

57. XMGRACE: http://plasma-gate.weizmann.ac.il/Grace/
58. Humphrey W, Dalke A, Schulten K (1996) VMD: visual

molecular dynamics. J Mol Graph 14:33–38
59. DeLano WL (2003) The PyMOL Molecular Graphics System.

DeLano Scientific, San Carlos, CA
60. Schnur RE, Gao M, Wick PA, Keller M, Benke PJ et al (1998)

OA1 mutations and deletions in X-linked ocular albinism. Am J
Hum Genet 62:800–809

61. Unal H, Jagannathan R, Bhat MB, Karnik SS (2010) Ligand-
specific conformation of extracellular loop-2 in the angiotensin II
type 1 receptor. J Biol Chem 285:16341–16350

62. Conner M, Hawtin SR, Simms J, Wootten D, Lawson Z et al
(2007) Systematic analysis of the entire second extracellular loop
of the V(1a) vasopressin receptor: key residues, conserved

throughout a G-protein-coupled receptor family, identified. J Biol
Chem 282:17405–17412

63. Dunham TD, Farrens DL (1999) Conformational changes in
rhodopsin. Movement of helix f detected by site-specific
chemical labeling and fluorescence spectroscopy. J Biol Chem
274:1683–1690

64. Knierim B, Hofmann KP, Ernst OP, Hubbell WL (2007) Sequence
of late molecular events in the activation of rhodopsin. Proc Natl
Acad Sci USA 104:20290–20295

65. Kobilka BK (2007) G protein coupled receptor structure and
activation. Biochim Biophys Acta 1768:794–807

66. Kobilka BK (2002) Agonist-induced conformational changes in
the beta2 adrenergic receptor. J Pept Res 60:317–321

67. Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA et al (2002)
Beta2 adrenergic receptor activation. Modulation of the proline
kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem
277:40989–40996

68. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand-
stabilized conformational states of human β2 adrenergic receptor:
insight into G-protein-coupled receptor activation. Bio Phys J
94:2027–2042

69. Bhattacharya S, Hall SE, Vaidehi N (2008) Agonist-induced
conformational changes in bovine rhodopsin: insight into activa-
tion of G-protein-coupled receptors. J Mol Biol 382:539–555

70. Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated
conformational-changes in rhodopsin—a time-resolved spin-label
study. Science 262:1416–1419

71. Hubbell WL, Cafiso D, Altenbach C (2000) Identifying confor-
mational changes with site-directed spin labeling. Nature Struct
Biol 7:735–739

72. Langen R, Cai K, Altenbach C, Khorana HG, Hubbell WL (1999)
Structural features of the C-terminal domain of bovine rhodopsin:
a site directed spin-labeling study. Biochemistry 38:7918–7924

73. Farrens D, Altenbach C, Yang K, Hubbell WL, Khorana HG
(1996) Requirement of rigid-body motion of transmembrane
helices for light activation of rhodopsin. Science 274:768–770

74. Crozier PS, Stevens MJ, Forrest LR, Woolf TB (2003) Molecular
dynamics simulations of dark-adapted rhodopsin in an explicit
membrane bilayer: coupling between local retinal and larger scale
conformational change. J Mol Biol 333:493–514

75. Vogel R, Mahalingam M, Lüdeke S, Huber T, Siebert F et al
(2008) Functional role of the “Ionic Lock”—an interhelical
hydrogen-bond network in family a heptahelical receptors. J Mol
Biol 380:648–655

76. Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SGF, Shi L et
al (2001) Activation of the β2-adrenergic receptor involves
disruption of an ionic lock between cytoplasmic ends of
transmembrane segments 3 and 6. J Biol Chem 276:29171–29177

77. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S et al
(2009) Identification of two distinct inactive conformations of the
beta2-adrenergic receptor reconciles structural and biochemical
observations. Proc Natl Acad Sci USA 106:4689–4694

78. Romo TD, Grossfield A, Pitman MC (2010) Concerted intercon-
version between ionic lock substates of the beta(2) adrenergic
receptor revealed by microsecond timescale molecular dynamics.
Biophys J 98:76–84

79. Sgourakis NG, Garcia AE (2010) The membrane complex
between transducin and dark-state rhodopsin exhibits large-
amplitude interface dynamics on the sub-microsecond timescale:
insights from all-atom MD simulations. J Mol Biol 398:161–173

80. Fanelli F, De Benedetti PG (2006) Inactive and active states and
supramolecular organization of GPCRs: insights from computa-
tional modeling. J Comput Aided Mol Des 20:449–461

J Mol Model (2012) 18:2117–2133 2133

http://plasma-gate.weizmann.ac.il/Grace/


ORIGINAL PAPER

Crystal structure and conformational analysis
of s-cis-(acetylacetonato)(ethylenediamine-N,N′-diacetato)-
chromium(III)
Development of vibrationally optimized force field (VOFF)

Jong-Ha Choi & Svetozar R. Niketić & Ivana Djordjević &

William Clegg & Ross W. Harrington

Received: 19 January 2011 /Accepted: 11 July 2011 /Published online: 25 September 2011
# Springer-Verlag 2011

Abstract The crystal structure of [Cr(edda)(acac)] (edda=
ethylediamine-N,N′-diacetate; acac=acetylacetonato) has
been determined by a single crystal X-ray diffraction study
at 150 K. The chromium ion is in a distorted octahedral
environment coordinated by two N and two O atoms of
chelating edda and two O atoms of acac, resulting in s-cis
configuration. The complex crystallizes in the space group
P21/c of the monoclinic system in a cell of dimensions a=
10.2588(9), b=15.801(3), c=8.7015(11) Å, β =101.201(9)°
and Z=4. The mean Cr-N(edda), Cr-O(edda) and Cr-O(acac)
bond distances are 2.0829(14), 1.9678(11) and 1.9477(11) Å
while the angles O-Cr-O of edda and O-Cr-O of acac are
171.47(5) and 92.72(5)°, respectively. The crystal structure is
stabilized by N–H⋯O hydrogen bonds linking [Cr(edda)-
(acac)] molecules in distinct linear strands. The visible
electronic and IR spectroscopic properties are also discussed.
An improved, physically more realistic force field, Vibration-
ally Optimized Force Field (VOFF), capable of reproducing

structural and vibrational properties of [Cr(edda)(acac)] was
developed and its transferability demonstrated on selected
chromium(III) complexes with similar ligands.

Keywords acac . Chromium(III) . Complex . Crystal
structure . edda .Molecular mechanics . s-cis geometry .

Spectral properties

Introduction

Ethylenediamine-N,N′-diacetate or 2,2′-[ethane-1,2-diylbis-
(azanediyl)]diacetato (edda) has two acetate and two amino
groups, and it can act as a quadridentate ligand in the
complexation of the chromium(III) ion. The coordination of
an acyclic edda ligand gives three possible geometric
isomers of a [Cr(edda)L2] complex (L=unidentate). These
isomers are commonly referred to as trans, symmetrical-cis
(s-cis) and unsymmetrical-cis (u-cis) [1, 2]. When L2 is a
bidentate ligand such as acetylacetonato (acac), only s-cis and
u-cis geometric diastereoisomers are possible (Scheme 1)
since the trans isomer can not be expected to form with a
chelating acac ligand.

The complex (acetylacetonato)(ethylenediaminediaceta-
to)chromium(III) has been prepared, its s-cis isomer
isolated, and u-cis isomer identified in solution [3]. It was
already known that the s-cis geometry of the chelating edda
ligand is favoured in most Co(III) and Cr(III) complexes
[2–5]. It was suggested that the observed strain of the
diamine ring in edda may be a contributing factor in
determining the configuration of the edda ligand [6].

The assignment of geometrical configuration of some
chromium(III) complexes with mixed ligands can be
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performed by inspection of the d-d absorption and infrared
spectra [7, 8]. It was also suggested that deuteration of the
edda ligand at the acetate proton positions makes it possible
to distinguish a chemically non-equivalent set of geminal
deuterons on the chromium(III) complex by 2H nuclear
magnetic resonance spectroscopy [7].

The position of the spin-allowed transitions in the
electronic spectra, the number of bands, and their extinction
coefficients are usually reliable indicators for distinguishing
the geometric isomers [9]. However, it should be noted that
the assignments based on spectroscopic properties are not
always conclusive [10]. Thus we should be very cautious in
assigning the stereochemistry of a metal complex in the
absence of single-crystal X-ray structural data. Further-
more, it is not easy to assign the geometry because the
visible absorption maxima for the s-cis and u-cis isomers of
[Cr(edda)(acac)] are very close to each other [3].

In this work, the crystal structure of [Cr(edda)(acac)] is
determined to confirm the configuration of the edda ligand
and the bidentate coordination of acac. In addition, due to
the availability of sufficiently accurate structural and
vibrational data (as shown below), the [Cr(edda)(acac)]
molecule was used as a target structure for the optimization
of molecular mechanics force field (FF) based on the
requirement for satisfactory reproduction of conformations,
energies, as well as the vibrational properties. This new
force field we call Vibrationally Optimized Force Field
(VOFF). A series of previous comprehensive conforma-
tional studies on edta–type Cr(III) compounds [1, 11–15]
resulted in a force field capable of satisfactory reproducing
the structures of several different families of diastereoiso-
meric complexes, and also their energetics [11] to the extent
that in every case the most stable structure (in other words,
the global minimum inmolecular mechanicsmodeling) always
corresponded to the one identified by an X-ray diffraction
study. Even if such a force field has an advantage of being fully
transferrable within a well defined range of structures, there is a
need for a realistic force field able to provide a more accurate
description of the interaction forces governing the motions of

the atomic nuclei in the structures under investigation. In that
respect VOFF represents a major improvement over the
current force field [11] for edta-type Cr(III) complexes, as it
ensures the consistent treatment of both the molecular
structure and the vibrational frequencies. VOFF thus
approaches the Consistent Force Field (CFF) philosophy in
the way it was conceptualized by Lifson and his school [16–
19], on which our CFF program for coordination compounds
[20] was initially founded. To our knowledge the full
incorporation of spectroscopic data in force field optimiza-
tion in the realm of coordination chemistry has been rather
limited.

Experimental

Synthesis and physical measurements

The ligand ethylenediamine-N,N′-diacetic acid was
obtained from Aldrich Chemical Co. and used as supplied.
All chemicals were reagent grade materials and used
without further purification. The complex s-cis-[Cr(edda)-
(acac)] was prepared according to a published procedure
[4]. Recrystallization of the crude product from methanol–
water (1:1) solution gave reddish violet crystals that were
suitable for crystallographic analysis. Fujii et al. [4]
reported the formula as [Cr(edda)(acac)]·2H2O on the basis
of elemental analysis and thermogravimerty. Subsequent
authors [3, 5, 21], who prepared the complex by Fujii’s
method, did not present any experimental confirmation of
its composition, but mainly carried over its original [4]
designation as dihydrate. However, as will be shown below,
we were not able to confirm the presence of any molecules
of lattice water in our sample. The UV-visible absorption
spectrum was recorded with an HP 8453 diode array
spectrophotometer. The infrared spectra were obtained with
a Mattson Infinities series FTIR spectrometer (KBr pellet in
1800–400 cm−1 region, and Nujol mull on PE film in 490–
50 cm−1 region), and Thermo Scientific Nicolet 6700 and
iS10 FTIR spectrometers (KBr pellet or ATR attachment,
4000–400 cm−1 range; 1 cm−1 resolution).

Crystal structure analysis

A reddish violet crystal (approximate dimensions of 0.52×
0.42×0.40 mm) was mounted with inert oil on the top of a
glass fibre. Single-crystal X-ray diffraction data were collected
at 150 K on a Nonius KappaCCD diffractometer using
graphite-monochromated Mo Kα radiation (λ = 0.71073 Å).

The diffraction data were measured using COLLECT
[22]; unit cell parameters were refined and intensities
obtained with EvalCCD [23]. Absorption corrections were
applied by SADABS [24] based on symmetry-equivalent and
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repeated reflections. The structure was solved by direct
methods and refined by full-matrix least-squares on F2 using
the SHELXTL [25]. Molecular graphics were produced
using DIAMOND-3 [26] and ORTEP3 [27]. Non-hydrogen
atoms were refined anisotropically; hydrogen atoms were
first located in a difference map, then N–H hydrogen atoms
were freely refined and C-H hydrogen atoms were con-
strained to ride on the parent carbon atom, with C-H=0.99 Å
and Uiso(H)=1.2Ueq(C). Table 1 contains a summary of
crystal parameters, data collection and refinement.

Force field calculations

The calculations were performed with a locally modified
version (rev. 2009) of the original Consistent Force Field
(CFF) conformational program [20]. The components of the
force field (potential functions for bond stretching, angle
bending, torsional, non-bonded and electrostatic contribu-
tions, as well as the starting values of required parameters
for coordinated polyamino-polycarboxylato structures)
have been developed and particularized earlier [11]. Addition-
al force field components needed for modelling of the
acetylacetonato metal-chelate rings were introduced as
required. In view of the commonly accepted [28] pseudo-
aromatic nature of β-diketonato metal chelate rings the
planarity on each sp2 C atom of acac was maintained using

”out-of-plane” angle functions and parameters similar to
those described by Morino and Shimanouchi [29].

The essentially diagonal force field is parameterized on the
basis of three different types of carbon atom (tetrahedral,
trigonal aromatic, and carbonyl carbon), three different types
of oxygen atom (carboxylate oxygen ligator, acetylacetonato
oxygen ligator, and carbonyl oxygen), and one type each of
nitrogen, hydrogen, and metal atom. The same parameters
were used for aliphatic carbon atoms from diamine and
carboxylate chelate rings, as well as for the methyl groups on
the acac ring. Point charge parameters were assigned on the
basis of the results of Mulliken population analysis performed
in quantum mechanics calculations with the ORCA program
[30], and adjusted automatically so that their sum is zero.

Geometry optimizations were carried out using a combi-
nation of steepest-descent, Davidon-Fletcher-Powell and
Newton-Raphson methods following the protocol described
in detail elsewhere [11, 20]. The rms gradient of the total
energy <10−7 kJ/mol Å was taken as the convergence
criterion in all energy minimizations. Refinement of force
field parameters was first done batchwise, e.g. for suitable
small (not necessarily non-overlapping) fragments, taken
repeatedly in turn, in which interaction forces could be
approximately taken as being decoupled from the remainder
of the structure, the required FF parameters were least-
squares fitted against the corresponding geometry (X-ray)
data and experimental vibrational frequencies. Then the
whole set of FF parameters was treated in a likewise manner
to allow for further refinement due to small cross-term
effects. In this way we hopefully avoided the risk of getting
physically unrealistic FF parameter values out of a fully
automated optimization.

Results and discussion

Crystallography

Selected bond lengths and angles are listed in Table 2. An
ellipsoid plot of the complex together with the atomic
labelling is illustrated in Fig. 1 (hydrogen atoms are shown
as spheres of arbitrary radii). The dianionic edda ligand is
tetradentate and it coordinates to the chromium(III) ion
such that the two carboxylate oxygen atoms occupy trans
positions while the two amine nitrogen atoms occupy cis
positions, resulting in an s-cis configuration. The two
oxygen atoms of acac coordinate to the remaining positions
of the chromium(III) ion trans with respect to the ethyl-
enediamine N donors. Thus the complex has a distorted
octahedral geometry. The O4-Cr-O6 angle is 171.47(5)
while the N1-Cr-O2 and N2-Cr-O1 angles are 173.41(5)
and 173.85(5)°, respectively. The distortion is largely
caused by the restricted bite angles of the chelating ligands.

Table 1 Crystallographic data, data collection and refinement for
s-cis-[Cr(edda)(acac)]

Formula C11H17CrN2O6

Mr 325.3

Crystal system Monoclinic

Space group P21/c

a(Å) 10.2588(9)

b(Å) 15.801(3)

c(Å) 8.7015(11)

β (°) 101.201(9)

V (Å3) 1383.7(3)

Z 4

Dc (g cm−3) 1.561

μ(Mo Kα) (mm−1) 0.853

θ range (°) 4.6 to 27.5

Reflections collected 17923

Independent reflections 3163 (Rint=0.0355)

Reflections with F2>2σ 2670

Min. and max. transmission 0.665 and 0.727

Refined parameters 191

R [F2>2σ] 0.0272

Rw (F2, all data) 0.0712

Goodness-of-fit on F2 1.093

Largest diff. peak and hole 0.35 and −0.35 e Å−3
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The Cr-N(edda) bond distances [2.0802(13) and 2.0856
(14) Å] are within the expected range for chromium(III)–N
(secondary amine) bonds and agree well with many literature

values, e.g. for cis-[Cr(cyclam)(ONO)2]NO2 (cyclam=
1,4,8,11-tetraazacyclotetradecane), [Cr2(μ-OH)2(nta)2]

2−(nta=
nitrilotriacetate), cis-β-[Cr(2,2,3-tet)Cl2]ClO4 (2,2,3-tet=
1,4,7,11-tetraazaundecane), trans-[Cr(Me2tn)2Cl2]Cl (Me2tn=
2,2-dimethylpropane-1,3-diamine), trans-[Cr(3,2,3-tet)F-
(H2O)](ClO4)2 (3,2,3-tet=1,5,8,12-tetraazatetradecane) and
trans-[Cr(15aneN4)F2]ClO4 (15aneN4=1,4,8,12 tetraazacyclo-
pentadecane) [31–36].

The Cr-O bond lengths [1.9623(11) and 1.9733(11) Å] for
the carboxylate groups in edda can be compared to the Cr–O
distances of 1.959(4), 1.956(4) and 1.9733(11) Å found in [Cr-
(cyclam)(ox)]+, [Cr(dpt)(glygly)]+ (dpt = di(3-aminopropyl)-
amine; glygly=glycylglycinate) and [Cr(edma)2]

+ (edma=
ethylenediaminemonoacetate) complexes, respectively [37–
39]. The slightly longer Cr-O4 and Cr-O6 bonds involve the
atoms O4 and O6 linked to the secondary NH groups of
neighbouring molecules by hydrogen bonds. The average
length [1.9477(11) Å] for Cr-O(acac) is very close to the
values of 1.951(7) and 1.952(3) Å found in [Cr(acac)3] [40]
and [Cr(cyc-b)(acac)](ClO4)2 [41]. Delocalized C-O and C-C
bond lengths for acac are 1.282(2) and 1.395(2) Å,
respectively. The internal bond lengths and angles of acac
are in good agreement with those of [Cr(acac)3] and [Cr(cyc-
b)(acac)](ClO4)2 [40, 41]. The five-membered chelate ring of
en in edda adopts a gauche conformation, with a bite angle at
chromium(III) of 84.99(5)°, and the N-C-C-N torsion angle
is ±53.12°.

Hydrogen bonding

The crystal structure is supported by hydrogen bonds between
secondary NH groups of edda and the carboxylate groups of
neighbouring edda molecules. Table 3 contains the distances
and angles of hydrogen bonds. This strong intermolecular
hydrogen-bonded network enhances the stabilization of the
crystal structure and provides an interesting supramolecular
organization of the solid [Cr(edda)(acac)], which may be
described as follows.

Each complex is connected on one side to the neigh-
bouring [Cr(edda)(acac)] molecule by a pair of equivalent,
almost linear N–H⋯O hydrogen bonds (D⋯A=2.09 Å, ∠(N–
H⋯O)=175.7°), and on the opposite side to another neigh-
bouring [Cr(edda)(acac)] molecule by a similar pair of nearly

Fig. 1 Molecular structure of the Δ enantiomer of [Cr(edda)(acac)]

Table 2 Selected bond distances (Å) and angles (◦) for s-cis-[Cr(edda)-
(acac)]

Cr–O1 1.9509(11) Cr–O2 1.9445(11)

Cr–O4 1.9623(11) Cr–O6 1.9732(11)

Cr–N1 2.0802(13) Cr–N2 2.0855(14)

O1–C2 1.282(2) O2–C4 1.282(2)

O3–C6 1.213(2) O4–C6 1.316(2)

O5–C11 1.223(2) O6–C11 1.306(2)

N1–C7 1.485(2) N1–C8 1.486(2)

N2–C9 1.485(2) N2–C10 1.484(2)

C1–C2 1.507(2) C2–C3 1.394(2)

C3–C4 1.395(2) C4–C5 1.504(2)

C6–C7 1.526(2) C8–C9 1.522(2)

C10–C11 1.525(2)

O1–Cr–O2 92.71(5) O1–Cr–O4 93.08(5)

O1–Cr–O6 92.54(5) O1–Cr–N1 91.74(5)

O1–Cr–N2 173.85(5) O2–Cr–O4 92.31(5)

O2–Cr–O6 93.82(5) O2–Cr–N1 173.41(5)

O2–Cr–N2 91.00(5) O4–Cr–O6 171.48(5)

O4–Cr–N1 82.60(5) O4–Cr–N2 91.67(5)

O6–Cr–N1 90.83(5) O6–Cr–N2 82.32(5)

N1–Cr–N2 84.99(5) Cr–O1–C2 125.80(11)

Cr–O2–C4 125.34(10) Cr–O4–C6 118.19(10)

Cr–O6–C11 117.69(10) Cr–N1–C7 108.19(9)

Cr–N1–C8 106.80(9) Cr–N2–C9 107.03(9)

Cr–N2–C10 106.96(10) O1–C2–C1 115.42(15)

O1–C2–C3 124.73(15) O2–C4–C3 124.99(15)

O2–C4–C5 115.37(15) O3–C6–O4 124.14(15)

O3–C6–C7 120.84(15) O4–C6–C7 115.00(13)

N1–C7–C6 112.24(12) N1–C8–C9 109.51(13)

N2–C9–C8 109.80(13) N2–C10–C11 111.54(13)

O5–C11–O6 124.66(15) O5–C11–C10 120.40(16)

O6–C11–C10 114.93(14)

Table 3 Geometry of the hydrogen bonds for [Cr(edda)(acac)]

Hydrogen bond N–H (Å) H⋯O (Å) N⋯O (Å) N–H⋯O (°)

N(1)–H(1)⋯O(6)a 0.83(2) 2.09(2) 2.9242(18) 175.7(18)

N(2)–H(2)⋯O(4)b 0.85(2) 2.06(2) 2.9124(17) 177.6(17)

a [−x, 1−y, 1−z]
b [1−x, 1−y, 1−z]
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linear, equivalent N–H⋯O hydrogen bonds (D⋯A=2.06 Å,
∠(N–H⋯O)=177.6°). In this way the complex molecules
form distinct infinite one-dimensional strands in the direction
of the crystallographic a-axis.

Since both the donor and acceptor atoms of the N–H⋯O
hydrogen bonds are ligating atoms, each pair of the concom-
itant equivalent hydrogen bonds together with the
corresponding metal atoms forms an eight-membered ring
(HB-ring). Consecutive HB-rings thus yield a spiro-type
structure with metal atoms as spiro junctions. Denoting the
atoms from left and right neighbours with single and
double primes, respectively, the HB-rings are: Cr-N1-H1-O6′-
Cr′-N1′-H1′-O6 andCr-N2-H2-O4′′-Cr′′-N2′′-H2′′-O4. A struc-
tural diagram (Supplementary Fig. S1) in which the acac rings
as well as the edda atoms not directly involved in hydrogen
bonding are partly hidden, clearly emphasizes the similarity
between the two types of HB-rings and their almost regular
chair-like conformation due to the linearity of hydrogen
bonds. The angle between the least-squares planes of the
adjacent HB-rings is about 55°. Its expected deviation from
the ideal Oh value, cos−1(1/2), is a consequence of a slight
irregularity of the HB-ring and of the coordination octahedron.

The polymeric structure of a strand of HB-rings involves
an alternating sequence of Δ and Λ [Cr(edda)(acac)]
molecules (Fig. 2). Each diad in a strand is, therefore,
racemic (i.e. there is an inversion centre at the mid-point of
each 8-membered HB-ring) causing the strands to be
syndiatactic — both with respect to the absolute configu-
ration of [Cr(edda)(acac)] units, and to the chiralities of
tertiary nitrogen atoms. The achiral (syndiatactic) struc-
ture of the strands is a requirement for the overall
centrosymmetric space group (P21/c) of the [Cr(edda)(acac)]
crystal structure.

In addition to these strong hydrogen bonds, which are
the predominant packing and stabilizing factor, neighbour-
ing strands interact with each other through a number of
weaker van der Waals forces (Supplementary Table S1).
Their orientation is transverse with respect to the direction
of hydrogen-bonded strands (the crystallographic a-axis) as
shown in a projection (Supplementary Fig. S2) of the

crystal structure on the bc-plane. Among the shortest
contacts of the latter type are those between the methyl
groups of acac chelate rings and the CH or CH2 groups of
the edda chelates (and vice versa) from neighbouring
molecules in adjacent strands.

All crystallographical evidence (low R factor, absence of
voids or of significant residual electron density unaccounted
for, and incompatibility of the present hydrogen bond network
with any presence of lattice H2O molecules) strongly
indicates the anhydrous nature of [Cr(edda)(acac)] crystal
sample studied in this work.

Spectroscopic properties

The UV-visible absorption spectrum exhibits two principal
bands, one at 18725 cm−1 (ν1), and the other at 25905 cm−1

(ν2), corresponding to the 4A2g→
4T2g and 4A2g→

4T1g (Oh)
transitions, respectively [42]. In order to have some point of
reference for the splitting of the bands, we have fitted the
band profiles to four Gaussian curves. A deconvolution
procedure on the experimental band pattern yielded maxima
at 18090, 19510, 25000 and 26590 cm−1 for the non-cubic
split levels of 4T2g and

4T1g, respectively.
A complete assignment of the molecular vibrations for

[Cr(edda)(acac)] is done in connection with the optimization
of force field parameters (see below). Therefore, we present
here only the principal spectroscopic features that confirm the
coordination mode of edda and point to the characteristic
group frequencies of the complex molecule. The FT-infrared
spectra show a strong band around 1677 cm−1 due to the
asymmetric νa(COO) stretching mode of edda. The sym-
metric stretching mode of the carboxylate group occurs at
1285 cm−1. The lack of absorptions between 1700–1750
cm−1 indicates that the carboxylate groups of edda are
certainly coordinated to the central chromium(III) ion. The
value of the frequency separation (Δν) between the
antisymmetric and symmetric carboxylate stretching vibra-
tions can be used for predicting the coordination mode of the
carboxylate group [43]. In unidentate coordination a redistri-
bution of electron density takes place, which shifts the
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N1
S

O6

N1
R

O6
O4

N2

R

O4

N2

S

N1
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Fig. 2 1D strand of hydrogen-bonded ⋯Δ-[Cr(R,R-edda)(acac)]⋯ Λ-[Cr(S,S-edda)(acac)]⋯ in the crystal structure of [Cr(edda)(acac)]
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asymmetric carboxylate stretch to higher wavenumbers in
comparison to ionic carboxylate. Consequently the Δν value
for unidentate carboxylate coordination is higher. By
contrast, bidentate coordination shifts the position of the
antisymmetric carboxylate stretch to lower wavenumbers in
comparison to the ionic group and thus lowers the value of
Δν. The difference between νas(COO

−) and νs(COO
−) of

about 392 cm−1 is consistent with the unidentate coordina-
tion mode for the O-bonded carboxylate group of edda. This
coordination behaviour is in accordance with the crystal
structure. The strong absorption bands at 1569 and 1528
cm−1 are due to ν(C=C) coupled with ν(C=O), and ν(C=O)
coupled with ν(C=C), respectively. The absorption band
around 750 cm−1 is assigned to the C-H out-of-plane
bending mode of acac [43]. The two bands at 1461 and
1430 cm−1 can be assigned to CH2 bending modes. The
strong absorption at 1069 cm−1 may be assigned to a CH2

twisting mode. The two absorptions at 848 and 830 cm−1

and one absorption at 797 cm−1 are assigned to CH2

wagging and en ring deformation frequencies, respectively.
The strong absorption at 1023 cm−1 may be assigned to a
CH2 twisting mode. The peaks at 502 and 479 cm−1 can be
assigned to the Cr-N and Cr-O stretching modes, respectively.
Finally, the conspicuous absence of stretching O-H and
bending H-O-H vibrations from 3550–3200 cm−1 and
1630–1600 cm−1 region, respectively, is another proof that
lattice H2O molecules are absent in [Cr(edda)(acac)] crystal
sample studied in this work. However, the UV-visible and
infrared spectroscopic data are not able to give any definite
evidence whether the complex [Cr(edda)(acac)] has s-cis or
u-cis geometry of the chelated edda.

MM modeling

The stereochemisty of octahedral complexes containing
quadridentate edda2− ligand has been described by Legg et
al. [6], and reiterated by many subsequent authors, notably
by Kaizaki et al. [44, 45]. However, CFF modelling
requires (particularly in elucidating statistical thermody-
namics) a consideration of all theoretically possible config-
urations and conformations, which represent local minima
on the potential energy surface of [Cr(edda)(acac)]. To that
end we performed a systematic search of the conformation-
al space of [Cr(edda)(acac)] and found four pairs of
enantiomeric structures (two for s-cis and two for u-cis
configuration) that satisfy the loop closure constraints for
all chelate rings of edda2−. Their stereochemical designa-
tion independent of atom numbering is as follows. For the
s-cis diastereoisomer (of C2 symmetry) the same chirality
of two equivalent N ligators is determined by the overall
absolute configuration of [Cr(edda)(acac)], or vice versa,
which turns out to be S,S for the Λ (or R,R for the Δ). In
addition, the en ring may adopt one of two normal gauche
conformations (δ or λ) without a change of chirality on N
atoms—an interesting detail which has not been noted
hitherto—leading to two energetically distinct forms, e.g.:
Λ(S,S;λ) and Λ(S,S;δ). The foregoing labels define the
overall absolute configuration and (in parantheses) the
chirality of N atoms and (after a semicolon) the chirality of
the en ring of edda2−.

On the other hand, in the u-cis diastereoisomer (of C1

symmetry) two N ligators are nonequivalent: one (Nfac)
belongs to the facial junction of the coordinated edda, and
the other (Nmer) to the meridional one. The chirality of the
Nfac is linked to the overall absolute configuration of
[Cr(edda)(acac)] as in the s-cis diastereoisomer, but as Λ(R)
or Δ(S), whereas the chirality of Nmer is related to the
conformation of the en ring, and can be either S or R. This
choice generates two energetically distinct forms, e.g.:
Λ(Rfac,Rmer;λ) and Λ(Rfac,Smer;δ), the superscripts (or at
least one of them) being necessary and self-explanatory.

It should be pointed out that the overall absolute
configuration both for s-cis and for u-cis diastereoisomer
of [Cr(edda)(acac)] is unambiguously assigned on the basis
of the IUPAC rule for tris(bidentate) octahedral complexes

Table 4 Relative energies (ΔE) and energy contributions (in kcal/mol) for bonds (Eb), angles (Eθ), torsions (Eφ), van der Waals (Evdw), Coulomb
(Ec) and out-of-plane (Eoop) terms for energy minimized structures of [Cr(edda)(acac)]

Isomer Conf. ΔE Eb Eθ Eϕ Evdw Ec Eoop

s-cis Λ(S,S;λ) 0.00 7.15 11.25 0.53 15.73 −33.22 0.054

Λ(S,S;δ) 3.55 5.69 17.03 0.53 15.29 −33.51 0.019

u-cis Λ(R,Rmer;λ) 2.05 6.78 14.74 0.64 14.02 −32.73 0.085

Λ(R,Smer;δ) 2.47 6.82 14.62 0.53 14.33 −32.36 0.037

Table 5 Gradient norm values (kJ/mol/Å), free enthalpies (kJ/mol)
and populations for CFF minimized structures of [Cr(edda)(acac)] at
298.16 K

Isomer Conf. ∇×107 G ΔG n

s-cis Λ(S,S;λ) 4.5 1074.561 0.000 0.949

Λ(S,S;δ) 0.46 1088.869 14.308 0.003

u-cis Λ(R,Rmer;λ) 10.3 1084.483 9.922 0.035

Λ(R,Smer;δ) 0.39 1086.778 12.217 0.014
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(IR-9.3.4.12) taking as reference the helicity of two
carboxylato rings of edda together with the acac ring. With
respect to the pseudo-C3 axis defined in this way, the en ring
in, e.g. Λ(S,S;λ) s-cis form is lel and in Λ (S,S;δ) it is ob.
However, lel and ob labels do not apply to the u-cis
configuration.

Energy minimization and geometry optimization
yielded one stable conformation for each of the four
aforementioned diastereoisomers (Table 4 and Fig. S5 of
the Supporting material). The global minimum corre-
sponds to the Λ(S,S;λ) [or Δ(R,R;δ)] configuration of the
s-cis-[Cr(edda)(acac)] complex (with the lel conformation
of en), which is the geometry found by the X-ray structure
determination (Table S2 of the Supporting material shows a
detailed comparison). Our former [11] force field (optimized
only on the basis of structural data) yields qualitatively the
same result. Therefore, as in all previous cases [11], MM
succeeded in correlating the most stable structure of an edta-
type complex with the one found experimentally by X-ray
diffraction. For stereochemically relatively simple [Cr(edda)-
(acac)] species this result was hardly surprising: the previous
MM calculations on systems containing an edda ligand [1],
as well as all reported crystal structures [44, 46–49] (except
one, discussed below), confirm the general tendency for the
quadridentate edda ligand to adopt preferentially the s-cis
geometry in coordination to Cr(III). Moreover, there is a
remarkable similarity of the edda backbone conformation

among all the crystal structures containing a Cr(edda)
fragment [44, 46] and our [Cr(edda)(acac)] structure, as
illustrated in Fig. S4 (of the Supporting material) showing a
comparison of all endocyclic torsion angles involving non-
hydrogen atoms of the three fused chelate rings of Cr(edda)
fragment.

Structural details of geometry-optimized s-cis and u-cis
isomers of the title complex follow the same pattern as in
the previous MM investigations of edta-type complexes
[11]. Thus, energy minimization produces an s-cis structure
with exact C2 symmetry. In both s-cis and u-cis isomers the
en ring adopts the energetically preferred twist-boat
(gauche) conformation, similar to the one found in isolated
M(en) chelate rings in, e.g. [M(en)3]

3+ structures (with M=
trivalent metal of the first transition series). The central en
ring is in fact the fragment of the edda backbone showing
the least amount of conformational variation among
different Cr(edda)-containing structures (cf. torsion angles
in Fig. S4 of the Supporting material).

Isomer distribution

Free enthalphy was calculated using standard formulae
of statistical thermodynamics [50] and previously de-
scribed procedures [51, 52]. Averaging over all internal
degrees of freedom was carried out at 298.16 K. External
motion was quenched. Conformer population was
obtained from Boltzmann distribution. The degeneracy
factor for the u-cis form (point group C1) was taken as twice
that of the s-cis form (point group C2). The results (Table 5)
show an isomer distribution consisting of approximately
95% s-cis and 5% u-cis form of [Cr(edda)(acac)]. Quantita-
tive experimental data are not available, apart from the 2H
NMR study of Bianchini and Legg [3] on the u-cis to s-cis
isomerization of the closely related [Cr(edda)(H2O)2]

+

complex, in which an s-cis:u-cis ratio of 0.8:0.2 was
reported. Table 5 also gives the final gradient norm values,
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which together with the positive definite Hessian and the
absence of negative vibrational frequencies confirm the true
minima in all cases.

The case of u-cis isomer and VOFF

The necessity for parameter optimization against exper-
imental vibrational frequencies in the quest for more
physically accurate MM force field is convincingly shown in
the case of u-cis diastereoisomer of [Cr(edda)(acac)]. Our

prevoius force field [11] predicted that u-cis would be
less stable than the s-cis form (as in this work) but with a
substantially greater energy difference than the one shown
in Table 4. The strain was essentially localized on the central
en ring, which adopted an unsymmetrical conformation
(resembling envelope flattened along the Cr-N bond shared
with the axial carboxylate ring, and with the apex on the
opposite methylene carbon) due to the meridional coordina-
tion of the equatorial carboxylate ring. By contrast, the present
VOFF produced a much less strained structure of the u-cis

Table 6 Calculated and observed vibrational frequencies for s-cis-[Cr(edda)(acac)]
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isomer, with clearly discernible equatorial and axial hydro-
gens on both methylene carbons of the en ring having an
almost normal gauche conformation. Such a conformation of
the Cr(edda) moiety was indeed found in one of the
crystallographic reports [44] for a dinuclear chromate(III)
complex [(edda)Cr(μ-pzdc)Cr(edda)]− (where pzdc=pyra-
zole-3,5-dicarboxylate bridge) in which one of the two

Cr(edda) units was found to be trapped in a less common
(and considered as thermodynamically unstable [44]) u-cis
configuration. It occurs actually in one out of nine
crystallographically unique Cr(edda) fragments among all
the structures retrieved from the CSD up to September 2009.

This result leads to two conclusions. First, the u-cis
coordination of edda is more accessible (ΔE≈2 kcal/mol,

Table 6 (continued)
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cf. Table 4) than what has been usually assumed, so that in
the case of [(edda)Cr(μ-pzdc)Cr(edda)]− only one intramo-
lecular hydrogen bond is presumably [44] sufficient to
sustain it. VOFF is thus able to offer a more physically
realistic description of this stereochemistry both in terms of
energetics and in a more even distribution of steric strain
in unfavourable meridionally fused five-membered

metal-chelate rings. Second, the interaction forces that
shape the ethylenediamine ring (either isolated or fused
in multidentate structures) give rise dominantly to the
gauche (twist-boat) conformations with distinct axial and
equatorial positions on methylene carbons. The en ring
conformation is thus essentially the same in s-cis and u-cis
isomer of [Cr(edda)(acac)], as well as in the X-ray structure

Abbreviations: s = stretch, b = bend, t = torsion, oop = out-of-plane bend, r = rock, w = wag, tw = twist, ss = symmetric stretch, as =
antisymmwetric stretch, sd = symmetric deformation, ad = antisymmetric deformation. Superscripts: e = ethylenediamine fragment of edda, g =
carboxylato fragments of edda, a = acac, m = acac ring CH, Me = acac methyl groups.

Table 6 (continued)
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of [Cr(en)3]
3+ ion [53], and in the above mentioned fragment

of dinuclear [(edda)Cr(μ-pzdc)Cr(edda)]− structure, as
shown in Fig. 3, and also in other chromium(III) complexes
for which X-ray data are available.

A final substantiation that the VOFF is physically
realistic is provided again by the X-ray structure of
[(edda)Cr(μ-pzdc)Cr(edda)]− [44]. Having identified equi-
librium geometries of all diastereoisomers of [Cr(edda)
(acac)] (see Tables 4 and 5) it was straightforward to
pinpoint the Δ(R,R,δ) [or Λ(S,S,λ)] configuration for the
s-cis Cr(edda) moiety, and the Δ(Sfac,Rmer,λ) [or
Λ(R fac,Smer,δ)] configuration for the u-cis Cr(edda) moiety
of [(edda)Cr(μ-pzdc)Cr(edda)]−[44]. (In the original paper
[44] they were designated as Cr(1) and Cr(2), respectively,
but the chiralities of N atoms were incorrectly assigned.)
Therefore, the observed u-cis structure of the Cr(edda)
fragment in the binuclear species appears to be entrapped
both in a less favourable ligand configuration and in a less
favourable conformation of its en ring or, equivalently, the
chirality of the mer nitrogen. The similarity between
thermodynamically less stableΔ(Sf ac,Rmer,λ) structure calcu-
lated with VOFF and the one observed in the crystal
structure of [(edda)Cr(μ-pzdc)Cr(edda)]− [44] (Fig. 4) is
noteworthy, bearing in mind that CFF modelling did not
include any of the conformationally responsive factors
(intramolecular hydrogen bonding, nonbonded interactions)
present in the binuclear species.

Vibrational frequencies and transferability of VOFF

The 37-atom s-cis isomer of [Cr(edda)(acac)] has C2

symmetry and 105 fundamental vibrations, classified as
Γvib =52A⊕53B, with all the modes being IR active.
Experimental vibrational frequencies were used in the
parameter optimization of the VOFF. Final calculated
frequencies using VOFF, with band assignments (confirmed
by visualization using the program MOLEKEL [54, 55])
and PED’s [56], are compared to the experimental values in
Table 6. The agreement for 92 recorded peak positions is
characterized by the sample correlation coefficient of
0.999658 for a linear function f(x)=x fitting (Fig. S6 of
the Supporting material). Overall RMS deviation is 24.8
cm−1 (for N=92), which after removal of five outliers
reduces to 15.5 cm−1 (for N=87). Most of the differences
(Δν) are within an acceptable range and distributed as
shown in a frequency histogram (Fig. 5) on which a
hypothetical normal distribution curve is superimposed.

Band assignments using VOFF generally agree with those
reported recently for [Cr(acac)3] [57–59] and related edta-
type complexes of chromium(III) [60]. Finally, vibrational
frequencies calculated for [Cr(acac)3] using the present
VOFF are in accord with the published values [57], which
offers a good prospect for the transferability of VOFF and a

convenient tool to study normal modes of different con-
formations that may not be experimentally accessible.

Conclusions

The X-ray crystallography for [Cr(edda)(acac)] shows that the
chromium(III) ion is in a distorted octahedral environment,
coordinated by two nitrogen and two oxygen atoms of edda,
and two oxygen atoms of acac in cis positions. The average
Cr-N(edda), Cr-O(edda) and Cr-O(acac) bond distances are
2.0829(14), 1.9678(11) and 1.9477(11) Å, respectively. The
complex has an s-cis configuration, and is stabilized in the
solid state by significant intermolecular N–H⋯O hydrogen
bonds forming infinite chains of [Cr(edda)(acac)] molecules.
An improved force field, Vibrationally Optimized Force
Field (VOFF), was developed by fitting the FF parameters to
structural data and experimental vibrational frequencies of
[Cr(edda)(acac)], which in addition to reproducing structures
and energetics of edta-type complexes of chromium(III) is
able to reproduce observed vibrational frequencies in a
consistent way. The ability of VOFF to account more
realistically for fine conformational details, as well as its
probable transferability was demonstrated, notably in the
case of a binuclear Cr(III) complex containing s-cis and u-cis
configuration of coordinated edda, the stereochemistry of
which was revisited and clarified.

Supplementary material

Full crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre, CCDC No.
719577. Copies of this information may be obtained free of
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Fig. 5 Histogram showing the distribution of differences between the
calculated and all experimental vibrational frequencies (using bin-
width of 2.0 cm−1) with a normal distribution curve (dashed line)
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charge from The Director, CCDC, 12 Union Road, Cambridge
CB21EZ, UK (e-mail: deposit@ccdc.cam.ac.ukor fax: +44-
1223-336-033 or url: http://www.ccdc.cam.ac.uk). Supporting
material (pp. 11) contains information on hydrogen bonding,
intermolecular contacts, comparison of calculated and exper-
imental geometry of [Cr(edda)(acac)] and Cr(edda) fragment,
torsional angles of the Cr(edda) fragment from CSD,
stereoscopic representation of VOFF equilibrium structures
of all four diastereoisomers of [Cr(edda)(acac)], and the
correlation coefficient for the fitting of vibrational frequencies.
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Abstract Using first-principles total energy calculations
within the density functional theory (DFT), we investigated
the electronic and structural properties of graphene-like
silicon sheets. Our studies were performed using the LSDA
(PWC) and GGS (PBE) approaches. Two configurations
were explored: one corresponding to a defect-free layer
(h-Si), and the other to a layer with defects (d-Si), both of
which were in the armchair geometry. These sheets
contained clusters of the CnHm type. We also investigated
the effects of doping with group IV-A elements. Structural
stability was studied by only considering positive vibration
frequencies. Results showed that both h-Si and d-Si present
a corrugated structure with concavity. h-Si sheets were
found to be ionic (D.M.=0.33 Debye) with an energy gap
(HOMO–LUMO) of 0.77 eV in the LSDA theory and
0.76 eV in the GGS approach, while d-Si sheets were

observed to be covalent (D.M.=2.78 D), and exhibited
semimetallic electronic behavior (HOMO–LUMO gap=
0.32 eV within the LSDA theory and 0.33 eV within the
GGS approach). d-Si sheets doped with one carbon or one
germanium preserved the polarity of the undoped d-Si
sheets, as well as their semimetallic electronic behavior.
However, when the sheets were doped with two C or two
Ge atoms, or with one of each atom (to give Si52CGeH18),
they retained the semimetallic behavior, but they changed
from having ionic character to covalent character.

Keywords Silicon . Isocoronene . Cluster CnHm
.

DFT theory

Introduction

In recent years, the electronic and structural properties of
graphene layers and graphene-like layers have attracted a
great deal of interest from researchers. Hexagonal graphene
sheets were isolated in 2004 [1], and silicon organic
nanosheets (Si6H4Ph2; Fig. 1) were recently synthesized
[2]. On the other hand, silicon nanosheets with a thickness
of 1 nm were produced by Harada et al. [3] using the
exfoliation method, and Si6H3(OH)3 nanosheets with a
thickness of 0.7 nm have been produced by Nakano [4].
Recent theoretical studies by Ciraci et al. [5] have predicted
the existence of hexagonal silicon sheets with a nonplanar
(corrugated) configuration that exhibit semimetallic behavior.
Noting the experimental and theoretical studies described
above, we investigated the electronic and structural properties
of hexagonal silicon nanosheets (h-Si) and defect-modified
silicon nanosheets (d-Si). The results of that work are
discussed in this paper. Our first-principles total energy
calculations were performed using density functional theory.
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Weused a CnHm-type cluster model to investigate the structure
of h-Si, which has the chemical composition Si54H18 and
contains 19 hexagons, and the isocoronene model [6] to study
the d-Si configuration, which has the chemical composition
Si54H18 and comprises three pentagons, three heptagons, and
13 hexagons. The armchair model was used to construct the
structures of both h-Si and d-Si [7–9].

Our work was inspired by the experimental and
theoretical studies of graphene with defects reported in
[10–12]. In that work, samples were prepared by defect
engineering using ion irradiation [13].

Methodology

To study the electronic and molecular structures of the
hexagonal silicon sheets, we applied the circular CnHm

model, which has been widely used to represent graphene
sheets [14], group III nitrogen alloys [15–17] and group IV-
A carbon alloys [18–20]. The isocoronene model [6, 21,
22] (consisting of one central hexagon, three pentagons,
three heptagons, and 13 hexagons) was invoked for IV-A
carbon alloys with defects. The calculation method we used
has already been described in a previous work on first-
principles total energy calculations employing density
functional theory (DFT) [23, 24] performed using the
DMOL3 code [25]. The exchange-correlation energies were
treated using the local spin density approximation (LSDA)
with Perdew–Wang parameterization [26] and the general-
ized gradient spin approximation with Perdew–Burke–
Ernzerhof [27] parameterization. A base set of atomic
orbitals with double polarization, DNP, which included the
p orbitals of hydrogen and the d orbitals of silicon was
employed [28, 29]. We used a multiplicity of 1 for neutral
systems and a multiplicity of 2 for doped systems. All-
electron calculations with a tolerance of 10−6 Ha were
performed to achieve convergence of the total energy. The
circular structure free of defects had a diameter of 2.18 nm
and the structure with defects had a base width of 2.18 nm
and a height of 2.06 nm. The orbital (base function) had a
cutoff radius of 0.4 nm with a tolerance of 10−6 Ha for total
energy convergence. Structural stability was achieved using
the non-negative vibration frequency criterion [30]; the
optimized configurations are therefore the lowest local
minima. On the other hand, the binding energies for the

silicon nanosheets were obtained from the formula Eb=
(nESi+mEH) − (ESi54H18+EZPE), where n is the number of
silicon atoms and m is the number of hydrogen atoms.

To validate the model, we calculated the cohesive
energies [EC=[nE(Si)+mE(H) − E(Si54H18)]/(n+m)] of
several structures with different sizes. Results showed an
energy difference of 0.003 a.u. between the two structural
configurations, so we believe that the nanosheets are well
represented by the considered models.

Results and discussion

Geometry optimization, polarity, and gap: undoped case

We shall start our presentation of the results of our study by
describing the optimization of the geometry and the
determination of the polarity and the energy gap for the
undoped geometry. First-principles calculations using
LSDA (with PWC parameterization) and GGS (with PBE
parameterization) show that it is possible to construct
hexagonal silicon nanosheets (h-Si; Fig. 2a) and hexagonal
silicon nanosheets with defects (d-Si; Fig. 2b), in agreement
with the binding energies and the non-negative vibrational
frequency criterion (Table 1). The geometry optimization
results yield nonplanar (corrugated) geometries for both
h-Si and d-Si, in agreement with the results of Ciraci et al.
[5]. Also note that the d-Si system exhibits a curvature of
32.72° according to the LSDA theory and 35.76° according
to the GGS approach1 [31], with sp2 and sp3 hybridization
observed for the Si–Si bonds. The bond lengths in the h-Si
systems are quite similar for both the LSDA (2.23 Å) and
GGS (2.24 Å) theories, and both compare well with the
reported value of 2.25 Å [5]. In contrast, bond lengths for

1 The curvatures of the graphene and boron nitride sheets are predicted
by the model we employed in our studies. However, zinc oxide sheets
do not show any bending, suggesting that the curvature is dependent
on the structure rather than the model. We also used the same model to
investigate the structures of hexagonal germanium (h-Ge) sheets and
defect-modified germanium (d-Ge) sheets, and the results indicated
corrugated surfaces that show semimetallic behavior (Chigo Anota E,
Salazar Villanueva M, submitted to J Nanomat.) A calculation that
utilizes periodical theory has recently been published that focuses on
similar structures with larger unit cells, in order to demonstrate that
amorphous graphene consisting of pentagons and hexagons displays
only a small curvature.

Fig. 1 The model used to study
organic silicon nanosheets
with the following chemical
composition: Si6H4Ph2
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the d-Si systems vary between 2.19 and 2.26 Å in the
LSDA formalism and between 2.23 and 2.27 Å in the GGS
approach. There is an energy difference between the two
sheets: 0.74 eV in the LSDA approach and 0.94 eV in the
GGS theory. The appearance of curvature in the d-Si
structure suggests that it is possible to construct a C60-like
atomic configuration.

The dipole moment of the h-Si structure displays ionic
character (0.33 D in both the LSDA and the GGS
approaches), similar to the graphene sheet [32], but the
dipole moment of the d-Si structure displays covalent

character (2.78 D in the LSDA approximation and 2.74 D
in the GGS approximation), similar to the graphene sheet in
the presence of lattice defects (which has a dipolar moment
of 3.07 D) (see Chigo Anota E, Salazar Villanueva M,
submitted; and previous footnote). We argue that the lack of
symmetry induced by the incomplete hexagonal structure
(the structure consists of pentagons and heptagons) produces
the change in polarity. According to the HOMO–LUMO
energy difference used to determine the energy gap, both the
h-Si and the d-Si structures behave as semimetals with energy
gaps of 0.77 eV in the LSDA formalism and 0.76 eV in the
GGS theory for h-Si, and 0.32 eV in the LSDA formalism and
0.33 eV in the GGS theory for d-Si. This behavior contrasts
with those exhibited by graphene systems, provided that in
the intrinsic graphene an energy gap of 1.94 eV is obtained
(for the hexagonal structure) to yield a semiconductor and in
the doped graphene an energy gap of 0.83 eV is obtained to
resemble a semi-metallic structure (see Chigo Anota E,
Salazar Villanueva M, submitted; and previous footnote), so
the structural configuration determines the electronic struc-
ture of this bidimensional system.

Results reported by Guzmán et al. [33] for a hexagonal
hydrogenated silicon structure of the graphane type indicate
an energy gap of 2.2 eV, which differs from our values. On
the other hand, studies of h-Si by Ciraci et al. [5] show
semimetallic character, similar to our results.

Geometry optimization, polarity, and gap: doped case

In this section, we describe calculations aimed at optimizing the
doped case, as well as determining its polarity and energy gap.
The h-Si structure doped with carbon (Fig. 3a–f) produces
stable configurations with corrugated shapes that have a
central planar form in the vicinity of the doping atom, similar
to graphene. When the h-Si is doped with germanium, the
sheet exhibits a corrugated shape, as induced by the
hexagonal germanium structure, which has a corrugated shape
([5]; also see Chigo Anota E, Salazar Villanueva M,
submitted; and previous footnote). For the corrugated h-Si
system, it was found that doping with carbon induces a twist
(twist angle: 7.8°; Fig. 3a), while doping with germanium
does not affect the structure. In these cases, we only used the
LSDA approach when the results given by the GGS theory
were the same as those obtained with LSDA. When the h-Si
was doped with 1.85% C (Fig. 3a), which was inserted into
the central hexagon, a Si53CH18 configuration was obtained
for both structures, and a Si–C bond length of 1.82 Å, along
with sp and sp2 hybridization and a small variation in the Si–
Si bond length of 10−2 Å (see Table 1). On the other hand,
when this structure was doped with 1.85% Ge (Fig. 3b),
which again was inserted into the central hexagon, a
Si53GeH12 configuration was obtained for both structures),
and a Si–Ge bond length of 2.36 Å, along with sp2 and sp3

a)

Optimum Geometry 
Stable and semimetal

Optimum Geometry 
Stable and semimetal

b)

Fig. 2 a Optimized structure of the hexagonal silicon nanosheet (h-Si
layer). b Corresponding structure with defects (d-Si geometry)
oriented along the xy plane
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hybridization and a small variation in the Si–Si bond length of
10−2 Å (see Table 1). The semimetallic character was
preserved with an energy gap of 0.75 eV (Table 1).

Let us now explore the d-Si structure when it is doped
with a germanium atom (Fig. 3d). The resulting geometry is
corrugated and the lattice preserves the sp2 and sp3

hybridization in the vicinity of the dopant, in a similar
fashion to what was seen for the h-Si structure. The
structure displays covalent character (2.85 D) and semime-
tallic behavior, and it has an energy gap of 0.26 eV. It bends
36.31° as a result of the doping, 4.04° more than the
undoped d-Si and 13.75° more than the carbon-doped
structure.

A third doping case was also explored, which corre-
sponds to two silicon atoms being replaced by one carbon
atom and one germanium atom (doping ratio: 3.70%),
yielding the chemical composition Si52CGeH18 at the
central hexagon for both h-Si and d-Si (Fig. 3e and f).
After this kind of doping, the bond lengths in the h-Si
structure are 2.20–2.25 Å for Si–Si, 1.83 Å for C–Si, and

2.27 Å for Si–Ge. The structure retains its polarity (0.48 D
when doped with carbon and 0.39 D when doped with
germanium) and semimetallic behavior (energy gap of
0.75 eV). On the other hand, the polarity of the d-Si
structure decreases by almost 50% upon doping, but it
retains its semimetallic behavior.

Thermodynamic properties

We now consider the thermodynamic properties of the
structures: entropy, heat capacity, and enthalpy. The d-Si
atomic structure is sensible to the transformation of
configuration from a hexagonal one to another which
contains pentagons, heptagons and hexagons. The geomet-
ric behavior is associated with the entropy variation
produced by the change of structure from the nonplanar
h-Si to the concave d-Si. The results for the heat capacities
suggest that the structure has ceramic character. On the
other hand, the enthalpy yields information about the
thermal stability of each system.

Table 1 Bond lengths, dipole moments, energy gaps (HOMO–LUMO), binding energies, and thermodynamic properties of graphene-like silicon
sheets

Cluster Bond length (Å) Dipolar moment (D) Gap (HOMO–
LUMO, in eV)

Binding
energy (eV)

Thermodynamic
properties

Si–Si Si–C Si–Ge S Cp H
(kcal/mol)

h-Si 2.25 Semimetal [5]+

2.248 [33]

2.247 [35]

h-SiH 2.2 [34]++

2.319 [33] 2.0 (LDA) [33]

h-Si* LSDA 2.23 0.33 0.77 10.42 91.2 40.71 142.71

GGS 2.24 0.33 0.76 9.09 95.22 43.56 140.62

Doped*, LSDA

Si53CH18 2.19–2.26 1.82 0.48 0.75 10.55 92.26 41.10 144.24

Si23GeH18 2.23–2.27 2.27 0.39 0.75 10.40 91.64 41.26 142.20

Double-doped

Si52CGeH18 2.20–2.25 1.83 2.27 0.50 0.74 10.52 94.31 42.93 143.93

d-Si* LSDA 2.24–2.28 2.78 0.32 10.29 94.69 44.43 141.19

GGS 2.26–2.31 2.74 0.33 8.99 93.54 43.36 139.99

Doped*, LSDA

Si53CH18 2.19–2.27 1.81 2.03 0.29 10.42 94.98 43.80 143.22

Si53GeH18 2.24–2.27 2.36 2.85 0.26 10.25 95.82 45.39 140.53

Double-doped

Si52CGeH18 2.24–2.27 1.82 2.30 1.56 0.32 10.48 94.71 43.29 142.91

+ Theoretical solid-state simulation
++ Tight binding calculation for a graphene-like sheet

* Present work
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Conclusions

We have investigated the electronic and structural properties
of hexagonal silicon nanosheets (h-Si) and defect-modified

silicon nanosheets (d-Si). The total energy results show that
the structure of h-Si has a lower total total energy than the d-Si
structure (by 0.74 eV according to the LSDA formalism and
0.94 eVaccording to the GGS theory). Results for the binding

Fig. 3 Doped h-Si and d-Si
structures. a h-Si structure
doped with a carbon atom. b
h-Si structure doped with a
germanium atom. c d-Si
structure doped with a carbon
atom. d d-Si structure doped
with a germanium atom. e h-Si
structure doped with a carbon
atom and a germanium atom.
f d-Si structure doped with a
carbon atom and a germanium
atom
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energies indicate that it is plausible to fabricate d-Si sheets.
The ground-state structure of the sheet displays concavity,
which in turn suggests the possibility of obtaining a fullerene-
type structure. It is also worth noting that the main
characteristic displayed by the d-Si structure is that it retains
its semimetallic behavior even after the structure has been
doped with one or two atoms of impurities. The non-
hexagonal low-symmetry structure induces strong variations
in polarity, resulting in a covalent molecular structure. Based
on these results, it appears possible to obtain h-Si and d-Si
sheets, which are very promising materials for applications in
the optoelectronics industry.
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Abstract Many protein–protein interactions are mediated
by a peptide-recognizing domain, such as WW, PDZ, or
SH3. In the present study, we describe a new method called
position-dependent noncovalent potential analysis
(PDNPA), which can accurately characterize the nonbond-
ing profile between the human endophilin-1 Src homology
3 (hEndo1 SH3) domain and its peptide ligands and
quantitatively predict the binding affinity of peptide to
hEndo1 SH3. In this procedure, structure models of diverse
peptides in complex with the hEndo1 SH3 domain are
constructed by molecular dynamics simulation and a virtual
mutagenesis protocol. Subsequently, three noncovalent
interactions associated with each position of the peptide
ligand in the complexed state are analyzed using empirical
potential functions, and the resulting potential descriptors
are then correlated with the experimentally measured
affinity on the basis of 1997 hEndo1 SH3-binding peptides
with known activities, using linear partial least squares
regression (PLS) and the nonlinear support vector machine
(SVM). The results suggest that: (i) the electrostatics
appears to be more important than steric properties and
hydrophobicity in the formation of the hEndo1 SH3–

peptide complex; (ii) P−4 of the core decapeptide ligand
with the sequence pattern P−6P−5P−4P−3P−2P−1P0P1P2P3 is
the most important position in terms of determining both
the stability and specificity of the architecture of the
complex, and; (iii) nonlinear SVM appears to be more
effective than linear PLS for accurately predicting the
binding affinity of a peptide ligand to hEndo1 SH3,
whereas PLS models are straightforward and easy to
interpret as compared to those built by SVM.

Keywords Peptide2 . Src homology 3 domain .

Noncovalent interaction . Statistical modeling

Introduction

Recently, Russell and co-workers estimated that 15%–
40% of all interactions in the cell are mediated through
protein–peptide interactions [1, 2], meaning that, at its
most extreme, nearly every protein is affected either
directly or indirectly by peptide-binding events [3]. Such
interactions are commonly mediated by specialized pro-
tein domains, among which the Src homology 3 (SH3)
domain is the most abundant in eukaryotic genomes and
presents in a wide variety of proteins, such as kinases,
lipases, GTPases, and adaptor proteins, to orchestrate
diverse cellular processes [4]. The SH3 domain family are
conserved protein modules consisting of 50–70 residues,
and these modules can specifically bind to contiguous
proline-rich ligands characterized by a core region of 7–9
amino acids [5]. These SH3-binding peptides can be
divided into classes I and II [6]. Their variable binding
characteristics mean that the SH3 domain family show a
broad specificity in terms of recognizing their peptide
ligands.
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Because domain–peptide interactions are usually weak
and transient, and often depend upon post-translational
modification, they tend to be underrepresented in experi-
mental and computational studies, thus highlighting the
need to develop new strategies to identify these interactions
[4]. A number of methods have already been developed to
dissect the interaction profiles of SH3 domains with their
ligands, and to qualitatively or quantitatively analyze the
binding potency underlying these interactions. From an
experimental perspective, phage display has often been
applied to determine the specificity of amino acid types at
different positions along the peptide sequence; the resulting
information is then used to build frequency matrices
representing the amino acid preference at each position [7,
8]. In addition, high-density arrays of relatively short
peptide chains can be efficiently synthesized by the
positionally addressable synthesis of peptides on cellulose
membranes (SPOT synthesis), and this technique has been
employed to screen a large-scale sequence pool in order to
find out the binding activities of the SH3 family [9, 10].
However, these methods may introduce bias due to the
incomplete sampling of all possible peptides, leading to the
arbitrary weighting of contributions of peptide positions
based on their binding strengths and/or the random
assignment of peptides bound to the SH3 domain in
different binding modes. Moreover, it is too time-
consuming and costly to synthesize all potential peptides
found in the complete genomes and to perform a further
domain–peptide binding assay. Alternatively, computational
approaches have been exploited as a promising way to
predict domain–peptide interactions. Early on, machine
learning strategies such as Gibbs sampling [11], hidden
Markov [12], neural network [13], and support vector
machine [14] were introduced to qualitatively identify SH3
partners. These methods were trained under known SH3-
binding and -unbinding peptides, and then used to
distinguish whether a peptide would be recognized by
SH3. Recently, the quantitative structure–activity relation-
ship (QSAR) methodology was applied to predict the
affinities of peptide candidates and to explain the structural
basis for the binding of peptide to SH3 [15]. For example,
Hou et al. employed molecular dynamics simulation and
CoMFA/CoMSIA to examine the binding mode and
potency of peptide to hAmph SH3 [16]. Later, this work
was further generalized to decipher the protein recognition
codes of diverse SH3 domains [17]. Zhou et al. employed
divided physicochemical property scores coupled with
genetic algorithm–Gaussian processes to perform a com-
parative study of a panel of culled SH3-binding peptides,
and concluded that diverse properties contribute remarkably
to the interactions between the hAmph SH3 and its peptide
ligands [18]. Very recently, He et al. used principal property
descriptors derived from amino acid rotamers (PDAR) to

statistically predict the binding affinities of over 13,000
peptides to ten types of SH3 domains, and found that the
electrostatics, hydrophobicity, and hydrogen bonds at core
residue positions contribute significantly to SH3–peptide
binding [19].

In this study, we present a novel structure-based
approach that can be used to characterize the position-
dependent noncovalent profiles of diverse peptides binding
to the SH3 domain involved in human endophilin-1
(hEndo1), a protein that localizes in brain presynaptic nerve
termini and participates at multiple stages in clathrin-coated
endocytosis, from early membrane invagination to synaptic
vesicle uncoating [20]. This hybrid method combines
various molecular modeling techniques, including molecu-
lar mechanics/molecular dynamics simulation, virtual mu-
tagenesis, interaction energy decomposition, solvent effect
analysis, and statistical fitting and validation. Specifically,
instead of traditional amino acid descriptors that ignore
structural information about the receptor protein [21], we
herein describe a structure-based nonbonding potential
analysis protocol that dissects the position-dependent non-
covalent interaction profile of the hEndo1 SH3 domain with
its peptide ligands. This method is then used to analyze the
interaction mode and binding potency of 1997 hEndo1 SH3
domain-binding peptides with known affinities, and to
investigate the relative contributions of different residues
and different noncovalent terms in the peptide sequence to
the binding. We also demonstrate that the position-
dependent noncovalent interaction descriptors derived from
the newly proposed protocol are more effective for
modeling and predicting SH3–peptide binding affinities if
a nonlinear machine learning method is employed to
perform the statistical modeling.

Methods and materials

Construction of the hEndo1 SH3 domain–peptide complex
model

Twenty NMR structures of the hEndo1 SH3 domain were
retrieved from the Protein Data Bank (PDB entry: 2dbm).
We used the first copies of these structures to construct the
model of the complex structure of hEndo1 SH3 domain
with the ten core residues (RSPPRPPRER) of the peptide
WSRSPPRPPRERFE—which was reported by Landgraf et
al. [22] to be an effective binder to hEndo1 SH3. As
suggested by Cestra et al. [23], this decapeptide adopts
class I orientation binding to hEndo1 SH3, with the
position pattern P−6P−5P−4P−3P−2P−1P0P1P2P3 (this num-
bering corresponds to the nomenclature suggested by Lim
et al. [24]). The structure of the hEndo1 SH3 domain
complexed with RSPPRPPRER was modeled based on the
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crystal structure of the Abl SH3 domain in complex with a
3BP-1 synthetic peptide (APTMPPPLPP) (PDB entry:
1abo). The obtained crude model was then subjected to a
molecular dynamics (MD) simulation to eliminate existing
collisions and distortions in the structure and to relax the
complex. Details about the MD can be found in the
publications of Hou et al. [14, 16], who have recently
employed a similar protocol to construct the model of the
complex of the hAmph1 SH3 domain with the peptide
PLPRRPPRAA. Briefly, the crude model was solvated in a
rectangular box that extended 8 Å away from any solute
atom, and then the hydrogen atoms, water molecules, and
all systematic components were minimized in turn without
constraints. The MD procedure consisted of a gradual
temperature increase from 50 K to 300 K over 50 ps, and a
1000 ps simulation for equilibration. The SHAKE algo-
rithm was employed to constrain all bonds in the system to
speed up the simulation [25]. All MD calculations were
carried out in the AMBER9.0 package with the AMBER03
force field [26]. The equilibrated structure model of the
hEndo1 SH3–RSPPRPPRER complex will be used in the
following study (Fig. 1).

Virtual mutagenesis of the template to target peptides

To obtain the hEndo1 SH3 domain–target peptide complex
model, the residues of the template peptide RSPPRPPRER
in complex with hEndo1 SH3 were mutated in turn to the
corresponding residue types of the target peptide. The
virtual mutation of a peptide residue was implemented by
two steps: the side chain of the residue being mutated was

manually deleted from the template, and then a new side
chain was added automatically using the rotamer-based
SCWRL4 program [27]. Before the virtual mutagenesis
protocol was applied, all water molecules and cofactors
were removed from the template structure, and then a
hydrogen-adding procedure using the REDUCE strategy
was employed [28]. SCWRL and REDUCE were adopted
here because these two programs have been previously
demonstrated to give good performance when reproducing
the experimentally determined structure data of peptides
and proteins [29, 30].

Position-dependent interaction energy analysis

The interaction energy of each position of a decapeptide
ligand with the hEndo1 SH3 domain in the complexed state
was decomposed into three components: an electrostatic term,
a steric term, and a hydrophobic term. These can be readily
calculated using a semi-empirical molecular mechanics
approach and an empirical potential expression. The AMBER
force field is widely used to describe the nonbonding
interactions involved in biomacromolecular entities [31, 32],
and was thus employed here to account for the electrostatic
and steric terms, while a pairwise atomic hydrophobic
potential developed in our lab [33] was utilized to
characterize the hydrophobic interaction. In the AMBER
force field, electrostatic and steric interactions between two
protein (or peptide) atoms are quantified using Coulomb’s
law and the Lennard-Jones 6–12 equation, respectively. The
formula of the additional hydrophobic potential is
Uhp

ij ¼ �ðSiri þ SjrjÞe�dij[33], where dij is the distance
between two atoms i and j, ρi represents the Eisenberg
atomic solvation parameters [34], and Si is the atomic solvent
accessible surface area defined in the MSMS program [35].
Detailed descriptions of the procedure for calculating these
nonbonding interactions can be found in our previous
publications (with only slight modifications) [36, 37].

For a hEndo1 SH3–decapeptide complex, three interac-
tion terms associated with each position of the decapeptide
ligand can be calculated using the strategy described above.
In this way, the position-dependent noncovalent interaction
profile of the decapeptide with the hEndo1 SH3 domain is
characterized by 3×10=30 nonbonding potential terms V1–
V30, in which V1, V2, and V3 represent, respectively, the
electrostatic, steric, and hydrophobic interactions of posi-
tion 1 of the decapeptide ligand with the hEndo1 SH3
domain; V4, V5, and V6 represent those interactions for
position 2; and so on.

Data set and statistical modeling

Since the contributions of different positions in a peptide
and different nonbonding components at a particular

Fig. 1 Stereoview of the model of the complex of the hEndo1 SH3
domain with RSPPRPPRER. The hEndo1 SH3 domain was extracted
from a 20-copy NMR structure (PDB entry: 2dbm), and the peptide
RSPPRPPRER represents the ten core residues of the effective
hEndo1 SH3-binder WSRSPPRPPRERFE, as reported by Landgraf
et al. [22]

J Mol Model (2012) 18:2153–2161 2155



position to the binding may not be identical, we further
defined a linear weighting formula to correlate the 30
noncovalent terms with binding affinity:

AffinityðlogBLUÞ ¼ b0 þ b1V1 þ b2V2 þ � � � b30V30: ð1Þ
The values of the weights bk were obtained by linearly

fitting Eq. 1 to experimentally measured affinities on the
basis of an elaborately selected, large-scale pool of hEndo1
SH3-binding peptides, using the sophisticated partial least
squares regression (PLS) technique [37]. In addition, as a
comparison, the nonlinear support vector machine (SVM)
[38] was employed to perform correlation. The selected
peptide panel contained 883 samples and was a subset of the
1997 peptides that were synthesized at high density on
cellulose membranes using the SPOT synthesis technology.
A chemoluminescence assay was then performed to deter-
mine the signal intensities of the peptides bound with the
glutathione S-transferase (GST)-fused hEndo1 SH3 domain
[22]. The SPOT signal intensities were measured in BLU,
which is a quantitative indictor of the dissociation constant of
the hEndo1 SH3–peptide complex. Each of these 883
selected peptides that were used to obtain the weight values
bk in Eq. 1 was assayed at least twice for its BLU value, and
the remaining 1114 samples (with only one experimental
result for each) were utilized as the test set to validate the
reliabilities of the obtained models [see the “Electronic
supplementary material” (ESM), Tables S1 and S2].

Results and discussion

Model development

In order to explore the relative contributions of different
noncovalent components to the binding, we used the PLS
method to separately correlate independent noncovalent
terms and combinations of them with the binding affinities
of the 883 training peptides. As shown in Table 1, model
quality was improved obviously by increasing the number

of noncovalent terms adopted, and the best model was
obtained when all three noncovalent terms were fed into the
modeling, suggesting that hEndo1 SH3–peptide binding is
determined by diverse nonbonding properties. Among the
three noncovalent components, the most important one
seems to be the electrostatic term, which can give models
with good stability (indicated by tenfold cross-validation
qCV

2) and strong fitting ability (measured by the fitted
coefficient of determination rfit

2) as compared to those
without the electrostatic term included, although the
secondary steric and hydrophobic components also signif-
icantly affect the binding behavior of the peptide to the
hEndo1 SH3 domain. Here, we used the best model (i.e.,
the full-parameter one) to predict the 1114 test peptides, and
we found a good correlation between the predicted and
experimental affinities, as shown by the acceptable predic-
tive coefficient rprd

2=0.515 and the root-mean-square error
of prediction (RMSP)=0.586.

The plots of fitted and predicted versus experimentally
determined affinities for the training and test samples are
shown in Figs. 2a and b, respectively. As can be seen, most
samples are distributed around the fit lines, and only a few
points (outliers) deviated greatly from the lines. We have
examined these outliers and found that unusual structure
and abnormal affinity appear to be the major factors that
lead our model to significantly overestimate or underesti-
mate the binding potency of these outliers. In addition,
unavoidable errors associated with experimental assays are
an important factor that undermines the accuracy of the
statistical model. Furthermore, appreciable systematic error
is present in the plots; that is, low-affinity peptides are
commonly overestimated whereas high-affinity samples are
underestimated by the model (indicated by the small slopes
k of the fit lines). This phenomenon has also been observed
in previous statistical investigations of hAmph1 SH3
domain-binding peptides [18, 19], and can be explained
by the fact that some unknown factors, such as the
interactions between separate residues in the peptide
sequence and the conformational entropy loss during the
binding, which were not considered in our method, may
contribute marginally to the affinity.

In order to characterize the contributions of different
residue positions to the peptide affinity, the linear relation-
ships between independent positions and the binding
affinities of training peptides were also calculated, and
these are provided in Table 2. It can be seen that the
contributions of independent positions to the peptide
affinity are quite modest; only P−4, P−3, and P1 seem to
be relatively important in the binding, suggesting that none
of these ten residue positions can independently dominate
the binding behavior of the peptide to the hEndo1 SH3
domain, and the recognition and interaction of a peptide
ligand with hEndo1 SH3 are co-determined by many

Table 1 Statistics of PLS models using different combinations of
noncovalent terms

Noncovalent combinationa rfit
2 qCV

2 RMSF

E 0.448 0.387 0.632

S 0.396 0.325 0.649

H 0.388 0.308 0.656

E + S 0.534 0.462 0.573

E + H 0.512 0.453 0.595

S + H 0.469 0.407 0.615

E + S + H 0.569 0.514 0.558

a E electrostatic term, S steric term, H hydrophobic term
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positions on the peptide. This finding can be further
rationalized by analyzing the PLS coefficient plot (vide
post).

Model analysis

The hidden information involved in the full-parameter
PLS model was further analyzed in detail. The 883
training samples distributed in the top-two score space
of PLS model are shown in Fig. 3. It is evident that the
entire space can be divided into two regions: one at the
bottom right of this plot, with only a few sample points
(region 1), and another at the top left, which holds the
majority of the samples (region 2). We investigated the
structural difference between the peptide samples of these
two regions, and found that the peptides present in region
1 are mainly those with abundant charge, such as
DKPVKPPTKK, SRPTRPPEPR, and LGPAKPPAQQ,
most of which have a relatively strong ability to bind
with the hEndo1 SH3 domain, whereas the samples
involved in region 2 are commonly hydrophobic and
show moderate or weak affinity to hEndo1 SH3. Region 2
can be further partitioned into three parts, each of which
represents a specific group of peptides with fine structural
characteristics in common, and which differ in these
characteristics from the peptides in the other two groups.
Based on these considerations, the PLS score plot is
thought to be capable of accurately characterizing the

structures and properties of diverse peptides when they
interact with the hEndo1 SH3 domain.

The PLS coefficient plot can also give information on
the relative contributions to the peptide affinity of different
positions in the peptide sequence and different noncovalent
components at a given position. Even at first glance, it is
clear from Fig. 4 that the contributions of the ten positions
of the peptide are significantly different; the N-terminal
residues seem to be more effective than the C-terminal ones
at determining the binding behavior of the peptide ligand to
hEndo1 SH domain. For example, the absolute values of
the PLS coefficients at P−6–P−2 are larger than those at P−1–
P3; in particular, the position P−4 makes a substantial
(negative) contribution to the binding potency of the
peptide. In addition, different noncovalent components at
different positions also contribute differently to the affinity,
and the electrostatics appears to be more important than
steric and hydrophobic factors. In the following section,
based on the PLS coefficient plot, we will discuss the
contributions of different positions in the decapeptide
ligand to the binding affinity.

The most important position: P−4

According to Fig. 4, the three noncovalent components at
P−4 all make very significant negative contributions to the
binding affinity of the peptide. In fact, P−4 is usually
occupied by a conserved Pro residue, and any charged and/

Fig. 2 a Plot of fitted versus experimental affinities for the 883 training samples. b Plot of predicted versus experimental affinities for the 1114
test samples

Statistics P−6 P−5 P−4 P−3 P−2 P−1 P0 P1 P2 P3

rfit
2 0.154 0.197 0.398 0.241 0.260 0.039 0.115 0.298 0.090 0.085

qCV
2 0.041 0.093 0.215 0.136 0.162 -a 0.002 0.104 -a -a

Table 2 The linear relationship
between independent residue
positions and the binding affin-
ities of training peptides

a Insignificant
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or bulky substitution would fundamentally undermine the
perfect match between the protein receptor and the peptide
ligand. In the training samples, only four kinds of amino
acids (i.e., Pro, Leu, Ile and Phe) are present at P−4; aside
from Pro, the other three types of amino acids are usually
associated with low peptide affinity, revealing that strong
hydrophobicity and a large volume at P−4 could impair the
binding potency of the peptide. Nevertheless, the signifi-
cant electrostatic effect also seems to disfavor peptide
binding. This can be explained by noting that strong
polarity is always associated with large volume; this would
lead to a potential stereo-hindrance effect.

The secondary positions: P−6, P−5, P−3, P−2, and P1

The electrostatics at P−6 and P−5 dominate over the steric
and hydrophobic factors. By visually inspecting the
structure model of the hEndo1 SH3–peptide complex, we
found that the SH3 residues which make direct contact with
these two positions are full of formal charge (e.g., Asp39 to
P−6 and Glu19 and Glu23 to P−5). Previously, Hou et al.

used molecular mechanics/Poisson–Boltzmann solvent area
method to perform a detailed investigation of the electro-
static interaction behavior of peptide with the Abl SH3
domain, which is highly homologous with the hEndo1 SH3
domain (both bind peptides in the class I orientation), and
pointed out that the electrostatic free energy is particularly
significant at the N-terminus of the peptide ligand, and thus
it contributes substantial stability and specificity to the
binding [4]. In addition, the fact that P−3, P−2, and P1 are
distributed in the middle of the peptide sequence can also
exert an appreciable effect on the peptide affinity. It is
suggested that nearly all of the noncovalent components
play important roles at these positions, indicating that the
hEndo1 SH3–peptide recognition and binding is affected by
diverse physicochemical properties.

The insignificant positions: P−1, P0, P2, and P3

The PLS coefficients of the variable terms at P−1, P0, P2,
and P3 are relatively small, suggesting limited contributions
of these positions to peptide affinity. In fact, P−1 is

Fig. 3 The 884 peptide samples distributed in the top-two score space of the PLS model

Fig. 4 The coefficients of the
30 variable terms in the PLS
model
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conservatively occupied by a Pro residue in all of the
training samples, which is insignificant for statistical
modeling. P0 and P2 are far from the body of the SH3
protein and hence can only form weak nonbonding
interactions with SH3. P3 is located at the C-terminus of
the peptide ligand and would be better regarded as a
marginal residue of the peptide.

Comparison of linear PLS to nonlinear SVM

Because of the complexity and polymorphism associated
with the SH3 domain–peptide interaction, accurately
predicting the binding affinity and recognition specific-
ity of the peptide ligand to diverse SH3 domains is a
great challenge in the bioinformatics community [15].
Previously, Wang and co-workers reviewed a lot of works
on the statistical modeling and prediction of SH3 domain–
peptide interaction behavior, and found that nonlinear
machine learning methods appear to more effective than
linear PLS in terms of predictive accuracy and reliability
[14, 17]. Therefore, in this work we employed a
sophisticated SVM technique to mine the hidden nonlinear
relationship between the structural descriptors and the
binding affinities of the peptide samples. For SVM
regression, a coarse-grained grid-searching scheme using
the root-mean-square error of cross-validation (RMSCV)
as the objective function was carried out to determine the
optimum combination of ε-insensitive loss function,
penalty C, and kernel parameter σ2. In this procedure,
the ε, σ2, and C values were tuned simultaneously in grids
ranging from 0 to 1, 1 to 10, and 1 to 1000, with step sizes
of 0.1-, 1-, and 10-fold, respectively. A detailed descrip-
tion of this procedure can be found elsewhere [39]. As a
result, the optimal SVM model was constructed based on
the 883 training peptides, with fitted coefficient of
determination rfit

2 and tenfold cross-validation qCV
2

values of 0.614 and 0.547, respectively. This model was
further used to predict the affinities of 1114 test samples,
resulting in a predictive correlation coefficient rprd

2 of
0.534. As might be expected, the stability and generaliza-
tion ability of nonlinear SVM are significant improve-
ments on those of linear PLS, and it reveals a strong
nonlinear dependence in the hEndo1 SH3–peptide system.
On the other hand, although the SVM shows good fitting
and predictive power in the statistical modeling of hEndo1
SH3-binding peptides, the model built using this method
is just a black box that is difficult to interpret in detail on a
molecular basis, and it offers little insight into structural
implications underlying the interaction of the peptide
ligand with the hEndo1 SH3 receptor. Based on this
consideration, we concluded that both PLS and SVM are
useful in the modeling, prediction, and interpretation of
peptide affinity to the SH3 domain—the use of diverse

strategies is always more effective than a single technique
when comprehensively investigating a specific problem.

Comparison of structure-based to sequence-based models

Previously, a number of sequence-based methods have been
used to model and predict the binding affinities of peptides
to diverse SH3 domains, such as Abl [4] and hAmph1 [18].
The sequence-based methods only consider structural
information obtained from the primary sequence of the
peptide [21]; they completely ignore the spatial properties
and interaction behavior of the ligand in complex with the
receptor. Here, for comparison purposes, two sophisticated
amino acid descriptors (i.e., z-scale [40] and DPPS [41,
42]) were employed to develop sequence-based models for
the hEndo1 SH3 domain-binding peptide data set. The
statistics of QSAR models based on z-scale and DPPS as
well as our PDNPA are tabulated in Table 3. As can be
seen, both the fitting ability (rfit

2) and predictive power
(rpred

2) of our method are obviously better than those of
DPPS and, particularly, z-scale. This is expected if we
consider that only indirect information about the SH3–
peptide interaction was involved in the z-scale and DPPS
models, whereas the nonbonding profile at the SH3–peptide
interface was directly utilized in the PDNPA approach. In
fact, evidence from several previous works already suggests
that incorporating SH3–peptide complex structure proper-
ties into QSAR modeling can substantially improve both
the statistical quality and the interpretability of the resulting
models. For example, for a panel of hAmph1 SH3 domain-
binding peptides [22], the published predictive powers
(rpred

2) of sequence-based (Liang et al. [43]) and structure-
based (He et al. [32]) models were 0.530 and 0.705,
respectively, suggesting that structure-based methods, at
least for the SH3–peptide binding data set, should be more
effective and reliable than sequence-based ones, although
the former is more time-consuming and labor-intensive than
the latter.

Table 3 Statistics of QSAR models based on different characteriza-
tion methods

Method Training set (883 samples) Test set (1114 samples)

rfit
2 a qCV

2 b RMSFc rpred
2 d RMSPe

This work 0.569 0.514 0.558 0.515 0.586

z-Scale 0.395 0.370 0.662 0.324 0.698

DPPS 0.513 0.463 0.594 0.404 0.651

a rfit
2 coefficient of determination for the fit to the training set. b qCV

2

coefficient of determination for tenfold cross-validation of the training
set. c RMSF root-mean-square error of fit to training set. d rpred

2

coefficient of determination for predictions for the test set. e RMSP
root-mean-square error of prediction for the test set
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Conclusions

Accurate characterization of the noncovalent interaction
profile of a peptide ligand with a protein receptor in the
complex state is crucial for developing reliable statistical
models that can quantitatively predict the binding affinities
of diverse peptides, and to qualitatively explain the
physicochemical properties and structural basis for these
interactions. In this study, a new method, named position-
dependent noncovalent potential analysis, was proposed for
this purpose. In this procedure, structure models of the
hEndo1 SH3 domain in complex with thousands of core
decapeptide ligands were constructed using a combined
strategy incorporating MD simulation and virtual mutagen-
esis based on high-resolution crystal structures. Subse-
quently, three noncovalent types that dominate
interbiomolecular recognition and binding were calculated
empirically for each position on the peptide ligand
interacting with hEndo1 SH3. The resultant potential
descriptors were used as structural variables to develop
linear and nonlinear correlation models with experimental
affinity values for 1997 peptides with known activities.
After analyzing these built models, we can make the
following conclusions. (i) Diverse physicochemical proper-
ties make significant contributions to the hEndo1 SH3–
peptide binding. In particular, the electrostatics seems to be
the dominant aspect in the binding. (ii) P−4 of the peptide
ligand is the position that has the greatest influence on both
the stability and specificity of the hEndo1 SH3–peptide
complex, while P−6, P−5, P−3, P−2, and P1 can confer
moderate stabilization to the complex architecture, and P−1,
P0, P2, and P3 have only a limited thermodynamic effect on
the binding. (iii) Nonlinear SVM performs fairly well as
compared to linear PLS when modeling the binding
affinities of peptides to hEndo1 SH3, whereas the statistical
models built by PLS are more interpretable and straight-
forward than those obtained by SVM.
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Abstract The channel structure of the Ku protein elegantly
reveals the mechanistic basis of sequence-independent
DNA-end binding, which is essential to genome integrity
after exposure to ionizing radiation or in V(D)J recombi-
nation. However, contradicting evidence indicates that this
protein is also involved in the regulation of gene expression
and in other regulatory processes with intact chromosomes.
This computational study predicts that a putative DNA
binding domain of this protein, the SAP domain, can form
DNA-bound complexes with relatively high affinities (ΔG ≈ -
20 kcal mol-1). The binding modes are searched by low
frequency vibration modes driven by the fully flexible
docking method while binding affinities are calculated by
the molecular mechanics Poisson-Boltzmann surface area
(MM-PBSA) method. We find this well defined 5 kDa
domain with a helix-extended loop-helix structure is suitable
to form favorable electrostatic and hydrophobic interactions
with either the major groove or the minor groove of DNA.
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The calculation also reveals the sequence specified binding
preference which may relate to the observed pause sites
when Ku translocates along DNA and the perplex binding of
Ku with circular DNA.
Keywords Binding free energy . DNA repair . Ku70-SAP.

Ku-DNA binding .Molecular dynamics simulation
Introduction

The Ku heterodimer (Ku70 and Ku80) is a multifunctional
protein involved in DNA repair, V(D)J recombination,
mobile-genetic-element biology, telomere maintenance,
apoptosis and transcription [1]. It is a highly abundant
nuclear protein (approximate 5×105 per nucleus) [2] and
has also been shown to be present within the cytoplasm to
varying degrees dependent upon culture confluencies [3]. In
vertebrates, Ku initiates the non-homologous end joining
(NHEJ) DNA repair pathway by specific recognition and
tethering of the DNA ends at the site of the lesion [4]. Once
bound at the DNA ends, Ku works as a scaffold protein to
recruit other repair factors that are required in NHEJ,
which, in mammalian cells, include DNA-PKcs (DNA-
dependent protein kinase catalytic subunit), Artemis,
polymerase μ and λ, and a complex of XLF (Cernunnos),
XRCC4, and DNA ligase IV, etc. [5]. These proteins act
together in a highly coordinated way to cleave the
incompatible section, fill the gap, and ligate the strands of
DNA [6]. It was reported recently that the recruitment of
these enzymes is not necessarily in the exact order of
nuclease-polymerase-ligation, but can have a wide range of
flexibility disregarding the exact structure of the DNA
broken ends [7, 8]. This observation underscores the key
mediation role that Ku plays in NHEJ pathway.

http://dx.doi.org/10.1007/s00894-011-1234-x
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The atomic structures of the human Ku heterodimer and
a complex with DNA have been determined using X-ray
crystallography by Walker et al. in 2001 [9]. The two Ku
subunits show sequential and topological similarity, each
containing three well-organized regions: an N-terminal α/β
domain, a central β-barrel domain, and a subunit-specific
helical C-terminal arm. They intertwine to form a pseudo-
symmetrical structure with a preformed ring structure
extended from a broad base (Fig. 1a), allowing two turns
of DNA to cradle inside, with Ku70 located proximal and
Ku80 distal to the free end (Fig. 1b). Structural analysis
indicates that the inner surface of the ring is lined with
positively charged residues, complementing the negative
charge of the DNA. No direct base contacts are observed in
the Ku-DNA complex, providing an explanation for why
Ku lacks significant sequence preference for DNA binding.
The combination of the extended β-barrel cradle and a
narrow ring allows Ku to interact with two turns of the
DNA double helix while still exposing much of the DNA to
the solvent, allowing other repair factors to access DNA
and exert their functions.

Upon DNA binding, the α/β domains and the central β-
barrel domains forming the ring structure show virtually no
conformational change, while the Ku70 extreme carboxyl
terminus attached to Ku80 α/β domain is displaced. This
shift of Ku70 carboxyl-terminal end upon DNA binding has
been confirmed recently by single-particle electron micros-
copy experiment [10], implying a role for this domain in
mediating DNA binding. The human Ku70 C-terminal arm
is composed of a highly random and flexible linker
(residues 536–560) and a well-structured helix-extended
loop-helix (HEH) fold (residues 561–609), also referred to
as the SAP domain (named after three proteins containing
this motif: SAF-A/B, Acinus and PIAS) [11]. Biochemical
studies indicate that the Ku70 C-terminal arm is responsible
for the high affinity binding of Ku heterodimer to DNA
[12].

The structure of the SAP domain is similar to that of the
DNA-binding domain of T4 endonuclease VII and the
Fig. 1 Crystal structures of
human Ku heterodimer (a) and
its complex bound with DNA
(b). Ku70 and Ku80 are colored
blue and red, respectively. DNA
is in licorice representation,
with one end blocked with a
three-way junction [9].
K70-SAP domain is attached to
Ku80 α/β domain in
apo-structure (a), but is
dispatched in DNA bound
structure (b)
RNA-binding domain of bacterial transcriptional termina-
tion factor Rho, and has been defined as a putative DNA-
binding motif [11, 13]. This region has also been
designated as having a role in the observed pause sites
when Ku translocates along the DNA molecule [9] and in
the perplex binding of Ku with circular DNA [1, 14].
Chemical shift perturbation experiment has been conducted
to locate the interfaces of the SAP region to interact with
DNA, and a binding mode has been proposed [13]. As this
domain is exposed to solvent in unbound structure and is
distal to the DNA free end in the bound structure [9], it is
most likely among the first functional groups of the Ku
protein to interact with the broken DNA whenever it is
introduced. A better understanding of how Ku recognizes
DNA breaks and translocates along the DNA molecule will
aid in more fully elucidating the DNA repair process
following ionizing radiation, including differences between
terresterial radiation such as X-rays and gammas-rays and
space radiation comprised of heavy ions and protons [15, 16].

In recent years a wide range of theoretical methods have
been developed for computational modeling of biological
systems [17]. They give computer modeling enormous
potential to make predictions for molecular systems and
provide insights that can guide mechanistic understanding
and molecular design [18]. To test whether the SAP domain
defines a good DNA binding motif and how it plays a role
on the recognition and binding unusual nucleic acids
structures such as double strand breaks induced by ionizing
radiation, we performed a series of molecular modeling
studies, and identified several possible binding modes with
DNA duplexes with relatively high binding affinities
(ΔG≈-20 kcal mol-1). Initial structures were constructed
based on the information obtained by electrostatic potential
map calculation and an NMR titration experiment [13].
They were examined by low vibrational modes driven
fully-flexible docking protocol with implicit solvent, and
5 ns molecular dynamic simulation with explicit solvent.
Structural and energetic analyses carried out on the last 3 ns
stable trajectories indicated that this well-defined domain
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with a helix-extended loop-helix structure can form
favorable electrostatic and hydrophobic interactions with
either the major groove or the minor groove of DNA.
Methods

Structural modeling

The atomic structure of the human Ku70-SAP domain has
been determined by NMR [13] with code 1JJR in RCSB
Protein Data Bank. It has three α-helices, encompassing
residues 562–570, 578–587, and 596–606, with notations
Ha, Hb, and Hc, respectively (left panel of Fig. 2). The inter-
helical loops (La and Lb) are not well defined in experiment
but contain several basic residues that could play important
roles in DNA binding. It has a total charge of +2.0.
Following the chemical shift perturbation experiment [13],
we used two 10 base pair palindromic DNA duplexes as
substrates, to ensure the binding of Ku70-SAP to each end of
the DNA forms the same complex. One duplex was obtained
from RCSB Protein Data Bank, with code 1CQO and upper
strand sequence 5’-GCGTTAACGC-3’ [19] (denoted as
AT10 henceforth). Another duplex was constructed by the
nucgen facility of AMBER software package [20], with
upper strand sequence 5’-GCGCGCGCGC-3’ (denoted as
GC10). Both DNA duplexes have blunt ends and are in
canonical B-form, and each has a charge of −18.0.

Chemical shift perturbation experiments identified sev-
eral regions of SAP that interact with DNA [13]. These
regions have the most conserved Arg or Lys residues. To
Fig. 2 Electrostatic properties of Ku70-SAP domain. Potential
isocontours are shown at +3 kT/e (blue) and −3 kT/e (red) and
obtained by APBS method at 150 mM ionic strength with a solute
dielectric of 1 and a solvent dielectric of 78.5 [19]. (a) Side view of
the patch along Helix Hb and Loop Lb. (b) Front view of the patch
aid the construction of starting structures of SAP-DNA
complex, we used the adaptive Poisson-Boltzmann solver
(APBS) method [21] to calculate the electrostatic potential
surface of SAP. The mapped surface (Fig. 2) is consistent
with the previous work [13], with two regions dominated
by positive potential: the first covers helix Hb and loop Lb,
the second covers the loop La. The two regions are nearly
fused to each other on the surface of SAP (right panel of
Fig. 2). Since DNA binding causes the largest chemical
shift changes to occur in these positive electrostatic regions
[13], our starting structures were constructed by manually
placing the molecules AT10 and GC10 to these sites, by
using the Weblab Viewer Lite software (Molecular Simu-
lations Inc., San Diego, CA). The two molecules in each
structure were docked with distances (between the closest
atoms) of about 4–6 Å, with varying orientations and
interfaces (Table 1). Two structures among them were built
based on the proposed binding mode in [13].

Flexible LMOD docking

To test whether the hypothesized binding mode is actually the
most energetically favored and to search for other possible
binding modes, a full-flexible low frequency vibrational mode
(LMOD) docking method [22–25] was first applied to these
manually constructed starting structures. The LMOD method
was designed to enable an exhaustive exploration of the
potential energy hypersurface of molecules, based on
eigenvector following (or mode following) methods [22],
and has been found to be very efficient in some computa-
tional chemistry domains such as protein loop optimization,
conformational analysis of complex systems and flexible
docking [22–25]. The LMOD protocol used in this work was
found by many trial-and-error calculations and could
significantly build up the potential binding affinity between
two macromolecules. Validation of this method was con-
ducted with a system with known X-ray crystal structure
(Supplementary material).

All docking calculations and the following simulations and
analyses were performed with the AMBER 9 suite of
programs [20] together with the Stony Brook modification
ff99 force field [26]. The implicit solvent model of Onufriev-
Bashford-Case [27] was used to represent the electrostatics
of aqueous solution at the docking stage. GB/SA methodol-
ogy (igb=5, cut=16.0 Å, rgbmax=12.0 Å, and surften=
0.005 kcal mol-1·Å-2) was used and the salt concentration
was set to 0.2 M, to represent the solvent and ionic effects,
respectively. We found utilizing this model was essential to
maintain the conformations of the molecules during the fully
flexible docking process. During this process, the atoms of
the molecules were subjected only to the forces imposed by
the chosen force field and solvent model. Our preliminary
calculation indicated that a simple charge screening function



Table 1 Interfaces and orientations of the starting structures of SAP-
DNA complex. Interface 1 of SAP covers the region along Hb and Lb,
and interface 2 covers regions along La (see Fig. 2). ‘m’ means the
minor groove of DNA, while ‘M’ means the major groove. The

duplexes are manually docked to SAP with their helical axis either
parallel to the directions of the loops (∥) or perpendicular to them (⊥).
AT1c and GC1c were built based on the proposal of [13]

Name SAP interface DNA interface DNA orientation Name SAP interface DNA interface DNA orientation

AT1a 1 m ∥ GC1a 1 m ∥
AT1b 1 M ⊥ GC1b 1 M ⊥
AT1c 1 M ∥ GC1c 1 M ∥
AT1d 1 m ⊥ GC1d 1 m ⊥
AT2a 2 m ∥ GC2a 2 m ∥
AT2b 2 M ⊥ GC2b 2 M ⊥
AT2c 2 M ∥ GC2c 2 M ∥
AT2d 2 m ⊥ GC2d 2 m ⊥
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(ε=4r) could not reproduce reasonable binding geometries of
our system, although several previous LMOD applications
were based on this simple treatment [22–25].

In each of LMOD docking iterations, ten lowest
vibrational modes were calculated, and three of them were
randomly chosen to make ZIG-ZAG moves (in the range of
0.02-2.0) [20]. The system was carried out in this manner
over a series of energy barriers until the lower energy
endpoints were reached. They were then subjected to
minimization with limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) quasi-Newton algorithm [28]
to 0.1 kcal (mol·Å)-1 of gradient RMS, and were subse-
quently collected in the pool with 50.0 kcal mol-1 energy
window. The next iteration started with a structure chosen
from this pool by metropolis Monte Carlo method. The
Ku70-SAP, AT10 and GC10 were fully flexible, while the
protein part was allowed ive5 times of explicit translation
and rotation in each of the iterations. The 10 lowest
vibrational modes were updated every 10 iterations till
convergence was reached. Each starting structure was
subjected to this same docking protocol for three times
with three different random seeds (314159, 1000, and
2000).

Explicit solvent MD simulation

The docked structures with the most energy gains were
placed into truncated octahedron periodic boxes of
TIP3P water molecules, with counter ions to neutralize
the total charge. The distances between the edges of the
water box and the closest atom of the solute were at
least 10 Å in all cases. The systems were minimized by
500 steps of minimization, with the solute constraint
with 2.0 kcal mol-1·Å-2 to all solute atoms. The particle
mesh Ewald (PME) method was used to treat long-range
electrostatic interactions, and bond lengths involving
bonds to hydrogen atoms were constrained using SHAKE.
The time-step for all MD simulations was 2.0 fs, with a
direct-space, non-bonded cutoff of 9.0 Å. Translational
center-of-mass motions were removed every 1000 steps.
With the solute constraint with 2.0 kcal mol-1·Å-2 to all
solute atoms, canonical ensemble (NVT)-MD was carried
out for 35 ps. This was followed by five rounds of 600 step
energy minimizations on the entire system, by reducing the
solute restraints gradually; 2.0 kcal mol-1·Å-2 restraints on all
solute atoms were again used during heating the entire
system to 300 K. Then, with a time constant of 2.0 ps for
heat-bath coupling, solute restraints were reduced gradually
over 50 ps, while the systems underwent isothermal isobaric
ensemble (NPT)-MD simulations to adjust the solvent
density. After the equilibration phase, the production phase
without any constraint was followed at 300 K and 1 atm for
up to 5 ns. The last 3 ns trajectories were used to extract the
snapshots for binding free energy calculation and structural
analysis.

Binding free energy calculation

The binding affinity was approximated by MM-PBSA
methodology [29] from each single trajectory, in which
the protein and DNA structures were taken from the
complex simulation. Snapshots taken every 20 ps from
the last 3 ns of production phase simulation were evaluated
for a total of 150 structures. The molecular mechanics
energies (ΔEvdw, ΔEelec, and ΔEinter) were evaluated in a
single MD step in the Sander module using an infinite
cutoff for nonbonded interactions. The electrostatic com-
ponent of solvation free energy (ΔGPB) was computed by
the finite difference Poisson-Boltzmann method [30, 31], as
implemented in the AMBER programs package. The
reference system had a solvent dielectric of 1 and 0 M salt
concentration. The solvated system had a solvent dielectric
of 80 and 100 mM salt concentration. The non-polar
contribution to the solvation free energy was approximated
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with the commonly used solvent-accessible surface area
(SASA) model, ΔGSA=γ(SASA) +β , where γ =
0.00542 kcal mol-1·Å-2 and β=0.92 kcal mol-1 [32]. The
SASA was estimated with a 1.4 Å solvent probe radius as
implemented in Sander. Conformational entropies (ΔS)
were calculated through normal-mode analysis with more
sparse samples (15 structures of each trajectory), as
suggested by AMBER manual.

To probe the key contributions and hot-spots of
interfacial residues, MM-GBSA approach was applied to
decompose the total binding affinity into contributions from
each residue of Ku70-SAP and DNA. Focuses are on those
that make the most contributions. We used GB=1 and the
default parameters of the AMBER programs package.
Results and discussion

MD trajectory analysis of the unbounded monomers

For the MD simulations of unbound systems of SAP and
AT10, the time-series of the root mean squared deviation
(RMSD) of backbone heavy atoms are given in Fig. 3, with
comparison with their NMR experimental structures. The
structure of SAP are well maintained during the 5 ns
simulation, with RMSD of 1.58 Å. The simulation of the
AT10 duplex shows much larger fluctuations. The RMSD
values of the backbone heavy atoms of AT10 vary between
1.0 Å and 3.3 Å, from the experimental starting structure,
with more frequent oscillations. These results are compa-
rable to those with similar simulations in literature. The
canonical B-form, Watson-Crick hydrogen bonds, and the
planarity of the bases are well maintained during the 5 ns
MD simulation without constraints.
Fig. 3 Time-series of RMSD of backbone heavy atoms of the SAP
and AT10 monomers over 5 ns of explicit solvent MD simulations,
comparing to the NMR experimental results. The trajectory of SAP is
more stable than that of DNA duplex
To test the quality of implicit solvent we used for LMOD
docking, we carried out 1 ns GB/SA simulation for each
monomer, starting directly from their 500 steps minimized
structures, i.e., skipping the equilibration stage. Their
RMSD values are shown in Fig. 4, indicating a reasonably
accurate model alternative to the more expensive explicit
model.

LMOD docking and binding modes prediction

With the LMOD protocol described above, most starting
structures reach their low energy endpoints within 100
docking iterations, with few exceptions of converge till
about 200 iterations. This represents an amenable task for
this system. However, we find the ending structures are
very sensitive to the starting geometries and searching
parameters. Table 2 gives the minimized energies E and
energy gains ΔE (Ecomplex - ΣEmonomer) of the lowest
energy structures of SAP-AT10 obtained by docking. For
each of the eight starting structures, the ending structures
are different with the same protocol but different random
seeds. This implies the conformational space of this system
is probably too rugged to allow an exhaustive exploration;
especially, with all atoms fully flexible, the system is easily
trapped in local minima on the potential energy hypersur-
face. Nevertheless, for most cases, this protocol can
significantly build up the potential binding affinity between
two macromolecules (Tables 2 and 3). From a further test of
this method on a similar system with known bound
structure (Supplemental material), we find that by carefully
tuning the step size of ZIG-ZAG move, successful
prediction of the energetic as well as conformational
features of the published complex from unbound structure
can be achieved.
Fig. 4 Time-series of RMSD of backbone heavy atoms of the SAP
and AT10 monomers over 1 ns of implicit solvent MD simulations,
compared to the NMR experimental results



Table 2 Minimized energies E
and energy gains ΔE (inside
the brackets) of the results of
docking of SAP-AT10.
Dock 0, 1 and 2 denote the
docking protocols with different
random seeds (314159, 1000,
2000, respectively). Energy unit:
kcal mol-1

AT1a AT1b AT1c AT1d

Dock 0 −6211.2(−37.2) −6189.3(−9.6) −6253.4(−83.1) −6221.6(−70.3)
Dock 1 −6206.2(−32.1) −6197.4(−0.1) −6219.5(−60.0) −6217.1(−20.6)
Dock 2 −6210.0(−42.4) −6203.9(−37.4) −6209.7(−59.7) −6201.8(−16.7)

AT2a AT2b AT2c AT2d

Dock 0 −6233.9(−47.3) −6233.3(−81.3) −6234.6(−103.7) −6195.7(−2.6)
Dock 1 −6205.6(−20.3) −6214.8(−25.1) −6210.2(−49.2) −6190.6(−15.4)
Dock 2 −6247.4(−75.5) −6191.9(−6.4) −6227.8(−57.6) −6210.5(−36.8)
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The lowest energy structure (AT1c0, obtained from
AT1c by dock 0) among this search is obtained by a
starting structure built upon the binding mode proposed by
Zhang et al. [13]. While the detailed analysis of this binding
mode is presented in the following section, it is worth
noting that another complex AT2c0, starting from a totally
different conformation, also converges into this mode.
Figure 5 illustrates the energy gains of these two structures
along the docking paths. After converged they acquire
energy compensation of about 80 and 100 kcal mol-1,
respectively, indicating the potentency of the high binding
affinity of this binding mode. Visualization of the docking
paths also reveals the similarity of the protein-DNA
interaction of these two complexes. Though the AT10
duplex is manually docked at interface 1 of SAP in AT1c0
(Fig. 2 and Table 1), its first close contact with SAP
happens with one end at interface 2, after a series of low
modes driven translations/rotations of SAP. Then the major
groove and the other end of AT10 get involved in the
interaction with SAP at interface 1. The converged structure
of AT2c0 is obtained in the same way, but with much less
movement of SAP due to its favorable starting orientation
(Fig. 5).

An advantage of LMOD flexible docking is that no
restraint is needed when the protein/DNA molecules are
running along the docking path. Other popular protein-
DNA docking programs such as HADDOCK [33] need
extensive restraints to maintain the integrity of the DNA
structure, which is highly fragile at abnormal conditions. In
the future if experimental information becomes available,
direct comparisons between the LMOD flexible docking
Table 3 Minimized energies E
and energy gains ΔE (inside
the brackets) of the results of
docking of SAP-GC10.
Energy unit: kcal mol-1

GC1a

Dock 0 −6925.5(−77.1)
Dock 1 −6930.1(−40.5)
Dock 2 −6914.5(−46.2)

GC2a

Dock 0 −6963.8(−80.7)
Dock 1 −6935.6(−54.6)
Dock 2 −6908.1(−0.1)
approach and the HADDOCK method could be made. It
should be noted that in LMOD docking the DNA duplex
occasionally experiences structural damage, such as the
opening of the base pairs at the terminals. However, we
observed most of this damage can be remedied by the
following energy minimization in each iteration. In addi-
tion, structures with damage generally have higher energies
than the integral structures and are filtered out by the
assigned energy window. Consequently the conformational
features of both protein and DNA are well maintained in all
48 final structures in Tables 2 and 3.

With four different base pairs in GC10, the most
favorable binding mode described above was visited again
in the proposed starting structure (GC1c0). It gains the
biggest binding energy (ΔE) among the 24 ending
structures (Table 3). However, another structure, GC2a0,
has a lower E than GC1c0.

Binding affinity and binding mode analysis with explicit
solvent

Since the GBSA solvent model for LMOD docking includes
all essential molecular mechanical forces and solvation effect,
the entityΔE in Tables 2 and 3 is quite similar to the binding
energy ΔGMM-GBSA in standard MM-GBSA free energy
analysis [20]. This implies that in most of the ending
structures the Ku70-SAP domain and DNA duplexes are
favorably bound. Our explicit solvent calculations and
binding affinity analyses were performed on the structures
with ΔE<−45.0 kcal mol-1 in Tables 2 and 3. Totally 22
complexes were chosen from the docking results.
GC1b GC1c GC1d

−6904.3(0.4) −6957.3(−88.2) −6914.3(−40.0)
−6943.0(−61.0) −6894.9(0.9) −6920.4(−45.7)
−6908.5(−25.5) −6899.8(−44.2) −6926.1(−50.1)
GC2b GC2c GC2d

−6950.3(−72.3) −6890.1(0.0) −6918.4(−46.9)
−6928.9(−45.5) −6929.0(−36.4) −6903.8(−17.5)
−6956.6(−46.9) −6915.9(−43.0) −6898.3(−31.3)



Fig. 5 Energy gains of complexes AT1c0 and AT2c0 along the paths
of docking. AT1c0 converged at the 61st iteration and AT2c0
converged at the 31st iteration
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In MD simulations, we find all bound complexes
undergo various degrees of conformation and orientation
adjustments. Figure 6 shows the RMSD of main chains of
the three most stable complexes during 5 ns MD simula-
tion, compared with the docked structures. These adjust-
Fig. 6 Time-series of RMSD of backbone heavy atoms of three stable
complexes over 5 ns of explicit solvent MD simulations, compared to
their docked structures. The fluctuations of SAP and AT10 are smaller
than those observed in monomer simulations (Fig. 3)
ments are comparable to those of the unbound monomers
(Fig. 3). However, the magnitudes of the variation of
RMSD are reduced significantly, both of the protein and
DNA, demonstrating less flexibility of the molecules in
complex. This phenomenon has been found in related
simulations [34].

Compared to the energies obtained by LMOD docking
procedure, the binding energies ΔGMM-PBSA calculated by
MM-PBSA method with trajectories from MD simulations
are significantly scaled down. Particularly, when configu-
ration entropy loses [18] are considered, most of the
complexes with ΔE in the range (−60.0, -45.0) in Tables 2
and 3 could not be regarded as favorably associated,
because the binding free energies of the complexes are
positive. As all binding modes discussed below involve the
direct contacts of the flexible loops of SAP with DNA, the
molecules in the bound state can only access a narrower
range of conformations than in the free state. It is common
in protein-ligand system that the configuration entropy
drops in complex and thus opposes binding [18]. Table 4
shows the results of MM-PBSA calculation for the
complexes with negative binding free energies. This
indicates the LMOD docking tends to overestimate binding
affinities, like many other docking programs [18].

From these favorably bound structures four binding
modes can be recognized (Fig. 7), among which modes I
and II are major groove association, while III and IV are
minor groove association. The assignment of these modes
is done on the basis of visual similarity at the binding
interfaces. In the following part of this section we discuss
their structural and energetic features and particularly the
differences caused by the sequence change of DNA.

a) Major groove interactions
Binding mode I has the most favorable binding free

energy, which is adopted by AT2b0 with a few orientation
changes from its starting conformation (Table 1). AT10 is
located at interface 1, with its helix axis nearly parallel to
La, major groove pointing to SAP, one end attached to
the end of Lb, and the other end interacting with Ha
(Fig. 7I). The overall electrostatic energy (ΔEelec+ΔGPB)
is −12.44 kcal mol-1, while the mean value of the van
der Waals and hydrophobic interaction energies
(ΔEvdw+ΔGSA) is −40.83 kcal mol-1. This seems
counter-intuitive since the electrostatic contribution
should dominate the binding thermodynamics for this
highly charged system. However, as has been ob-
served in other protein-DNA and DNA-drug systems,
there is an anti-correlation between the direct electro-
static component and the desolvation expense [35–
37]. This desolvation expense is caused by the repulse
of water molecules from the proximity of DNA by
protein-DNA association, as water is essential to



Table 4 Energy contributions
(kcal mol-1) to the free energy of
binding between SAP and DNA.
Calculated by MM-PBSA and
normal mode analysis methods.
Binding modes are assigned
based on visually overall
conformational similarity

Complex ΔEvdw ΔEelec ΔGPB ΔGSA ΔGMM-PBSA TΔS ΔG Binding mode

AT2b0 −34.90 −1395.81 1383.37 −5.93 −53.27 33.55 −19.72 I

AT1c0 −28.41 −1382.78 1366.82 −5.53 −49.90 30.49 −19.41 II

AT2c0 −37.44 −1397.68 1387.54 −6.47 −54.05 35.65 −18.40 II

AT2a2 −58.11 −1261.26 1276.09 −7.07 −50.35 34.05 −16.30 III

AT2a0 −33.92 −1407.85 1401.50 −5.32 −45.59 33.34 −12.25 III

AT1d0 −48.68 −1159.62 1175.42 −5.87 −38.76 36.77 −1.99 IV

GC1c0 −26.88 −1264.64 1251.22 −4.95 −45.25 33.20 −12.05 II

GC2a0 −32.08 −1355.06 1353.27 −5.64 −39.51 31.43 −8.08 IV

GC2b0 −17.34 −1264.87 1244.18 −4.26 −42.29 34.25 −8.04 II

GC1c2 −17.10 −1166.48 1151.88 −3.05 −34.76 28.66 −6.10 II

GC1d2 −39.01 −1302.89 1316.41 −5.33 −30.81 28.01 −2.80 III
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maintain the integrity of the highly charged DNA
double helix. Thus, the low contribution of overall
electrostatics to the binding energy is a general trend
in DNA-ligand binding systems [37]. Five positively
charged Lys residues 556, 570, 575, 595 and 596 of
SAP [13] maintain close contacts with the backbone of
DNA during the MD simulation, with energetic contri-
Fig. 7 Four binding modes of
SAP-DNA complex (final
snapshots of the 5 ns MD
simulations of AT2b0, AT1c0,
AT2a2, and AT1d0,
respectively). The residues of
SAP involved in electrostatic,
hydrogen bonding, and
hydrophobic interactions are
given in CPK form
butions −1.16, -4.40, -6.56, -7.89, and −7.95 kcal mol-1,
respectively. A hydrogen bond between Thr 572 and a
phosphate oxygen atom is also well maintained. The
residue Thr 572 contributes −2.52 kcal mol-1 to the
overall binding affinity.

No close contact between the base pairs and
amino acids is observed, and there is an apparent



Table 5 The average distance (Å) between the center of isobutyl
group of Leu 594 to the centers of methyl group of Thymine bases in
two stable complexes during the last 3 ns MD simulations. All
distances are in the range that favors van der Waals interaction

Complex CH3 of
Thy 4

CH3 of
Thy 5

CH3 of
Thy 14

CH3 of
Thy 15

AT1c0 4.73 7.05 6.48 4.99

AT2c0 4.87 6.82 6.89 5.11
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gap at the center of the SAP-AT10 interface. This
means the major van der Waals and hydrophobic
contributions come from the phosphate backbone
interaction. Therefore the binding affinity of this
mode should be non-sequence specific. It should be
mentioned that this mode has not been visited by a
stable SAP-GC10 complex. Constructing such a
complex manually and then testing its stability is
possible but has not been pursued in this study.

AT1c0 andAT2c0 share bindingmode II as discussed in
the previous section. Favorable electrostatic interactions
are implied between the four Lys residues 582, 591, 595,
596, and one Arg residue 586 with the phosphate
backbones from their persistent close contacts (Fig. 7II).
The total contributions of these five residues to the
binding affinities of these two systems are −31.10
and −35.01 kcal mol-1, respectively. A hydrogen
bond between Gln 597 and a phosphate oxygen atom
is also well maintained during the MD simulation.
This residue contributes −5.08 and −6.41 kcal mol-1,
respectively, to the binding affinities of the two
systems. These interactions are similar to those in
the binding mode Zhang et al. proposed [13].
However, in the modeled binding mode II, the
residues 582 and 586 in helix Hb are not involved in
groove interaction, but in phosphate backbone inter-
action. Furthermore, detailed analysis of the bound
structures of these two complexes also unravels some
subtle differences of the interactions. As AT2c0 starts
docking from interface 2 of SAP, the AT10 duplex is a
bit less stretched into interface 1 than in AT1c0, and
there is one obvious interaction between Lys 575 and the
end of AT10 backbone at interface 2, which is not present
in AT1c0. The contributions of this residue are −1.07 and
0.02 kcal mol-1, respectively, in the two systems. This
interaction as well as the location of AT10 duplex in
AT2c0 helps the AT10 duplex to secure more contact
area with SAP than in AT1c0. However, although AT2c0
has a higher binding energy ΔGMM-PBSA, it also has a
higher configuration entropy lose due to its tighter
association [18], therefore, its binding free energy is a
bit lower than AT1c0 (Table 4).

Interestingly, this mode is visited by three stable
complexes of SAP-GC10 with less favorable bind-
ing affinities (GC1c0, GC2b0, and GC1c2 in
Table 4). There are some subtle differences of
interaction and relative orientation among them, like
the two complexes discussed above. Comparing their
structures with SAP-AT10 complexes, the GC10
duplex in these complexes is not as flexible as its
counterpart AT10. This can be understood from the
facts that, in the two SAP-AT10 complexes, AT10 is
fully attached to the binding interfaces of SAP at both
ends, but in three SAP-GC10 complexes, only one end
of GC10 is closely attached while the other is not.
Obviously the interactions between the backbones of
GC10 and SAP basic residues are not as optimal as in
SAP-AT10.

In the above major groove associated stable
complexes, no strong interaction between amino
acids and base pairs exist, which are common in
other well-known protein-DNA binding motifs
(reviewed in [38]). However, we observe persistent
close contacts between some hydrophobic residues on
the surface of SAP and some base pairs with
hydrophobic sides (particularly, the four Thymine
bases in AT10). The Leu 594 with an isobutyl side
chain is among the few non-polar residues that are
located on the surface of SAP, i.e., making no
contribution to the integrity of the hydrophobic core
of SAP [13]. Table 5 lists the average distances of the
center of the side chain of Leu 594 to the methyl groups of
four Thymine bases in AT1c0 and AT2c0 during their last
3 ns MD simulations. The distances are in the range of
optimal van der Waals interaction, and the contributions
of this residue are −2.82 and −2.79 kcal mol-1, respec-
tively, in these two systems. Due to the rigidity of GC10
and the lack of hydrophobic bases like Thymine groups
in AT10, such interactions are absent in the three SAP-
GC10 complexes discussed above. This should be the
cause of the significantly lower contribution of van der
Waals force and hydrophobic interaction in these
complexes (Table 4).

b) Minor groove interactions
Mode III adopted by AT2a2 (Table 4) has a

comparably high binding affinity as the above discussed
modes, due to the favorable electrostatic association of
residues Lys 575, 595, 596, and Arg 586 with phosphate
backbone. They together contribute −23.18 kcal mol-1 to
the binding energy. The partners in this mode adopt a
similar orientation as in mode II, i.e., the DNA
molecules cover the positive potential patches at
interfaces 1 and 2. The non-polar contribution caused
by solvent accessible surface area deduction of this
complex is the largest among all stable structures, which
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is −7.07 kcal mol-1. This is mainly contributed by the
non-polar residues that are located on the surface of
SAP, including the above mentioned Leu 594. The other
two aliphatic groups, Val 578 and Pro 579, located at the
turn of La and Hb (Fig. 2), are deeply immersed into the
minor groove and maintain close contacts with the
hydrophobic bases at this side. These three non-polar
residues together contribute −11.83 kcal mol-1 to the
binding energy of AT2a2. The largest van der Waals
contribution to the binding affinity among these
structures, which is −58.11 kcal mol-1, is also related
to this close packing between SAP and AT10.
However, we found the overall electrostatic interac-
tion of this complex is +14.83 kcal mol-1, e.g.,
unfavorable to association.

AT2a0 has the same binding mode of AT2a2, but
the partners do not pack so closely as in AT2a2.
Particularly, there is no contact between the surface
hydrophobic groups and bases. Its electrostatic
interaction is −6.35 kcal mol-1, e.g., favorable to
association, and its van der Waals and hydrophobic
contributions are significantly reduced, compared to
AT2a2 (Table 4). In GC1d2, a SAP-GC10 complex
that bears this binding mode, the direct interaction
between SAP and DNA mainly comes from the basic
residues from interface 1, with only one such group (Lys
595) from interface 2. The Leu 594 is deeply immersed
into the minor groove, which is responsible for its
relatively high van der Waals and hydrophobic contribu-
tions (Table 4). This residue contributes −8.56 kcal mol-1

alone, based on the binding energy decomposition
analysis. However, the overall electrostatic interaction
of this complex is +13.52 kcal mol-1, which is
unfavorable to association.

Mode IV is similar to mode III in many ways. In
both of the complexes AT1d0 and GC2a0 charac-
terized as this mode, there are persistent contacts
between the basic residues and the DNA backbones; Lys
591 at SAP interface 1 interacts with one phosphate chain
while Lys 595 and 596 at interface 2 interact with the
other chain, and the aliphatic group Leu 594
between them is deeply sucked into the minor
groove. The groups of three charged residues
contribute −13.65 and −13.02 kcal mol-1, respectively,
to the total binding energies of these two systems, while
Leu 594 contributes −6.26 and −4.49 kcal mol-1,
respectively. The only difference between this mode
and mode III lies on the orientation by which the DNA
duplexes are packed on SAP; the helix axes of mode III
complexes are parallel to the direction of loop Lb while
in mode IV they are perpendicular to it. Like the
complexes of mode III, the van der Waals inter-
actions in these two complexes dominate their binding
affinity. The combined electrostatic contribution in
AT1d0 is +15.80 kcal mol-1 unfavorable to binding,
and in GC2a0 is −1.19 kcal mol-1, i.e., marginally
favorable.

All complexes of major groove binding have signif-
icantly favorable electrostatic contributions to binding,
while three out of five minor groove binding complexes
have unfavorable electrostatic interactions, and the other
two have very low favorable contributions (Table 4).
This might be related to the different hydration forms of
DNA in the major groove and minor groove. Ordered
water shell along the DNA minor groove, termed as the
spine of hydration, was reported for the d
(CGCGAATTCGCG)2 dodecamer [39]. This ordered
form definitely needs more energy to compensate the
desolvation, which has been discussed above. DNA
hydration is a well-discussed subject [40, 41], and,
interestingly, the molecular docking combining with MD
simulation and binding affinity calculation of this work
provides a consistent observation.

Biological implications

From this molecular modeling study on the stable com-
plexes of SAP-DNA, the shape of human Ku70-SAP seems
well designed to structurally associate with DNA in either
broken or intact configurations. Two positively charged
patches of residues, located at interface 1 and 2, respec-
tively, are separated by a hydrophobic patch (Val 578, Pro
579 and Leu 594) on the surface of SAP. Other conserved
hydrophobic residues of SAP are in the hydrophobic core
and are responsible for the integrity of its structure [13].
The two positively charged patches can either form
interactions with the two ends of DNA (AT10 and GC10),
as in binding mode II and III, or bind the two sugar-
phosphate backbones at the minor groove of DNA in
binding mode IV. In either case, the surface non-polar
residues, especially Leu 594, can form important van der
Waals and hydrophobic interactions with the base pairs.
These features can be observed in the SAP domains of
Ku70 from several other species [13]. In the Ku70 proteins
of hamster, mouse, Gallus, and Xenopus (Fig. 2A of Ref.
[13]), sequence alignment indicate the residues of two
positively charged patches on the surface of SAP domains,
corresponding to Lys 582, 591, 595, 596 and Arg 586 of
human Ku70 are well conserved, with some places of
interchanging Lys and Arg residues. The intermediate
hydrophobic patch on the surface can be observed in
hamster and mouse only, with Val 578 and Pro 579 of
human Ku70 conserved but Leu 594 replaced by Pro. In
Gallus and Xenupos Ku70, Val 578 of human Ku70 is
conserved in both species while Pro 579 is conserved only
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in Xenupos Ku70. Also at the position of Leu 594 of
human Ku70, two small residues, Gly and Ser are present,
respectively. It would be interesting to investigate how
these changes may affect their binding with DNA.

The SAP domain is also found in several other nucleic
acid-binding proteins and has been defined as a putative
DNA-binding motif [11, 13]. Among the SAP domains of
31 different animal, plant, and fungal proteins (Fig. 1 of
Ref. [11]), the structural pattern of two positively charged
patches of residues separated by a hydrophobic patch can
be observed in most cases. While the two positive charged
patches similar to the positions of human Ku70 are clearly
presented in call cases, 13 of them have a hydrophobic
residue like Leu 594 in human Ku70 immediately before
the second positively charged patch, and 28 of them have a
hydrophobic residue like Val 578 in human Ku70 at the
beginning of helix Hb (Fig. 1 of Ref. [11]). Based on our
modeling, this pattern of structure may form a favorable
association with DNA like modes II, III, and IV discussed
above.
Concluding remarks

In this study the utilization of a low-frequency vibration
mode driven molecular docking method combined with the
implicit solvent model helped us find several favorable
binding modes between the C-terminal DNA-binding
domain of Ku70 and DNA. This method demonstrates the
capability of building up the potential binding affinity
between macromolecules and transforming several distinct
starting conformations into one binding mode. In the
system used to validate the docking method, the best
docking solution achieved very good agreement with the
published X-ray crystal structure (Supplemental material).
Since the low-frequency vibrational modes represent large-
amplitude, concerted atomic movement, this approach does
not need to apply the extensive constraints on the
molecules, but provides very effective structural perturba-
tions to the systems to overcome energy barriers. It can be
used as a fast and reliable way to predict how protein and
DNA molecules may interact.

Chemical shift perturbation experiments previously
conducted for this system proposed a binding mode of
major groove interaction similar to mode II [13]. A
limitation of such a method is that the involvement of the
nucleotide could not be identified. In fact, all 11 complexes
of the four binding modes in Table 4 are consistent with the
published large chemical shift changes of SAP residues
[13]. It should be noted that for binding mode I, although
the residues Lys 570 and Thr 572 are not among the
residues list of large chemical shift changes [13], they are
close to the segment 573–577. The significant perturbation,
found in this region along with the end segment of Lb
involved positively charged residues 595–596 (Fig. 4. A in
[13]), is in agreement with the interaction of mode I of this
work. Compared to the protein-DNA interacting scenario
depicted experimentally, the theoretical approach of this
work provides more comprehensive information. It would
be interesting to conduct experiments to obtain a full
picture of such interactions, in which the functions of DNA
can be identified.

This computational study strongly supports the DNA-
binding capability of the SAP domain of Ku70. In addition,
it has been observed that, along with the two positively
charged patches on the surface of Ku70-SAP, the flexible
linker section from residue 536 to 560 also contains at least
two other positively charged patches of amino acids [13].
Along with the binding modes of SAP-DNA predicted in
this study, it is also interesting to verify experimentally
whether the SAP domain of Ku70 is the first functional
group that recognizes the broken double strand of DNA. If
so, this domain may function as an antenna to grab the free
end of DNA, and then, with the assistance from the
competitive bindings of different domains and modes, drag
it into the cradle of the Ku heterodimer. Our further
investigation will be conducted in this direction, in which
the full length of Ku70, and eventually Ku80, will be
considered, interacting with longer DNA duplexes.
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Abstract Density functional theory was utilized to
study the electronic properties of boron nitride (BN)
sheets, taking into account the presence of defects. The
structure considered consisted of a central hexagon
surrounded by alternating pentagons (three) and hepta-
gons (three). The isocoronene cluster model with an
armchair edge was used with three different chemical
compositions. In the first structure, three B–B bonds
were formed where one B in the dimer was part of the
central hexagon. In the second structure, three N–N–N
bonds were formed at the periphery of the cluster,
around the central hexagon. In the third structure, three
N–N bonds were formed in a similar fashion to the first
model. Our results indicated that the third structure was
the most stable configuration; this exhibited planar
geometry, semiconductor behavior, and ionic character.
To explore the effects of doping, we replaced B and N
atoms with C atoms, considering different atomic
positions in the central hexagon. When an N atom

was replaced with a C atom, the new structure was a
semiconductor, but when a B atom was replaced with a
C atom, the new structure was a semimetal. At the
same time, the polarity increased, inducing covalent
behavior. Replacing two N atoms with two C atoms
also resulted in a semiconductor, while replacing two B
atoms with two C atoms yielded a semimetal; in both
cases the bonding was covalent. When three B (three
N) atoms of the central hexagon were replaced with
three C atoms, the new structure exhibited a transition
to a conductor (remained a semiconductor) with low
polarity. When monovacancies (N) and divacancies (B
and N) were inserted into the lattice, the system was
transformed into a covalent semiconductor. Finally, the
electrostatic potential surface was calculated in order to
explore intermolecular properties such as the charge
distribution, which showed how the reactivity of the
boron nitride sheets was affected by doping and orbital
hybridization.

Keywords Boron nitride . DFT theory . Isocoronene .

Electrostatic potential

Introduction

Graphene and graphene-like 2D layers have attracted the
attention of scientists due to their suitability for applications
in the technology industry. Boron nitride hexagonal (h-
BN) sheets were prepared experimentally for the first
time in 2005 by Geim and collaborators [1]. Since then,
this material has led to the possibility of fabricating new
optoelectronic devices, as recently reported [2]. Even
though this material has been the subject of many
investigations, there are still no reports of any inves-
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tigations of lattice defects in h-BN sheets, performed in a
similar fashion to those done for graphene sheets [3]. In a
recent paper, Akcöltekin [4] performed theoretical and
experimental investigations of lattice defects of graphene.
These studies of defect engineering were performed using
ion irradiation (Fig. 1) [5], and the isocoronene cluster
model [6] (C24H12, Fig. 2a) was used to represent the d-BN
armchair edge [7].

In a recent paper, Chigo [8] used the armchair edge
circular model to investigate 2D carbon atomic structures,
taking into account the presence of N atoms as doping
atoms. Similar atomic configurations have been used to
study the atomic structures of GaAlN and GaInN alloys [9],
III-A nitrides [10], the adsorption of H2O onto 2D h-BN
[11], the doping of h-BN sheets with Li and F [12], the
adsorption of O3 onto h-BN sheets [13], the atomic
structure of silicon carbide (either pure or with defects)
[14], the effects of chemically modifying boron nitride

oxide sheets, and vacancies and nitrogen dopants in boron
nitride oxide.

Motivated by the work in [4], we investigated the
atomic structure of h-BN sheets, taking into account lattice
defects. The results of this investigation are summarized in
this paper. We considered the atomic structure of the
sheets to consist of a central hexagon surrounded by
alternating pentagons (three) and heptagons (three) with
three different chemical compositions, as depicted in
Fig. 2b–d. Configuration 1 had three B–B bonds;
configuration 2 had three N–N–N bonds at the periphery,
around the central hexagon; while configuration 3 had
three N–N bonds arranged in a similar fashion to
configuration 1. We also explored the electronic properties
of BN sheets as a function of the doping. To do this, we
replaced one to three of the B or N atoms of the central
hexagon with carbon (C) atoms. In addition, the effects of
mono- and divacancies on the stable structures were
studied. Finally, the chemical reactivities of the h-BN
sheets were analyzed in terms of their electrostatic
potential surfaces.

Computational methods

We performed first-principles total energy calculations to
study boron nitride sheets, accounting for vacancies and
doping effects, according to a procedure presented elsewhere
[8–14]. Our calculations were performed using density
functional theory (DFT) [15–19], as implemented in the
DMOL3 code [20]. The exchange and correlation energies
were treated according to the local density approximation
(LDA) with Perdew–Wang (PWC) [21] parametrization in
the all-electron formalism, assuming that spin effects were
unimportant for our system.

In the calculations, we used a double numeric polarized
(DNP) atomic base (this includes a p orbital of hydrogen
and d orbitals of carbon, boron, and nitrogen) for the core
[20, 22, 23], with multiplicity equal to 1 (singlet) and zero
charge (neutral) for the B12N12H12 cluster, which has a base
of 0.946 nm and a height of 0.98 nm (Fig. 2), in the
absence of any doping. In the next step, a doped structure
with a charge equal to zero and a multiplicity equal to 2
was considered, and the same conditions were applied to
investigate structures with mono- and divacancies. Similar
to the hexagonal boron nitride (h-BN) sheets, we apply the
local density approximation to these d-BN sheets, assuming
that spin does not affect their atomic and electronic
structure.

The cutoff orbital radius used in the calculations was
0.40 nm, the self-consistency tolerance was 1.0×10−6

Ha, and the relaxation procedure took the positive
vibration frequency criterion into account [24]. We

Fig. 1 Lattice model used to represent lattice defects in graphene. The
graphene structure can be fabricated by ion irradiation [4]

2176 J Mol Model (2012) 18:2175–2184



determined the most stable configurations, polarities
(dipole moments), binding energies, and energy gaps.
Energy gaps were calculated as the energy difference
between the HOMO and LUMO orbital energies. To
validate our structural model, we used a procedure
described in [25] for determining the cohesive energy for
the following models: naphthalene, pyrene, coronene, and
the cluster B27N27H18. The value of the cohesive energy
was 1.66 a.u./atom [26], assuming that size does not affect
electronic properties.

To elucidate the static charge distribution, we calculated
the electrostatic potential at van der Waals distances [27]. It
is well known that any distribution of electrical charge,
such as those of electrons or nuclei of molecules, creates an
electrical potential in the surrounding space. This may be
considered the potential of the molecule, which interacts
with a point electrical charge [28]. A variety of methods to

calculate the electrostatic potential are currently available in
the literature, which display different levels of accuracy. In
the present work, the molecules were investigated with the
hybrid functional B3LYP [29] and the 6-31+G(d,p) [30, 31]
basis using the GAUSSIAN03 [32] program. In the
calculations, the electrostatic potential surfaces of the rings
were generated by mapping the electrostatic potentials onto
isosurfaces of the molecular electron density between 0.02
and 0.04 a.u. and by color coding using the program
gOpenMol [33] to visualize the molecules.

Results and discussion

The isocoronene model of boron nitride sheets suggested
the possibility of generating lattice defects in the structure
with the formation of pentagons, hexagons, and heptagons.

                  ISOCORONENE          a) CONFIGURATION 1              b)

CONFIGURATION 2              c)  
      CONFIGURATION 3           

d)

Fig. 2 a Coronene isomer
(C24H12) model that was used to
represent graphene. b–d Initial
atomic geometries of the boron
nitride nanosheets

UNSTABLE UNSTABLE STABLE

Fig. 3 The relaxed atomic
geometries of boron nitride
nanosheets
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To carry out calculations, we applied the isocoronene
cluster model with the armchair edge to three different
chemical compositions. In the first model, three B–B bonds
were formed, where the B atom of the dimer was part of the
central hexagon. In the second model, three N–N–N bonds
were formed at the periphery, around the central hexagon.
The third model was similar to the first structure, but three
N–N bonds were formed instead.

Studies of vacancy effects indicated that model 3 was
the model with the lowest minimum energy (see Fig. 3),
so this was considered the ground state of the system. In
this stable configuration, the B–N bonds showed sp
hybridization, which is very similar to what is reported
in the literature [8, 13]. The system had no overall charge
and the multiplicity was 1 (within the LDA formalism,
with restricted spin). The structure exhibited a regular
geometry, in contrast to the irregular geometry of
graphene (as represented by isocoronene) at the C–C
bond; see Table 1.

Doping effects were investigated, as shown in Fig. 4a
and b. We replaced 4.16% of the B (N) by C, which led to
stable, planar, 2D structures. The sp orbital hybridization of
the C–N bonds alternated between sp and sp2 throughout
the entire lattice (Fig. 4a). Similarly, sp hybridization of the
B–C bonds alternates with the sp2 hybridization of the C–N
bonds (Fig. 4b). These results agree with those obtained for
CN structures with circular, rectangular, and triangular
[34] shapes.

Replacing two B or N atoms with two C atoms also
resulted in stable geometries, with sp2 hybridization
observed for the N–C bonds and sp hybridization for the
B–C bonds; see Fig.4c.

Additional studies of the effects of doping were performed.
We explored the structure obtained by replacing 25% of the
central hexagon’s atoms with C atoms, thus producing the
following chemical composition: B9C6N9H12. This system
had the geometry of model 3 (see Fig. 4c). After structural
relaxation, the B–N bond length was 1.39 Å (in the central
hexagon), which is somewhat different from the value of
1.44 Å obtained for the B–N bonds in the pentagons and
1.43 Å for those in the heptagons. These values are similar to
those observed for hexagonal BN sheets with no defects [8].
The B–N bonds display sp hybridization and the C–C bonds
show sp2 hybridization.

When two B (N) atoms in the central hexagon are
substituted by two C atoms, the structure behaves as
semiconductor (semimetal) with an energy gap of 0.82 eV
(0.45 eV) and a high polarity of 991.8×10−3 (1167.2×10−3) D.

Doping with three C atoms is represented in Fig. 4d.
Again, we replaced B and N atoms independently. After
relaxation, in the stable atomic configurations, two of the
three N–C bonds displayed sp2 hybridization, while and the
B–C bonds exhibited sp hybridization.

Monovacancies resulting from the absence of a B (N)
atom induced sp2 hybridization in B–N bonds inside
pentagons, hexagons, and heptagons (Fig. 4f). However,
divacancies (see Fig. 4e) led to a stable lattice structure with
two hexagons, one pentagon, one tetragon, and one
octagon, which presented bonding based on sp hybridization.
This is similar to what was observed in a graphene oxide
layer.

We determined the energy gap (3.42 eV) of the BN sheet
with no defects based on the energy difference between the
HOMO and LUMO orbitals. This energy gap indicates that
the structure behaves as a semiconductor with ionic
character, and has a dipole moment of 4.3×10−3 D. This
result is in accord with the experimental value for the
hexagonal BN sheet in the presence of vacancies [35]. In
contrast, replacing the B site of the central hexagon with a C
atom yielded a covalent atomic geometry of high polarity
(1060.9×10−3 D), similar to what has been reported for the
BN oxide sheet [36]. When the N atom was replaced instead,
the structure transformed from a semimetal (energy gap of
0.33 eV) into a semiconductor (energy gap of 1.97 eV).

Replacing the three B (N) atoms of the central hexagon with
three C atoms produced a stable conductor (semiconductor)
with ionic character.

The electrostatic potential V(r) of a molecule, based on
the static charge distributions of the nuclei and electrons
within it, can be analyzed to predict the reactivity of the
molecule [37]. If a molecule has an electron density ρ(r),
then its electrostatic potential at any point r is given by

V ðrÞ ¼
X

A

ZA
RA � rj j �

Z
r r0ð Þdr0
r0 � rj j ð1Þ

Here, ZA is the charge of nucleus A, located at r = RA.
This potential has proven to be a particularly useful
indicator of the sites or regions of a molecule to which an
approaching electrophile will be attracted. It has been
applied successfully to study interactions between reactants
and to recognition in biological systems (e.g., in enzyme–
substrate systems) [27, 37–39].

Using the approach described above, we characterized
the electrostatic potential surface of the boron nitride sheet
in terms of site-specific and global quantities. The
calculated electrostatic potential surfaces for different BN
models are presented in Figs. 5, 6, and 7. The electrostatic
potential surface for model C1 is displayed in Fig. 5, where
the positive (the red color represents boron atoms with an
isosurface of 0.04 a.u.) and negative (the blue color
represents nitrogen atoms with an isosurface of −0.02 a.u.)
charge densities are clearly separated, indicating that there is
no resonance effect. However, for model C2, as shown in
Fig. 5c, it is possible to find sp2 hybridization for the N–N–N
bonds with high electron density (these are represented by
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the blue color, with an isosurface of −0.02 a.u.). Model C3
also displays sp2 binding at the N–N bonds with the boron
appearing as an isolated atom; similar effects are seen in
carbon and boron/nitrogen [40, 41].

Similarly, we characterized the electrostatic potential
surfaces of the different d-BN sheet models, as presented in
Fig. 6. In the first model (see Fig. 6a), the atoms in the
central ring have been replaced with carbon atoms,
inducing distinctive charge distributions between the
carbon atoms and between the carbons and the adjacent
nitrogen atoms. The charge distribution due to the π
electrons that move around the central benzene molecule
is represented in a green color.

The model 1N by 1C (as presented in Fig. 6c), where
one N atom in the central ring has been replaced with a
carbon atom, shows similar electronegativities and hybrid-

C1 a) b)

c)C2 d)

e)C3 f)
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Fig. 5a–f Electrostatic potential surfaces for the three models C1, C2, and C3 (a, c, and e, respectively) used in the calculations. These represent
boron nitride sheets with lattice defects. b, d, and f show the structural formulae of the models

Fig. 4a–f Atomic geometries of the boron nitride sheets after
relaxation, taking into account carbon atom doping. Structures of the
stable configurations are shown. a A carbon atom replaces a boron atom,
b a carbon atom replaces a nitrogen atom, c doping of the central
hexagon with carbon atoms, d replacing two or three B and N atoms
with the equivalent number of C atoms, e initial and final geometries
obtained with B and N divacancies, and f initial and final geometries of
nanosheets with B and N monovacancies, respectively
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izations to model C3. The hybridizations of the carbon and
nitrogen atoms mean that C substitution barely changes the
electrostatic potential surface of the sheet. The same
behavior is observed when one B atom in the central ring is
replaced with a C atom; the conjugation expands to include
the nitrogen atoms adjacent to carbon, as depicted by the
isosurface of 0.03 a.u. (shown as a green color in Fig. 6e).

Figure 6g represents the 2B by 2C model, and shows the
charge distribution between the nitrogen and carbon atoms,
and how the boron atoms are left isolated with positive
charges. In contrast, in Fig. 6i, the charge distribution
surrounding the boron atoms is a consequence of the
environment. In the 2B by 2C and 2N by 2C models, the
N–N bonds in the former model and the C–N bonds of the

a)Monovacancy of B b)

c)Monovacancy of N d)

e)
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coordinate optimization, as well the corresponding structural formulae (b, d, and f, respectively)
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latter model support vibration modes that suggest resonant
models. The models presented in Fig. 6a and c include
boron and nitrogen monovacancies in their sheets, which
cause large-scale positive or negative charge distributions
around the absent atoms, as depicted in Fig. 7.

To complement our discussions, we have included the
structural formula of all of the models, which indicate the
positions of single and conjugated sp2 orbitals (see Figs. 5b,
d, and f, 6b, d, f, h, j, l, and n, and 7b, d, and f).

Conclusions

In this work, we have presented the results of defect
engineering studies of boron nitride sheets. We modeled the
systems as clusters of coronene isomers, consisting of a
hexagon surrounded by three pentagons and three hepta-
gons. Our molecular quantum mechanics studies showed
the possible structures formed (with an armchair edge). We
also demonstrated how the electronic (HOMO–LUMO gap)
and atomic structures of BN sheets can be modified.
Changing the polarity modifies mechanical properties such
as the chemical hardness. The electric conductivity is
modified by the presence of impurities at different concen-
trations (i.e., by replacing the boron or nitrogen atoms of
the central hexagon in the structure with one, two, three, or
six carbon atoms) as well as the presence of mono- and
divacancies (boron–nitrogen) in the lattice. Studying the
electrostatic potential surfaces of the different BN sheet
models highlighted changes in the charge distribution
caused by doping or lattice defects. Inspecting the iso-
surfaces elucidated sp2 hybridization-based bond formation.
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Abstract As a key component in combination therapy for
acquired immunodeficiency syndrome (AIDS), non-
nucleoside reverse transcriptase inhibitors (NNRTIs) have
been proven to be an essential way in stopping HIV-1
replication. In the present work, in silico studies were
conducted on a series of 119 NNRTIs, including 1-(2-
hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and
dihydroalkoxybenzyloxopyrimidine (DABO) derivatives by
using the comparative molecular field analysis (CoMFA),
comparative molecular similarity indices analysis (CoMSIA),
docking simulations and molecular dynamics (MD). The
statistical results of the optimal model, the ligand-based
CoMSIA one (Q2=0.48, Rncv

2 =0.847, Rpre
2=0.745) vali-

dates its satisfactory predictive capacity both internally and
externally. The contour maps, docking and MD results
correlate well with each other, drawing conclusions as
follows: 1) Compounds with bulky substituents in position-
6 of ring A, hydrophobic groups around position- 1, 2, 6 are
preferable to the biological activities; 2) Two hydrogen
bonds between RT inhibitor and the Tyr 318, Lys 101

residues, respectively, and a π-π bond between the inhibitor
and Trp 188 are formed and crucial to the orientation of the
active conformation of the molecules; 3) The binding pocket
is essentially hydrophobic, which are determined by residues
such as Trp 229, Tyr 318, Val 179, Tyr 188 and Val 108, and
hydrophobic substituents may bring an improvement to the
biological activity; 4) DABO and HEPT derivatives have
different structures but take a similar mechanism to inhibit
RT. The potency difference between two isomers in HEPTs
can be explained by the distinct locations of the 6-
naphthylmethyl substituent and the reasons are explained in
details. All these results could be employed to alter the
structural scaffold in order to develop new HIV-1 RT
inhibitors that have an improved biological property. To the
best of our knowledge, this is the first report on 3D-QSAR
modeling of this series of HEPT and DABO NNRTs. The
QSAR model and the information derived, we hope, will be
of great help in presenting clear guidelines and accurate
activity predictions for newly designed HIV-1 reverse
transcriptase (RT) inhibitor.

Keywords 3D-QSAR . DABO . Docking . HEPT. HIV-1
RT inhibitor . MD

Introduction

Despite the big progress in pharmaceutical and surgical
treatment, the acquired immunodeficiency syndrome (AIDS)
caused by the pandemic form of sexually transmitted human
immunodeficiency virus (HIV) is still one of the leading
causes of death worldwide [1]. Reverse transcriptase (RT)
plays a key role in the replication of HIV through changing
single-stranded genomic RNA into double-stranded proviral
DNA and thus becomes one of the main targets for the
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development of AIDS therapy and its inhibitors have
accordingly attracted much research interest [2–4].

We all know that there are two main, proximal but
different, active binding sites in HIV-1 RT, where one is the
nucleoside binding site (NBP), and the other is the non-
nucleoside binding pocket (NNBP) [5]. According to the
requirements of these sites, some highly specific RT
inhibitors are synthesized and used as nucleoside reverse
transcriptase inhibitors (NRTIs) in AIDS therapy, such as
zidovudine (AZT), disanoint (ddI) and zalcitabine (ddC)
[6]. Several structurally different and potent compounds
which are non-nucleoside reverse transcriptase inhibitors
(NNRTIs) of RT have also been identified. They involve
the tetrahydroimidazo[4,5,1-jk]-[1, 4]benzodiazpin-2(1H4)-
one (TIBO), 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)
thymine (HEPT), nevirapine, pyridinone, bis(heteroaryl)
piperazine (BHAP) and R-anilinophenylacetamide (R-
APA), etc. [7]. Since the day of synthesis, these NNRTIs
have attracted much research interest due to many advan-
tages they owned, including lower toxicity, more stable
chemical properties, slower metabolizing rate, as well as
their slower emit rate from the human body than NRTIs.
Actually, they interact with a specific allosteric site adjacent
to the polymerase site of the HIV-1 RT rather than bind to
cellular polymerases, which results in a non-competitive
mechanism [8, 9].

In spite of the fact that NNRTIs are well tolerated with
adverse effects occurring in the treatment of the first
6 weeks, the main limitation for all currently available
NNRTIs is the low genetic barrier to resistance [10]. The
popular anti-HIV drug policy is based on drug combination
regimens. Considering the different classes of anti-HIV
drugs currently available, i.e., NRTIs, nucleotide reverse
transcriptase inhibitors (NtRTIs), NNRTIs, protease inhib-
itors (PIs), fusion inhibitors (FIs), coreceptor inhibitors
(CRIs), and integrase inhibitors (INIs) [11, 12], the number
of possible multi-drug combinations is high. However, the
number of approved fixed-dose drug combinations is rather
limited [13]. To catch up with these strategies, it will be of
necessity to have in hand an arsenal of new compounds
with enhanced activities or less vulnerability to viral drug
resistance.

Computer simulation techniques potentially offer further
means to design more effective drugs which exhibit potent
activity toward drug-resistant strains of RT and explore the
inhibition mechanisms. The quantitative structure-activity
relationship (QSAR) [14] study has been one of the most
effective computational approaches in drug design. Up till
now, it has been successfully applied in many biological
and medicinal studies like the FIXa inhibitors [15], BAZ-
based DA D3 receptor antagonists [16], Aurora B inhibitors
[17] and so on. A unique advantage of 3D-QSAR modeling
is that it provides a direct way to explore and visualize the

structure–activity relationship of the molecules, among
which the comparative molecular field analysis (CoMFA)
[18] and the comparative molecular similarity indices
analysis (CoMSIA) [19] are the two most widely used
approaches. Understanding the interactions between pro-
teins and ligands is crucial for the rational design of novel
drugs with potent pharmaceutical or functional effects.
Thus when the experimental structure of an individual
receptor or the receptor-ligand complex is available
(usually obtained by X-ray crystallography or NMR),
computational algorithms including especially the docking
and molecular dynamics (MD) simulations are usually
applied to identify the possible binding modes of the
ligands at the active site.

Since the discovery of HEPT [20] as NNRTIs in 1989,
more than 30 different classes of NNRTIs have been
reported [21, 22]. Among them, dihydroalkoxybenzylox-
opyrimidines (DABOs) [23] represented a significant class
of NNRTIs which was developed in the last years. From the
point of the view in chemistry, DABOs belong to the 4-
pyrimidinone series like HEPTs. Due to the structural
similarities between them (as illustrated in Fig. 1), HEPTs
and DABOs, we assume, should obtain some similar
structural requirements for anti-HIV activity, which has
not yet been studied in detail up to now [24].

In the in silico research of HIV-1 inhibitors, the QSAR
analyses of HIV-1 reverse transcriptase inhibitors [25, 26],
HIV-1 protease inhibitors [27–29] and HIV-1 integrase
inhibitors [30, 31] have been reported before. Nevertheless,
the application of 3D-QSAR methodology for the design of
the above HEPT and DABO types of RT inhibitors has
received little attention. Thus, in the present work based on
119 HEPT and DABO derivatives, the largest dataset up-to-
date to the best of our knowledge, we attempt to set up
comprehensive 3D-QSAR studies with an aim to disclose
their structural features impacting their HIV-1 RT inhibitory

Fig. 1 Structures of HEPTs and DABOs (with X=S or N)
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activities, by using integrated computational methods
including 3D-QSAR, molecular docking simulations and
molecular dynamics. To the best of our knowledge, this
work is the first 3D-QSAR study for these two types of
compounds, which will provide a platform for the design of
novel HIV-1 RT inhibitors as important weapons in the
fight against HIV.

Materials and methods

Dataset

Discarding those molecules with no confirmed anti-HIV
activity, a total of 119 compounds (supporting Tables S1–
S9) exhibiting HIV-1 RT inhibitory activities with IC50

values in the range of 0.017-237.740 μM were used to
carry out the 3D-QSAR analysis (Table S10) [24–29]. Anti-
HIV activity of all these compounds was determined in the
same laboratory using the same procedures. All the anti-
HIV activities used in the present study were expressed as
pIC50=−lg IC50, where IC50 is the concentration required to
protect the cell against viral cytopathogenicity by 50% in
MT-4 cells [24]. All molecular studies were performed
using the molecular modeling package SYBYL 6.9 (Tripos
Associates, St. Louis, MO). Partial atomic charges were
calculated by the Gasteiger-Huckel method [30]. Energy
minimization was performed using tripos force field and
conjugate gradient method with convergence criterion set as
0.05 kcal mol-1 in this process.

3D-QSAR analysis

Training and test sets

All the compounds were grouped into a training set, for
model generation and a test set, for model validation,
containing 23 and 96 compounds (in approximately a ratio
of 1:4), respectively. Both the training and the test sets were
divided at random according to a representative range of
structural variations and biological activities.

CoMFA and CoMSIA analyses

CoMFA method is a widely-used 3D-QSAR technique to
correlate the biological activity of the compounds with their
steric and electrostatic fields, which are calculated by
putting the aligned molecules one by one, in a 3D regular
lattice (2Å spacing) extending at least 2Å beyond the
volumes of all investigated molecules on all axes. The van
der Waals potential and Coulombic terms representing
steric and electrostatic fields respectively, were calculated
by the standard Tripos force field method. The column-

filtering threshold value was set to 2.0 kcal mol-1 in order to
increase the signal-noise ratio. A Csp3 atom with a formal
charge of +1 and a van der Waals radius of 1.52Å served as
a probe atom to generate steric (Lennard-Jones potential)
and electrostatic (Coulombic potential) field energies,
which were obtained by summing the individual interaction
energies between each atom of the molecule and the probe
atom at every grid point [31]. A 30 kcal mol-1 energy cut-
off was used to avert infinity of energy values inside the
molecule [18, 32].

CoMSIA method calculates five descriptors, including
the steric, electrostatic and hydrophobic and the hydrogen
bond donor and hydrogen bond acceptor properties. The
similarity index descriptors were calculated by the same
lattice box employed for the CoMFA calculations and a
sp3 carbon as a probe atom with +1 charge, +1
hydrophobicity and +1 HB donor and +1 HB acceptor
properties [19, 33].

2D descriptor calculation and pre-processing

Presently, as a statistically satisfactory model could not
be obtained only using the 3D descriptors, 2D descriptors
are also employed to set up the model. The 2D descriptor
was chosen according to the following procedures. To
start with, the molecular structures of the inhibitors were
built with the ISIS/Draw 2.3 program, and converted into
the SMILES format to calculate the structural descriptors
by DRAGON professional version 5.4 which were
originally developed by the Milano Chemometrics and
QSAR Research Group [34]. Next, Dragon calculated 929
molecular descriptors for each molecule where some
descriptors were excluded by the following steps: 1)
descriptors containing larger than 85% zero values were
removed; 2) zero- and near zero- variance predictors were
deleted; 3) the descriptors that have absolute correlations
above 0.95 were omitted. After this, the number of original
descriptors was reduced to 775, and then the correlations
of these descriptors and the activity of the molecules were
calculated by C program, with an attempt to find the most
activity-relevant descriptor for further QSAR studies. As a
result, the spectral moment 06 from the edge adjency
matrix (ESpm06u), a kind of edge adjacency index, was
employed as the independent variable in further 3D-QSAR
analysis due to its highest correlation to the pIC50 values
with an R2 value of 0.166.

Partial least square analysis and model validation

The CoMFA and CoMSIA descriptors were taken as
independent variables and pIC50 values were used as
dependent variables to derive the 3D-QSAR in partial
least-squares (PLS) method, an extension of the multiple
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regression analysis. This method can reduce a lot of
original descriptors to a few principal components (PCs)
which is linearly correlated to the original descriptors.
Leave-one-out (LOO) cross-validation was also used to
evaluate the predictive ability of the models. The cross-
validated coefficient Q2 was calculated by Eq. 1 as
follows:

Q2 ¼ 1�
P

Y
Ypredicted � Yobserved
� �2

P

Y
Yobserved � Ymeanð Þ2 ð1Þ

where Ypredicted, Yobserved, and Ymean are predicted,
observed and mean values of the target property (IC50),

respectively.
P

Ypredicted � Yobserved
� �2

is the predictive
sum of squares (PRESS). The optimum number of compo-
nents was used to derive the final regressionmodels and it also
corresponds to the lowest PRESS value [35]. Besides Q2, the
corresponding PRESS, the conventional correlation coeffi-
cient (R2) and its standard error of estimate (SEE) were also
calculated. Finally, the CoMFA/CoMSIA results were
graphically represented by field contour maps, where the
coefficients were generated by the field type “Stdev*Coeff”.

Conformational sampling and alignment

The most crucial step for 3D-QSAR techniques is that the
3D structures of the molecules should be aligned based on a
conformational template in an appropriate way. The
template compound we chose was compound 19, owing
to it having the most potent activity in the dataset (which is
thus assumed to adopt a “bioactive conformation”) [36]. All
the compounds were fitted into the template by using the
“Database Align” routine available in SYBYL. Figure 2a
describes the common substructure for the alignment
marked in bold. Figure 2b shows the resulting ligand-
based alignment model.

Molecular docking studies

All compounds in the dataset were docked into the active
site of HIV-1 reverse transcriptase (PDB accession code:
1RT1) by using the Surflex docking of SYBYL package.
Our molecular docking operates as the steps below: 1)
the protein structure was imported into Surflex and
hydrogens were then added; 2) the protomol was
generated in a ligand-based approach; 3) all the inhib-
itors were docked in the binding pocket and each of
them got 50 possible active docking poses with different
scores; 4) the docking conformations were saved for
each compound, and were ranked on the basis of the
scores; 5) the best ranking pose for every compound
were extracted and aligned together for further QSAR
analysis. During the above docking process, all the other
parameters adopted default values [16].

Molecular dynamics simulations

The MD simulations were performed with GROMACS
software package [37] using the GROMOS96 force field
[38]. The molecular topology file for the ligand in protein
was produced by the program PRODRG 2.5 [39, 40]. The
simulation cell was a cubic periodic box whose size was
10.04Å *11.22Å* 12.55Å, and the minimum distance
between box walls and the protein was set to be larger
than 10Å. Eight chloride ions were placed randomly in the
box in order to neutralize the total charge. In the
simulation system, the number of all the atoms was
135470 including the protein complexes and waters. The
remaining box volume was filled by the simple point
charge (SPC) water [41]. Before the simulation, an energy
minimization was applied to the full system with no
constraints using the steepest descent integrator for 13000
steps, and then the system was equilibrated by a 200 ps
MD simulation at 300 K. Finally, a 5 ns simulation was

Ring A

Fig. 2 Molecular alignment of
compounds in the data set. (a)
Common substructure of the
molecules is shown in blue
based on template compound
19. (b) Ligand-based alignment
of all the compounds
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performed with a time step of 2 fs. During MD simulation
process, main calculation methods and the standard
parameters were set as listed: The model used normal
pressure and temperature (NPT) ensemble at 300 K with
periodic boundary conditions, the temperature remained
constant by the Berendsen thermostat, the values of the
isothermal compressibility were set to 4.5×10-5 bar-1

while the pressure was maintained at 1 bar using the
Parrinello-Rahman scheme [42], electrostatic interactions
were calculated using the particle mesh Ewald method
[43], cut-off distances for the calculation of Coulomb and
van der Waals interactions were 1.0 and 1.4 nm, respec-
tively. All the MD simulations lasted for 5 ns in order to
ensure that the whole systems were stable.

Results

CoMSIA analyses

In our research, both the ligand- and receptor- based 3D-
QSAR studies were carried out, resulting in series of
models. To evaluate the reliability of these models, all
crucial statistical parameters were analyzed, including the
Q2 (leave-one-out), non cross-validated correlation coeffi-
cient (Rncv

2), SEE, F-statistic values and predicted correla-
tion coefficient (Rpre

2). As a result, the most optimal and
robust one is the ligand-based CoMSIA model (Table 1)
which is superior to all the receptor-based models as well as
the ligand-based CoMFA ones, thus in the following parts
only this model is further analyzed.

In addition, after trying all free possible combinations of
the 3D field descriptors (i.e., the steric, electrostatic,
hydrophobic, H-bond donor, and acceptor fields in CoM-
SIA model, and the steric and electrostatic fields in
CoMFA) employed as the independent variables, the PLS
still cannot obtain statistically satisfactory results. Table 2
shows the optimal results of this attempt, which obviously
indicates the failure of using only 3D descriptors for the
establishment of the QSAR models. Thus, the aid of two-
dimensional descriptor is necessity. Presently, ESpm06u,
the spectral moment 06 2D parameter calculated from the
edge adjency matrix [44, 45] was used as an additional
parameter to build the models, ending up with a CoMSIA
model with satisfactory statistics as shown in Table 1. This
evidently demonstrates that with the help of ESpm06u
which has 3.8% relative contribution to the activity of the
inhibitors, the model experiences a modest improvement
from the model that lacks the 2D descriptor. The reason
might be due to that ESpm06u is a parameter related to the
molecular volume, which must have a close connection
with the property of the HIV-1 RT inhibition.

As seen from Table 1, the optimal ligand-based CoMSIA
model was built based on the employment of steric and
hydrophobic field descriptors. Statistically, it used seven
optimum numbers of components with an LOO cross-
validated Q2 of 0.480, SEE value of 0.334, and F value of
69.586 obtained, indicating its satisfactory internal predic-
tive capacity. Besides, its high Rncv

2 of 0.847 for the non-
cross-validation presented the self-consistency of the
model. While tested by the independent test set, this
CoMSIA model exhibited good predictive ability with
Rpre

2=0.745 and SEP=0.397. As to the relative contribu-
tion of descriptors, the contribution proportion of the
hydrophobic feature to the model (65.4%) is 34.6% larger
than that of the steric one (30.8%). Supporting Table S10
shows the experimental (pIC50Exp), calculated (pIC50Calc)

Table 2 Summary of CoMSIA and CoMFA results without ESpm06u
descriptor employed

PLS statistics CoMSIA CoMFA

Q2 0.352 0.349

Rncv
2 0.887 0.952

SEE 0.300 0.191

F 84.572 167.972

Rpre
2 0.952 0.716

SEP 0.1727 0.419

OPN 10 10

Contribution:

Steric 0.341 1

Hydrophobic 0.659 -

Table 1 Summary of CoMSIA and CoMFA results

PLS statistics CoMSIA CoMFA

Q2 0.480 0.339

Rncv
2 0.847 0.948

SEE 0.334 0.198

F 69.586 155.267

Rpre
2 0.745 0.737

SEP 0.397 0.403

OPN 7 10

Contribution:

Steric 0.308 0.989

Hydrophobic 0.654 -

ESpm06u 0.038 0.011

Q2 , cross-validated correlation coefficient after the leave-one-out
procedure; Rncv

2 , non-cross-validated correlation coefficient; SEE,
standard error of estimate; F, ratio of Rncv

2 explained to unexplained=
Rncv

2 /(1-Rncv
2 ); Rpre

2 , predicted correlation coefficient for the test set
of compounds; SEP, standard error of prediction; OPN, optimal
number of principal components
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and residual (pIC50Exp – pIC50Calc) potency values of the
optimal CoMSIA model for all training and test set
compounds. Figure 3 depicts the actual versus predicted
pIC50 values plot for both the training (filled blue diamond)
and test (filled black square) set molecules of the whole
dataset based on ligand-based CoMSIA model.

It should be noted that during the modeling process, an
initial inspection of the fitted/predicted activities identified
four molecules (38, 54, 64, 99) which are regarded as outliers
and then discarded in the model generation. The examination
of outliers may, sometimes, provide additional information
with the properties, and thus in the present study these
chemicals are checked carefully: i) in structure, compound 64
belongs to skeleton type E (supporting Table S5). However, it
exhibited the lowest potency with pIC50=−1.41 in this
skeleton type, a value much lower than the group’s average
activity of −0.32. Thus a different interaction mode from the
other RT inhibitors, we speculate, might be the reason
leading to its large, also the largest residual (pIC50,cal – pIC50,

exp) value among the whole dataset of −2.836. ii) Among all
chemicals with skeleton type C in the data set (supporting
Table S3), molecule 38 has the largest substituent, namely
dibutylamine at position 2. While in activity, compound 38
has the lowest experimental activity as well as the largest
experimental error value of 53.37 μM in the whole dataset. As
a matter of fact, this is a much larger error than others since the
error of other compounds in this skeleton only range from
0.00-14.06 μM. From the above analysis, we assume that it is
either this unique structure or the lesser experimental precision

which causes the molecule’s large prediction residual. iii) As
for compounds 54 and 99, they both have very high residuals
between the experimental and predicted activity (with pIC50

residual of −0.965 and 1.359, respectively) and thus are
treated as outliers. This discrepancy, we guess, on one side
implies that these particular compounds may not be typical
of the dataset that follows the general structure-activity rule,
and on the other side, indicates the necessity to incorporate
more accurate experimental data with more diversified
molecular structures to the dataset with a purpose to improve
the generalization ability of the 3D-QSAR models.

CoMSIA contour maps

One of the benefits about 3D-QSAR is that its results can be
visualized through contour maps, which are calculated as the
product of the field standard deviation (StDev) at each grid
point and the coefficient from the PLS analysis (StDev*-
Coeff), describing regions near the molecules where a
substituent, with a particular peculiarity (in these models,
steric and hydrophobic fields) is able to increase or to decrease
the biological potency. Thus, presently, the hydrophobic and
steric fields from the best CoMSIAmodel are also represented
as 3D colored contour maps in Fig. 4a and b, respectively,
using compound 19 shown as an example. The individual
contributions from the hydrophobic and steric fields are
65.4% and 30.8%, respectively, indicating that hydrophobic-
ity has a much greater impact on the peculiarity of the ligand
than steric property.
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Figure 4a depicts an overlay of the hydrophobic CoMSIA
field on the compound. Yellow contours encompass areas
where hydrophobic groups will enhance the biological
activity, while a hydrophobic group located near the white
regions will result in impaired biological activity. There are
yellow isopleths on position- 1, 2 which indicates that
hydrophobic groups (like -OMe, -OEt, -F, -Cl, -Br) are
beneficial to the activity. This is illustrated by the example
of compounds 21–23with PhCH2 at this position exhibiting a
much higher activity than compounds 9–12 with the
hydrophilic group HOCH2. There is another yellow contour
on position-6, so the conformation of the hydrophobic
groups in these inhibitors in this position of the central core
ring is favorable for interaction of the molecules with the RT.
This can be verified by the larger potency of compounds 10
and 13 than molecules 1 and 2. A big white plot appears
through the central core suggesting an increase in the activity
with the presence of hydrophilic group (like hydroxy or
amido) in this region.

In the CoMSIA steric field contour map in Fig. 4b, areas
where steric bulk substituents enhance or decrease the
potency are represented by green or yellow polyhedrons,
respectively. A green contour near position-6 of the
analogues implies that bulky substituents at this position
strengthen the activity. Thus, molecules carrying a bulky
substituent around the areas should be more active than those
with a smaller or without substituent, which is illustrated by
the fact that molecules 100 and 102 with a bulky substituent
of 1-naphthyl exhibited higher potency (with pIC50 values
of −0.5224 for compound 100 and 0.3468 for 102,
respectively) than compounds 103 and 104 (with pIC50

values of −0.5478 and −0.8274, respectively) with a phenyl
group in position-5. A yellow contour appearing above
position- 1 and 2 suggests that bulky substituents at this
position reduce the activity, which is proved by the fact that
compounds 35–38 have the substituent structures of Pr, i-Pr,

C6H11 and Bu in this position, respectively, which are
increasingly bulky in size, but the activities of them reduce
gradually.

Docking results

Once the crystallography presents, docking is an attractive
way to find the optimal orientation of the ligand in the
binding pocket of the pharmaceutical target protein/enzyme,
which cannot be completed only by QSAR studies. Thus,
presently, molecular docking was also carried out using the
crystal structure of HIV-1 RT (PDB ID: 1RT1) complexed
with MKC- 442 (resolution value is 2.55Å) obtained from
the Protein Data Bank, due to the reason that the original
ligand of MKC- 442 is very similar in structure to our dataset
molecules. In the present work, all 119 compounds in the
dataset were docked into the possible active site of HIV-1 RT
crystal structures, and the optimal conformations of the
molecules were determined, with the highest score of 7.65
obtained for template compound 19. All molecules in the
series were set well in the binding pocket demonstrating the
quality of the docking model. Diagram showing the
interactions of RT with inhibitor 19 is provided in Fig. 5.

As seen from this figure, obviously the binding pocket is
basically hydrophobic, which is made up of many acid
residues such as Tyr 188, Tyr 183, Tyr 181, Trp 229, Phe 227,
Val 179, Tyr 318 (Fig. 5a) and this observation correlates
well with our previous contour map (Fig. 4a). For example,
the two hydrophobic acid residues Trp 229 and Tyr 318 are
in conformity with the yellow contour on position- 1 and 2
which indicate the preference of the molecules for hydro-
phobic environment. In addition, the presence of hydropho-
bic Val 179, Tyr 188 and Val 108 satisfies the yellow
contour near position-6, and the existence of the hydrophilic
Pro 95 is in line with the hydrophilic favored white contour
above the ring, respectively.

Fig. 4 CoMSIA StDev*Coeff contour plots. (a) Hydrophobic contour
map (yellow/white) in combination with compound 19. Yellow
contours indicate regions where hydrophobic substituents enhance
activity; and white contours indicate regions where hydrophilic

substituents enhance activity; (b) Steric (green/yellow) contour map
in combination with compound 19. Green contours indicate regions
where bulky groups increase activity; while yellow contours indicate
regions where bulky groups decrease activity
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Hydrogen bonding plays an important role in determin-
ing a molecule's physiological or biochemical role, and
there is no exception in HIV-1 reverse transcriptase. We can
see from Fig. 5b that two hydrogen bonds have been
formed between the HIV-1 RT and ligand: 1) The backbone
-CO- in Lys 101 (hydrogen bonding donor) forms a
hydrogen bond with the -H atom in ring A with a distance
of 1.72Å. 2) The substituent on position-1 contains an
oxygen atom satisfying the requirement for a hydrogen
bond acceptor with Tyr 318, and thus forms a H-bond with
a distance of 3.52Å. The two H-bonds are vital, as they
respectively pin the skeleton ring and one ‘leg’, i.e., the
position-1 substituent in one side, of the molecules in the
binding site. Besides these H-bonds, another phenomenon
was also observed that the ring on the substituent on
position-1 is also engaged in a π-π interaction with Tyr 188
(1.97Å), which fastens another ‘leg’, i.e., the position-6
substituent on the other side, of the inhibitors. Thus, a
conclusion can be drawn that it is just the two hydrogen

bonds and the π-π interaction that act a role as three
anchors that fix the three-dimensional active orientation of
the ligand in the binding pocket.

In addition, as revealed from previous 3D-QSAR
analysis that steric interaction also contributes a lot to the
model, the steric requirements of the binding pocket for the
ligand is also analyzed and compared with the contour
maps as follows: 1) Green contours are found unoccupied
in Fig. 4b near the ligand site where any bulky substitution
is favored. The reason may be that the presence of a phenyl
ring will lead to a π-π interaction with Tyr 188, so a bulky
substitution like a phenyl group will be beneficial to the
increase in activity. 2) The presence of the yellow isopleths
on position-5 of ring A can be explained by the fact that
Gly 190 is only 2.10 Å away from the isopropyl group on
position-5 of ring A. So when this position is substituted by
any bulky molecule, it is obviously uneasy for the
substituted new molecule to enter into the binding pocket.
The yellow isopleths near position- 1 and 2 of the ring are
taken up by Phe 227 and Pro 225, Pro 236, therefore any
substituent bulkier than benzene is disfavored there. The
above results, once again, demonstrate the reliability of the
3D-QSAR model by the good agreement between the
docking results and the contour maps.

Molecular dynamics simulations

In order to take into account the protein flexibility
(which cannot be fulfilled by the molecular docking
process), the behavior of the docked complex is
researched in a dynamic context, i.e., the MD simula-
tion. Using the GROMOS96 force field, the MD
simulations were conducted by the GROMACS package
4.0.7. The molecular topology files were created by the
program PRODRG 2.5. We carried out 5 ns molecular
dynamics simulations of HIV-1 RT with ligand 19 on
the basis of the docked complex structure, so that a
dynamical picture of the conformational changes in the
HIV-1 RT binding site was taken. The RMSDs of the
trajectory in regard to the initial structure ranging from
0.200 to 0.500 nm are presented in Fig. 6a. As a result,
after 3000 ps the RMSD of the complex attains about
0.450 nm and almost remains this value for the whole
process. This clearly indicates metastable conformation
after 3000 ps of simulation for the docked complex
structure. Figure 6b depicts a superposition of the
average structure for the last 1 ns and the docked
structure, where ligand 19 is shown in green stick for
the initial complex and blue stick for the final average
complex, separately. Obviously, there is no significant
change between the docked model of the complex and
the average structure obtained from MD simulations,
which verifies the reasonability of the docking model.

Fig. 5 The binding site formed around compound 19. (a) Representative
interactions with the amino acids. The dashed lines show the formation
and distance of the hydrogen bonds. Active site amino acid residues are
represented as lines, the inhibitor is shown as stick model, respectively.
(b) The active site residues are represented as follows: polar residues in
green, hydrophobic residues in yellow. Green and orange arrows
indicate hydrogen bonding to side-chain and backbone atoms respec-
tively. A naphthyl icon represents a π-π stacking interaction. The dotted
contour reflects steric room for methyl substitution
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The only difference is that naphthylmethyl substituent
on position-6 of ring A in MD average structure has a
torsion angle from ligand 19. This might result from
the fact that the naphthylmethyl substituent on position-
6 of ring A has a π-π interaction with a ring of Tyr
188. After the optimization in MD simulations, the
naphthylmethyl substituent bends to the Tyr 188 in
order to obtain a more stable conformation. This good
superposition of the docking and MD conformations of
the ligand and protein proves another time that our
docked model is reliable.

Discussion

The reasonability of the docking pocket

To the best of our knowledge, up to date no research on
docking studies of the HEPT, DABO and HIV-1 reverse
transcriptase interactions has been reported, except for
Hopkins AL’s research in 1996 [8]. By docking three RT
inhibitors, i.e., the MKC-442, TNK-651 and HEPT, into the
HIV-1 NNBP, he observed the existence of many key
hydrophobic residues in the binding pocket such as Tyr181,
Tyr 188, Phe 227, and Trp 229, which is in good agreement
with our observations that the pocket is basically hydro-
phobic and the ligand interaction with the hydrophobic acid
residues is vital to their inhibitory activity. What is more,

one of the two H-bonds formed in our docking pocket, the
one between the Lys 101 and the ligand, was also observed
in Hopkins’ work, which verifies again the reliability of our
docking model.

Apart from the above consistent results, subtle difference
was also observed, i.e., the π-π interaction. Hopkins found a
π-π bond formed between the 6-benzyl ring in HEPTand Tyr
181, while in our work it is between the 6-naphthylmethyl
substituent of the inhibitor and Tyr 188. Two reasons may
account for this difference: 1) In his work, only three HEPT
molecules were docked while in ours all 119molecules which
belong to HEPT and DABO two types of RT inhibitors with
IC50 activity range of 0.017-237.740 μM were docked to the
binding site for analysis; 2) The compounds in our dataset
all have a naphthyl sub-structure on position-2, while in his
it is a benzyl ring on the same location.

Comparison between HEPT and DABO derivatives

The 119 compounds of our dataset include 73 HEPT and 46
DABO analogues. The reason we put these two derivatives
together to analyze is that both DABOs and HEPTs belong
to the 4-pyrimidinone series, and this structural similarity,
we assume, might bring them some similar interaction
mechanism in their anti-HIV activity. Just as expected, both
the contour map and docking pocket analysis reveal their
high similarity in the structural features impacting the RT
inhibitory activities. However, the slight difference in the

Fig. 6 MD simulation results.
(a) Plot of the RMSD of docked
complex versus the MD simula-
tion time in the MD-simulated
structures. (b) Structural super-
position of the MD simulation
and the initial structure for HIV-
1 RT. The projection highlights
the superimposed backbone
atoms of the average structure of
the last 1 ns of the MD simula-
tion (blue) and the initial struc-
ture (green) for compound 19
and HIV-1 RT complex
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structure also leads to a big difference in biological potency.
Firstly, the aldehyde group on position-2 in HEPTs brings
more benefits to the compounds than other bulkier
substituents on this position in DABOs on account of the
yellow isopleths in that position in the contour map
(Fig. 4b) that indicate that bulky substituents on position-
2 will impair the potency. Secondly, an oxygen atom in the
substituent on position-1 of HEPTs makes up a hydrogen
bond with Tyr 318, which helps to improve the biological
activity strongly by fixing the active conformation. There-
fore, this substituent in HEPTs is important in enhancing
the activity. In conclusion, these HEPT and DABO
derivatives are not exactly the same in structure, but they
interact with the HIV-1 RT in a similar mechanism.

Analysis of the two isomers of HEPTs

In structure, 16 6-naphthylmethyl substituted HEPT deriva-
tives in our dataset can be divided into two types of location
isomers, i.e., A- and B- isomers [46], which are structurally

similar but greatly different in terms of potency. That is to
say, all A-isomers exhibited higher pIC50 values than their
corresponding B-isomers. For instance, compounds 10 and
1, a pair of isomers, are similar in structures but very
different in potency (0.19 μM for A- and −1.66 μM for B-
isomers, respectively). Table 3 shows all the structures and
inhibitory activities of the HEPT isomers. This big differ-
ence, by docking analysis we assume, attributes directly to
the distinct binding conformations of the 6-naphthylmethyl
substituent. By analysis of the docking conformation of all
pairs of A-/B-isomers, four possible reasons leading to the
potency difference are found.

The first reason is due to one π-π bond formed between
the 6-naphthylmethyl substituent of the inhibitor and one
different amino acid residue of the protein (Tyr 188 for A-
isomer but Trp 229 for B-isomer, respectively). Out of the
eight pairs of isomers two pairs are such cases. Figure 7a
and b show the docking results of molecules 1 and 10, 5
and 17, the two pairs of isomers, and the π-π bonds formed
in the binding site, respectively. All A-isomers are shown in

Table 3 All HEPT isomers in the dataset†

† The 2-naphthyl ring (composed of rings I and II) highlighted in the dotted blue circles is the molecular region whose binding conformation
determines the different potency of A- and B- isomers as we discovered
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blue and B-isomers in yellow, respectively. If with no
specification in other figures (Figs. 8, 9, 10), the colors of
A- or B- isomers are the same meanings as depicted in
Fig. 7. Two specific acid residues, Tyr 188 and Trp 229, are
shown in red and orange skeletons, respectively. As shown
in this figure, for both pairs a π-π bond is formed between
the 6-naphthylmethyl substituent of the molecule and the
protein, which to some extent fastens the binding of the
ligand with the receptor. But the amino acid residue
constructing this π-π bond is different in that for A-
isomers, the bond is formed via Tyr 188 residue in the
binding pocket, but for B-isomers the bond is built via
another acid residue Trp 229. The different acid residues
employed by A- and B- isomers to form the π-π bond may
be the reason that leads to their distinct inhibitory activities.

The second reason may reside in the difference in the
number of π-π bonds formed between the 6-naphthylmethyl
substituent of the inhibitor and the acid residues of the
protein, i.e., one bond for A-isomers but two bonds for B-
ones. In fact, three pairs of A-/B-isomers (compounds 2 and
13, 4 and 16, 7 and 20) are such cases. Figure 8 shows the
docking results of these pairs and the π-π bonds (in blue
for A-isomer and in red dashed lines for B-isomer,
respectively) formed in the binding pocket, where Tyr
188 is shown in red. As seen from this figure, clearly for
all three pairs of isomers, the 6-naphthylmethyl substituent
in A-isomers establishes one π-π bond with the Tyr 188
(with distance of 3.2, 3.2, 2.2Å for A-isomer compounds
13, 16 and 20 respectively). While in corresponding B-
isomers, this substituent builds two π-π bonds via the same
residue (with distance of 5.1 and 4.2Å for compound 2, 5.1
and 4.4Å for compound 4, 2.7 and 2.5Å for compound 7,
respectively). Even though B-isomers form one more π-π
bond within the binding pocket, the average bond distance
of B-isomers are longer than those of A-isomers. Thus we
assume the stronger π-π interaction between A-isomers
and Tyr 188 residue in the binding pocket than
corresponding B-isomers may result in the better inhibitory
activity of A- than B- isomers.

Fig. 7 The docking results of two
pairs of isomers (compounds 1 and
10, 5 and 17) and the π-π bonds
formed in the binding site. Tyr 188
and Trp 229 are shown in red and
orange skeletons, respectively. All
A-isomers are shown in blue and
B-isomers in yellow, respectively.
(a) A-isomer compound 10 in
blue and corresponding B-isomer
compound 1 in yellow are shown.
(b) A-isomer compound 17 in
blue and corresponding B-isomer
compound 5 in yellow are
presented

Fig. 8 The docking results of three pairs of isomers (compounds 2 and
13, 4 and 16, 7 and 20) and the π-π bonds formed in the binding site. Tyr
188 is shown in red skeleton. All A-isomers are shown in blue and B-
isomers in yellow, respectively. The π-π bonds formed with A-isomers
are in blue, and with B-isomers red. (a) A-isomer compound 13 in blue
and corresponding B-isomer compound 2 in yellow are shown. (b) A-
isomer compound 16 in blue and corresponding B-isomer compound 4
in yellow are shown. (c) A-isomer compound 20 in blue and
corresponding B-isomer compound 7 in yellow are shown
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The greater potency of A- than B-isomers may also be
ascribed to the third reason that all A-isomers form π-π
bonds (between the 6-naphthylmethyl substituent and Tyr
188), but for some B-isomers no such interaction exists in
the active site. Two pairs of isomers, compounds 3 and 14,
8 and 22, are such cases as shown in Fig. 9, where Tyr 188
is depicted in red skeleton. As seen from Fig. 9a, the 6-
naphthylmethyl substituent in A-isomer compound 14 (in
blue) establishes a π-π bond with a distance of 1.8Å with
Tyr 188, which does not exist in corresponding B-isomer
compound 3 (in yellow) at all. Figure 9b is the same
situation where A-isomer compound 22 forms a 2.1Å π-π
bond with Tyr 188, but B-isomer compound 8 does not.
The intimate interactions caused by this π-π bond may
account for the improvement of the potency of A-isomers
compared with corresponding B-ones.

The last reason may lie in the different position that the
π-π bonds are formed at between A- and B- isomers. Since
many isomers in the dataset are under such conditions, only
one pair (compounds 6 and 21) is shown as an illustration
in Fig. 10, where the docking conformations and the π-π
bonds formed in the binding pocket of the molecules are
depicted. Tyr 188 is specifically shown in red skeleton. A-
isomer compound 21 is shown in blue and corresponding
B-isomer of compound 6 shown in yellow, respectively.
The π-π bond formed between the A-isomer and Tyr 188 is
shown in blue, and the bond formed between corresponding
B-isomer and Tyr 188 is in red, respectively. It is true that
all π-π bonds are created between Tyr 188 and the 6-
naphthylmethyl substituent of the molecule as described
above, but this substituent is still composed of two rings I
and II (as seen in Table 3). It seems that when the π-π bond
is formed between Tyr 188 and ring I, the potency of the
inhibitor is stronger. While when the bond is constructed
between the same acid residue and ring II, the inhibitory
activity decreases to some extent. Actually among all eight
pairs of A-/B-isomers we studied, A-isomers in six pairs

(compounds 10, 13, 14, 17, 20, 21) have ring I connected to
the Tyr 188 to form the π-π bond. However for B-isomers,
things are complicated such that they either: 1) form two
weak π-π bonds with Try 188 (with longer bond length) via
both rings I and II as described previously, which cannot be
compared with corresponding A-isomers, or 2) have no π-π
interaction with the residue, or 3) form only one π-π bond
with Try 188, in which case the bonds are found all built
via the ring II in the 6-naphthylmethyl substituent of the
molecules. B-isomers in three pairs (compounds 1, 5 and 6)
are the last cases. For example, as shown in Fig. 10, Tyr
188 has a π-π bond with ring I in the 6-naphthylmethyl
substituent of A-isomer compound 21, but with the ring II
of B-isomer molecule 6. Thus we assume that the ring I
connected π-π interaction may improve the potency of the
inhibitor more than the ring II connected π-π interaction.

More conclusions would be made, if more pairs of A-B-
isomers can be taken into the research. In a word, we believe
it is the above reasons that cause the higher inhibitory

Fig. 9 The docking results of two pairs of isomers (compounds 3 and
14, 8 and 22) and the π-π bond (only formed in A-isomers) in the
binding site. Tyr 188 is shown in red skeleton. All A-isomers are
shown in blue and B-isomers in yellow, respectively. (a) A-isomer

compound 14 in blue and corresponding B-isomer compound 3 in
yellow are shown. (b) A-isomer compound 22 in blue and
corresponding B-isomer compound 8 in yellow are presented

Fig. 10 The docking results of one pair of isomers (compounds 6 and
21) and the π-π bonds formed in the binding site. Tyr 188 is
specifically shown in red skeleton. A-isomer of compound 21 is
shown in blue and corresponding B-isomer of compound 6 in yellow,
respectively. The π-π bond formed between the A-isomer and the Tyr
188 is shown in blue. The π-π bond formed between corresponding
B-isomer and the Tyr 188 is in red
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activities of A- than B- isomers, and the protruding direction
of the naphthyl plane group is very crucial for the inhibitory
activities of the RT ligands.

Conclusions

In this paper, predictive 3D-QSAR models were built on 119
HEPT and DABO HIV-1 reverse transcriptase inhibitors. The
best prediction was developed by the ligand-based CoMSIA
model with an LOO cross-validated Q2 of 0.480, SEE value
of 0.334, and F value of 69.586, Rncv

2 of 0.847, Rpre
2 of

0.745 and SEP of 0.397, indicating its satisfactory predictive
capability. Furthermore, the docking, MD results and the 3D-
QSAR models correlated very well with each other, and the
key acid residues of the binding pocket are identified. Our
conclusions are: 1) The binding pocket of HEPT and DABO
inhibitors are essentially hydrophobic, and hydrophobic
substituents on position- 1, 2 and 6 are helpful for the potency.
2) Bulky groups in position-6 enhance, while in position- 1, 2
and 5 impair the activity. 3) Two hydrogen bonds are formed
between Tyr 318 and the O atom in 1-substituent (3.52Å), Lys
101 and the H atom in ring A (1.72Å) respectively, and a π-π
interaction is produced between Trp 188 and the ring on 1-
substituent. It is just these three interactions that stabilize the
ligand-RTcomplex, by acting as three anchors to fix the active
conformation of the ligand in the binding pocket. 4) Despite
the structural difference, DABO and HEPT derivatives
employed a similar interaction mechanism to RT. 5) For
HEPT derivatives, the activity difference between the two
isomers (A and B) may be directly due to the distinct locations
of the 6-naphthylmethyl substituent and the reasons are
specified. All these results could be employed to alter the
structural scaffold in order to develop new HIV-1 RT
inhibitors that have an improved biological property.
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Abstract Computational models of protein-protein dock-
ing that incorporate backbone flexibility can predict
perturbations of the backbone and side chains during
docking and produce protein interaction models with
atomic accuracy. Most previous models usually predefine
flexible regions by visually comparing the bound and
unbound structures. In this paper, we propose a general
method to automatically identify the flexible hinges for
domain assembly and the flexible loops for loop
refinement, in addition to predicting the corresponding
movements of the identified active residues. We conduct
experiments to evaluate performance of our approach on
two test sets. Comparison of results on test set I between
algorithms with and without prediction of flexible
regions demonstrate the superior recovery of energy
funnels in many target interactions using the new loop
refinement model. In addition, our decoys are superior

for each target. Indeed, the total number of satisfactory
models is almost double that of other programs. The
results on test set II docking tests produced by our
domain assembly method also show encouraging results.
Of the three targets examined, one exhibits energy funnel
and the best models of the other two targets all meet the
conditions of acceptable accuracy. Results demonstrate
that the automatic prediction of flexible backbone
regions can greatly improve the performance of protein-
protein docking models.

Keywords Protein-protein docking . Backbone flexibility .

Flexible hinge . Domain assembly

Introduction

Protein-protein interactions underlie intracellular signaling
cascades, the dynamic regulation of cellular structure, and
tissue organization. Complex protein-protein interaction
networks have been mapped in several organisms using
such methods as yeast two-hybrid [1] and mass spectrom-
etry [2]. In Protein Data Bank(PDB), however, only a small
fraction of these potential complexes has been characterized
by experimental techniques such as X-ray crystallography,
nuclear magnetic resonance(NMR) and electron microsco-
py [3]. This gap between the known and potential
interacting proteins can be bridged by computational
protein-protein docking models that generate one structural
model or the best structural candidate models selected
based on the structures of the individual proteins. The
challenges faced when modeling protein-protein interac-
tions include the accuracy of the binding site prediction, the
accuracy of the flexible region prediction, the choice of
effective sampling strategy, and the type of computational
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model. These choices constitute the greatest challenges for
theoretical computation of protein- protein docking.

Based on the thermodynamic hypothesis of Anfinsen [4],
native proteins always adopt lowest potential energies.
Therefore, protein-protein docking can be modeled as a
problem of minimizing the complex energy by sampling the
degrees of freedom of the different parts of the receptor and
ligand. Early methods treated the two docking partners as
rigid bodys [5, 6], while later methods [7, 8] allowed
flexibility only at the side chain. The performance of these
methods has been extensively evaluated using blind
structural predictions of more than 20 protein complexes
in the critical assessment of predicted interactions(CAPRI)
experiments [9–11]. For those test cases in which signifi-
cant backbone conformational changes are observed upon
formation of the complex, no current method is able to
consistently generate models close to the correct docking
conformation. For these hard CAPRI targets, the challenge
of accounting for backbone conformational changes
requires the incorporation of explicit backbone flexibility
predictions in the protein-protein docking model. Bastard et
al. [12] proposed the first docking method that incorporated
an ensemble of possible loop conformations by a multi-
copy representation using a reduced model with up to three
pseudo-atoms per amino acid. This model allowed for an
extensive exploration of all possible orientations of the
docking partners. The docking process starts from regularly
distributed positions and orientations of the ligand around
the whole receptor and each starting configuration is
submitted to energy minimization during which the best
fitting loop conformation is selected based on the mean-
filed theory. The docking results showed that introducing
loop flexibility on the isolated protein form during docking
largely improves the accuracy of the model prediction of
relative position of the partners in comparison with rigid
body docking. Schneidman-Duhovny et al. [13] used
software HingeProt [14] to automatically partition the
docked partners into rigid parts and hinge regions(a strategy
distinct from RosettaDock conducted by Wang et al. [15])
and proposed a method to assemble the flexible molecule
into new conformations with good shape complementar-
ity with the rigid molecule. Recent studies analyzing the
perturbations of the backbone at the time of docking
have employed RosettaDock, but the best positions to
allow protein backbone flexibility are still unclear. In
most cases, flexible regions are usually identified by
visually comparing the native proteins and the bound
complex [15].

The accuracy of these modeling results is a fundamental
test of our understanding of the energetics of macromolec-
ular interactions. Two classic types of backbone conforma-
tional changes [15] have been proposed, loop refinement
for local variable regions (Fig. 1a) and hinge motions for

domain assembly that allow domains to move relative to
one another (Fig. 1b).

In a previous modeling study, backbone conformational
changes at hinges and predefined flexible loops were
described, but no methods were given to identify them.
The flexible regions at the interface of the two docking
partners are often determined empirically. Accounting only
for these observed flexible regions limits the accuracy of
the model. The hinge definition used for this paper, a
segment of the polypeptide chain that can result in
significant movement of the domains on either side, is the
same as that in RosettaDock. A more accurate description is
that the two hinge-linked domains manifest the maximal
density of intradomain contacts and the minimal density of
interdomain contacts [16, 17]. Due to such distribution of
the residue-residue contacts, the forcefield of the polar and
hydrophobic sidechains has made the local perturbation of
the backbone movements (Fig. 1a) as well as the distinct
domain rearrangements during protein-protein interactions
(Fig. 1b). The target of this paper is to design an algorithm
as well as the corresponding prediction mechanism to
identify the flexible region that consists of the domain-
linked hinges and the flexible loops automatically to serve
for the protein-protein docking with backbone flexibility.

Results

In this section, we conduct experiments to evaluate the
performance of our method on two test sets. Test set I
consists of 25 test cases, which are taken from ref. [15].
We enforce the protocol of docking with loop minimization
on the flexible loops automatically identified by our method
with a backrub sampling protocol [18–20]. Our results are
then compared to those from ref. [15].

Test set II consists of three difficult CAPRI targets
selected by us: 1FAK, 1Y64 and 2I9B. The first two targets
are selected from the benchmark set of Chen et al. (2003)
[21] and target 2I9B is selected from the benchmark set of
Hwang et al. (2010) [22]. These three targets possess
distinct domain rearrangements during the formation of the
complex, and the hinge motions are very different. Thus,
only by identifying the flexible hinges accurately can we
obtain good docking models. We present our docking
results using the protocol of docking with domain assembly
by fragment insertion in the identified flexible hinges at the
low-resolution stage and using loop refinement with a
backrub sampling strategy [18–20] in the identified flexible
loops at the high-resolution stage.

As for metrics to evaluating performance of docking,
three measurements are widely used as standard evaluation
criteria; they are the fraction of native contacts (Fnat),
ligand Cα rmsd (Lrmsd), and interface Cα rmsd (Irmsd).
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Furthermore, a CAPRI-style measurement is used to
combine these three metrics to determine the prediction
accuracy of docking models [10], namely, high accuracy for
models with Fnat≥50% AND (Lrmsd≤1.0 Å OR Irmsd≤
1.0 Å) 1, medium accuracy for models with Fnat≥30%
AND (Lrmsd≤5.0 Å OR Irmsd≤2.0 Å), acceptable accu-
racy for models with Fnat≥10% AND (Lrmsd≤10.0 Å OR
Irmsd≤5.0 Å) and incorrect for models with Fnat<10%.
Also we count the numbers of models better than
acceptable accuracy among the top three ranking models
as another indicator for showing energy funnel of result
decoys.

Test set I results

Table 1 compares the results attained using the protocol of
docking with loop minimization on the identified flexible
loops with the results from Wang et al. [15].

The first two blocks are directly from Wang et al. [15]
for comparison. The third block is the quality of the best
model in the decoy set given the known native structure.
This third block is further expanded in a separate Table 2 in
order to fully investigate the performance of the decoys
generated by our method for each target.

The last two blocks in Table 1 list our results selected
from decoys by interface energy and combined energy
respectively (see Methods for detail).

As revealed in the third block of Table 1, the best
solution is superior for each comparison target, and the
total number of acceptable models is nearly double that of
the competitor. Table 2 presents the detailed results of
evaluation criteria from the decoys. In essence, these
results demonstrate that the quality of our predictions is
acceptable and superior to those of the competitor whether
energy funnels are achieved or not. For 60% of the targets
(Table 2, column Mc), more than 1% of the decoys meet
medium accuracy, with 9.4% of decoys reaching medium

accuracy for the best target. For 56% of the targets
(Table 2, column BLc), more than 1% of the decoys are
superior to the best value derived by the competitor. In
one case, 52% of decoys are superior to the best value
derived by the competitor.

It remains a challenge to choose the best conformation
without knowing the native structure of the protein. For this
reason, we also analyze the results based on the other two
selection criteria we developed (see Methods for the detail
descriptions about the two criteria). The results are listed in
the 4th and 5th block of Table 1, respectively.

Test set I results by interface energy

As revealed in the 4th block of Table 1, we obtain about the
same total number of energy funnels by interface energy as
in ref. [15]. It is worth noting, however, that for targets
1CSE, 1FSS, 1MAH, 1MLC, and 2KAI, our method
recovers energy funnels lost by ref. [15]. For each of these
five targets, the near-native models selected are closer to the
best solution than for the other targets, and the energy
funnel surrounding the native structure is more evident with
more models pushed into the funnel tip (Table 1). Similar
conclusions can also be drawn for target 2PTC and 2SIC,
possibly because the flexible loops identified reflect the true
situation during protein-protein docking or because the
sampling strategy employed can handle the degrees of
freedom introduced by these flexible loops.

The selected results could be further improved if using
better methods to select the best models from the decoys,
but this is still a challenging problem. Targets like
1GLA, 1TGS, and 2PCC that lost energy funnels in this
paper still have many good models that meet medium
accuracy, demonstrating the accuracy of the identified
flexible loops in protein-protein docking. Other results
indicated that selection criteria based on the interface
energy are too simple, however. For targets 1DQJ,
1WQ1, and 1ACB, there are no models that reach
medium accuracy, mainly due to the inaccurate identifi-

Fig. 1 Two classic types of
backbone conformational
changes in protein- protein dock-
ing. (a) Superimposition of the
unbound ligand 1ACB and the
native complex. The red segment
in the blue ellipse has been
marked for the flexible loop. (b)
Superimposition of the unbound
receptor 1IRA and the native
complex. The red segment in the
blue ellipse has been marked for
the flexible hinge. The native
complex is shown in green and
the unbound partner in red

1 The parentheses operator is prior to AND operator
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cation of the flexible loops and inefficiency of the
employed sampling strategy (see Discussion).

Test set I results by combined energy

Compared to either the results from ref. [15] or the results
selected by interface energy using our model, there is a
significant improvement using combined energy. In total,
16 targets show energy funnels, 12% higher than the ratio
attained by interface energy(52%). Those targets that show
energy funnels selected by interface energy also show
energy funnels selected by combined energy. For targets
1CSE, 1FSS, 1MAH, 1MLC, and 2KAI, the values of the
best Lrmsd and the best Irmsd of the top three models (the

values of BL and BI in Table 1) are slightly better than
those selected by interface energy. The three new targets
1DFJ, 1TGS, and 2PCC that show energy funnels demon-
strate the superior performance of our generated decoys.
Moreover, target 2PCC recovers the energy funnel lost in
ref. [15], whether selected by the interface energy or by the
binding energy.

Compared to these selected models, however, the values
of the best Lrmsd of the top three models (the values of BL
in Table 1) are very poor for targets 1BVK, 1DQJ, 1WEJ,
1AVZ, and 1MDA in ref. [15]. Using our program, the
values of the best Fnat and the best Irmsd of the top three
models (the values of BC and BI in Table 1) of the first
three targets all meet acceptable accuracy and they are also
comparably better than the results from ref. [15]. These five
targets have the common feature that the ratio of Mc
(Table 2) is comparably lower than the Mc ratio of the
targets that show energy funnels (targets 1AVZ and 1WEJ
for examples). Better models would be expected if a better
selection scheme is used. These five targets highlight the
fact that good model selection depends mainly on the
quality of the decoy set generated.

Test set II results

Table 3 presents the detailed results for targets 1FAK,
1Y64, and 2I9B using the protocol of docking with domain
assembly.

Results are divided into four blocks. The first block
describes the flexible hinge and the segment identified by
our approach in the corresponding chain of the docking
partner. The second block gives the quality of the best
model in the decoy set, and the last two blocks are our
results selected with which using interface energy and
combined energy respectively.

Results of target 1FAK

For target 1FAK, we capture the correct flexible area that
causes the rearrangements of the two hinge-linked domains
during protein-protein interactions. The best model in the
decoy set has an Irmsd of 3.53 Å and an Lrmsd of 2.89 Å
with respect to the native complex. Both the models
selected by interface energy and combined energy show
energy funnels and all the other performance criteria are
acceptable (the 3rd and 4th blocks in Table 3).

Results of target 1Y64

For target 1Y64, we only capture the subsegment of the
right flexible area that causes the domain motions during
protein-protein interactions. Though the best model in the
decoy set has an Irmsd of 4.15 Å with respect to the native

Table 2 Detail performance of decoys on test set I

PDB Rca Lcb Mc(%)c BLc(%)d BCce BIcf

1CSE 1 1 52(5.2) 59(5.9) 167 83

1FSS 1 1 22(2.2) 58(5.8) 94 17

1MAH 1 1 8(0.8) 11(1.1) 9 0

1MLC 2 1 3(0.3) 13(1.3) 15 11

2KAI 2 1 47(4.7) 520(52) 362 437

2PTC 1 1 94(9.4) 45(4.5) 74 2

2SIC 1 1 51(5.1) 24(2.4) 66 0

1BRC 1 1 34(3.09) 6(0.55) 10 0

1AVW 1 1 45(4.5) 7(0.7) 23 0

1BRS 1 1 12(1) 2(0.17) 0 0

1CHO 1 1 126(4.34) 0(0) 55 0

1UGH 1 1 13(1.12) 2(0.18) 5 0

2SNI 1 1 32(2.9) 20(1.82) 3 0

1GLA 1 1 95(6.33) 14(0.93) 30 0

1TGS 1 1 99(3) 9(0.27) 52 0

2PCC 1 1 32(1.6) 48(2.4) 162 74

1WEJ 2 1 11(1) 19(1.73) 59 4

1AVZ 1 1 9(0.9) 453(45.3) 99 579

1MDA 1 1 6(0.6) 228(22.8) 303 380

1DFJ 1 1 5(0.46) 2(0.18) 2 0

1AHW 2 1 17(0.21) 62(0.78) 15 0

1BVK 2 1 2(0.2) 43(4.3) 436 229

1DQJ 1 1 0(0) 295(29.5) 421 595

1WQ1 1 1 0(0) 2(0.2) 0 0

1ACB 1 1 0(0) 0(0) 0 0

a Rc: the polypeptide chain number of the docking receptor. b Lc: the
polypep- tide chain number of the docking ligand. cMc: the number of
the decoys that meets medium accuracy(shown energy funnel). d BLc,
e BCc, and f BIc: the model numbers from the decoys which are
superior to the best value selected by the interface energy and binding
energy from the corresponding targets in ref. [15], respectively. For
ease of comparison, c Mc and d BLc also give the percentage
calculated by Mc and BLc over the decoy size (listed in the third
block, Table 1) of the corresponding target in the brackets,
respectively
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complex (Fig. 2b), the quality of the results selected by
either interface energy or combined energy (row 1Y64,
Table 3) is below the medium accuracy, and therefore is
unacceptable. Studying why this happens reveals that it is
caused by the inaccurate identification of the complete
flexible regions. We re-identify the flexible regions by
manually specifying the right flexible hinge, and repeat
1Y64 experiment. We name this new experiment 1Y641 in
Table 3. Although the models selected in 1Y641 do not
show energy funnel either, the best model in the decoy set
has an Irmsd of 1.84 Å as well as an Lrmsd of 4.45 Å
(Fig. 2a, row 1Y641, Table 3). The quality of the generated
decoys indicates the great importance of accurately identi-
fying the flexible hinge in protein-protein docking with
domain assembly.

Results of target 2I9B

The results for this test case demonstrate the superior
performance of the scheme proposed to identify the flexible
regions in protein-protein docking (Fig. 3).

The results also indicate that the flexible loops greatly
impact the formation of the complex during domain assembly.
Similar to the simulation of 1FAK, our model capture the
correct flexible area that causes the domain motions during
protein-protein interactions. The motions in the flexible loops
at the high-resolution stage, however, do not simulate the true
situation of the backbone flexibilities, especially for those
targets with many long flexible loops (see Discussion).

We have provided highly accurate identification of the
flexible loops. To further test the accuracy of our model, we
have implemented two other experiments to test the
performance of our identified flexible hinges.

First, we employ the bound receptor where flexible loops
are densely distributed and the unbound ligand for
experiment 2I9B1. The quality of the decoy set and the
models selected (row 2I9B1, Table 3) are better than those
from experiment 2I9B. The number of good models is
rather small (data not shown) because the three-dimensional
structure of the backbone of the identified flexible loop [1,
7:CDCLNGG] in the chain of the unbound ligand biases
the sampling of the conformational degrees of freedom of

Table 3 Overall results on test set II

Unbound, HingeMotiona,
LoopMin, the best model

Unbound, HingeMotion,
LoopMin, interface energy

Unbound, HingeMotion, LoopMin,
combined energy

PDB hinge region hinge residues decoy Size BC BL BI N3 BC BL BI N3 BC BL BI

1FAK [447..477:L] CLPA…CEQYC 8×103 0.448 2.89 3.53 2 0.397 3.63 4.60 3 0.448 3.81 3.69

1Y64 [50..55:B] FAAREI 8×103 0.466 12.68 4.15 0 0.397 20.07 5.31 0 0.345 14.08 6.38

2I9B [23..32:A] CPKKFGGQHC 8×103 0.441 6.69 6.08 0 0.271 18.15 7.54 0 0.034 25.69 8.64

Total - - - 3 1 0 1 2 1 0 1 2 1 0

1Y641 [50..61:B] FAAREIKSLASK 8×103 0.655 4.45 1.84 0 0.466 25.40 4.44 0 0.379 14.64 3.32

2I9B1 [23..32:A] CPKKFGGQHC 8×103 0.576 7.49 2.45 0 0.237 11.36 4.58 0 0.237 11.36 4.58

2I9B2 [23..32:A] CPKKFGGQHC 8×103 0.746 6.16 2.20 0 0.542 8.30 2.57 0 0.610 8.85 2.20

a HingeMotion: our protocol of docking with domain assembly by fragment insertion in the identified flexible hinge at the low-resolution stage

Fig. 2 Docking with domain
assembly for target 1Y64. (a)
Superimposition of the native
complex (green) and the best
model (blue) generated with the
true flexible hinge based on
residues at the protein-protein
interface. (b) Superimposition of
the native complex (green) and
the best model (brown) generat-
ed with the identified flexible
hinge based on residues at the
protein-protein interface
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the flexible hinge for the atomic clashes formed within the
docking monomer (Fig. 3a, the blue ellipse has been
marked for the tendency of atomic clash). For experiment
2I9B2, we implement fragment insertion in the identified
flexible hinge and flexible loop [1, 7] at the low-resolution
stage and other identified flexible loops in the unbound
ligand for loop refinement at the high-resolution stage.
Although we do not attain energy funnel, the quality of the
generated decoys are relatively good (Fig. 3c, Table 3), and
the models selected are distinctly better than those from the
two above experiments (experiment 2I9B and 2I9B1).

Discussion

Protein molecules are dynamic and protein-protein inter-
actions are often accompanied by conformational changes
in both the backbone and the side chains of the two docking
partners. The flexible regions automatically identified by
this new program can accurately predict the local regions
on which the right perturbations are applied. Restricting
movement to defined regions greatly reduces complexity of
the search space. The comparison results on test set I
demonstrate the enhanced performance of this method for
identifying the flexible loops, while the docking results on
test set II demonstrate that the quality of the docking
models depended on the correct identification of the
flexible hinges and flexible loops as well as the correct
motions applied to corresponding flexible regions.

The backrub sampling protocol at the high-resolution
stage is not as successful for those targets that are sensitive
to the contacts at the interface area between the two
docking partners because the residues inside the flexible
loop rotate around the axis defined by the two boundary
residues, even if the correct flexible loops are identified.
For target 1ACB, better models would not be expected even
if more decoys are generated because the best value of the

fraction of the native contacts in the decoy set is smaller
than the predefined threshold 30% of medium accuracy.
This is due to the two flexible loops at the interface of the
two docking monomers that would form stable parallel β−
sheets in the complex (Fig. 1a). The backrub sampling
could not effectively locate the right positions of the two
flexible loops, causing poor repacking performance of the
rotamers in the interface area. Similar results are found for
targets 1DQJ and 1WQ1, but the mechanism is different for
the very different situation of the surface flexible loops. For
target 1WQ1, α−helies and β−strands are densely packed
at the interface area with short flexible loops that are far
from each other. Small perturbations in such flexible
regions are sensitive to the Irmsd (Table 1, the best model)
and the fraction of native contacts. For target 1DQJ,
however, although small perturbations in the identified
flexible loops are sensitive to the value of the Lrmsd
(Table 1, the best model), better models would be expected
if more models are generated.

In our current implementation, the identified flexible
loops are tackled in random order. The best perturbations
of the current flexible loops are only related to the
current environment with no influence on the sampling
of the other flexible loops. A new routine could be
employed to further improve the performance of the
sampling strategy by changing the current platform to
alow parallel execution. Different sampling strategies
could be combined with different object functions to
search the best near-native conformation.

The flexible regions that are focused on the loops of the
docking partners have inherent limitations and this has been
well proved in this paper, as exemplified by targets 2I9b
and 1Y64. For target 2I9B, the flexible loops include not
only those defined by the program, but may also include the
two parallel or anti-parallel β-sheets. For target 1Y64, the
known true flexible hinge segment [50, 61] identified
visually is composed of a segment with loop secondary

Fig. 3 Docking with domain
assembly for target 2I9B. (a) The
conformation of chain A of the
best model in experiment 2I9B1.
(b) Superimposition of the native
complex (green) and the un-
bound ligand 2I9B(red). The
receptor is not shown. (c) Super-
imposition of the native complex
(green) and the conformation of
chain A of the best model
(brown) in experiment 2I9B2.
The receptor is not shown. The
docking model with domain
assembly has impacted docking
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structure [50, 55] and a segment with a stable α-helix
secondary structure[56, 61]. The proposed scheme focuses
on the identification of loops, so only part of the hinge [50,
55] was identified. The above experiments demonstrate that
the flexible regions are of great importance during protein-
protein docking. Precise detection of these flexible regions
is necessary to accurately model protein-protein interactions
during docking. The scheme proposed in this paper to
identify the flexible regions may be too naive and simple
because the flexible regions are a reflection of the
combined effects of protein-protein interactions. Indeed,
for those test cases where the flexible regions are not
detected precisely, we only analyze the docking reaction
roughly and completely neglect the detailed atomic contacts
and the microenvironments of the group residue-residue
interactions. The limitations mentioned above could be
eliminated by machine learning algorithms that use the
docking partners and their native protein complexes based
on the published docking benchmarks to identify flexible
regions by detecting the binding modes of the flexible
residues and their environment. This technology has been
successfully applied to many hard problems by technically
eliminating noise interference and data sparseness in very
high dimensional space.

Methods

Our software is implemented based on Rosetta3.1 source code
(downloaded from the web site http://www.rosettacommons.
org/software/ upon license agreement).

Key residues in flexible regions

Some specific residues play critical role in flexible regions. In
our approach, four such residues are taken as the necessary
component of flexible regions. ASN, ASP, GLU, and GLN are
hydrophilic residues with similar polar side chains. Residues
ASN and GLN have the same terminal side chain structure
(H2N-Cγ=O and H2N- Cδ=O respectively), as do residues
ASP and GLU (O−-Cγ=O and O−-Cδ=O respectively).
Compared to other hydrophilic residues, the C=O bond
of the side chain of these polar residues plays a vital role
in backbone conformational changes during protein-
protein docking. These polar hydrophilic residues are
stabilized inside the core of the complex by hydrogen
bonds or salt bridges that deflect the dihedral angles of
these four active residues. When candidate flexible
regions are identified (see next subsections), we will
count the numbers of such key residues within the
candidate regions. Only when the counter is greater than
a threshold, can those regions be further considered as
flexible loops or hinges.

Identification of flexible loops

First, we perform DSSP [23] to identify the secondary
structures that partition the polypeptide chains into seg-
ments. The loop segments identified by DSSP are the first
initial candidates for the selection procedure. We then apply
biochemical constraints to reduce the number of initial
candidates. If the number of residues between the two
adjacent loops is smaller than four, the program merges the
two loops to a single loop with the number of residues not
larger than 30 [24]. If there are several such segments, it is
possible that these short consecutive segments form several
stable β-sheets and we take this into account to merge the
corresponding segments based on the disulfide bond with
one residue in the led segment and the other in the
subsequent segment. A single β-sheet could not form a
domain. To the contrary, a single α-helix can be regarded as
a domain when the linked hinge meets some specific
conditions. As for the derived candidate loops, the flexible
loop is determined by the number of active residues
proposed in Key residues in flexible regions, and the
threshold is predefined to be no smaller than two. That is, a
loop possessing no such active residue will have no
flexibility during protein-protein docking and we ignore
the flexibility of a loop that has only one such active
residue.

Identification of the flexible hinges

Residue contact network

Our approach takes the positions of the Cα atoms as the
nodes, and the connection between the two Cα atoms as
the edge [25]. If the distance between two Cα atoms is not
more than 5 Å, then the weight corresponding to the edge
is 1. Otherwise it is 0. Thus, the adjacent matrix [A] is
given by:

Aij ¼ 1; distanceði; jÞ � 5);
0; otherwise:

�
ð1Þ

Ki is the degree of node-i of its neighbors,

Ki ¼
XN

j¼1; j6¼i

Aij; ð2Þ

where N is the total number of the nodes. Let Ei be the edge
set connected by node-i. Then Ci defines the clustering
degree of node-i

Ci ¼ Eik k
2

� Ki; ð3Þ

where ||Ei|| denotes the element number of the set.
Obviously, a high value of Ki means that node-i has a
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large number of edges and is a degree center in the
network [26]. The number of the element in set Ei

describes the electron density around node-i, while Ci is
a measure of the local properties to characterize the
distribution of the atomic interactions with the larger
value of the hydrophobic core.

Residue contact environment

Whether the chosen segment is the true hinge and the
number of such segments are both uncertain. We must
extract the features that can be consistently applied to
cover the most likely situations [16, 27]. So the linchpin
of the extracted features is to explore the similarity of the
interdomain contacts to enlarge the ratio of formula(4).
Our approach modified conventional modeling by apply-
ing the summation of the average clustering degree of the
pair wise residues as the intradomain interactions while
using the summation of the degree of the centroid of the
pair wise residues as the interdomain interactions.

rði; jÞ ¼
P

i�1
k¼1

P
i
s¼kþ1Aks�Cks �

PN�1
m¼j

P
N
p¼mþ1Amp � Cmp

P
i
q¼1

P
N
t¼j Aqt � Kqt

� �2 ;

ð4Þ
where Cks ¼ Ck þ Csð Þ=2 relates to the average clustering

degree of node-k and node-s while Cmp corresponding to
the other, Kqt denotes the degree of the centroid of node-q
and node-t. Here the centroid is the nearest residue to the
center of node-q and node-t. These local properties, rather
than the simple count of the atomic interactions, and the
accumulation of such local properties could be interpreted as
the global properties for the non-polar hydrophobic residues
buried inside to form a comparatively steady structure.

Feature extraction

The candidate loops derived from the DSSP were parsed by
applying biochemistry constraints. First, a quaternion [i, j,
length, ρ] for each loop is constructed where i indicates the
start position of the residue and j the end position. The
length stands for the number of residues of the segment,
and ρ is the eigenvalue of the corresponding loop
calculated by formula(4). In cases where there are multiple
polypeptide chains, the procedure handles them one by one.
First, for each docking partner we sort the loop set based on
the eigenvalue in descending order and exclude those
segments with no interdomain interactions that would be
potential flexible hinges.

len ¼
P

M
k¼1 lengthk

M
; ð5Þ

where len denotes the average length of the candidate loops
andM is the total number of the items in the candidate loop set.

def ¼ length2k � r2k
len

2 � rk � 1 � rk þ 1
� d; ð6Þ

Formula(6) is used to find the break loop in the sorted
loop set based on ρ in descending order such that the ratio
def is no less than the predefined threshold δ=5. If there is
only one such candidate, then it is regarded as a candidate
hinge without ambiguity; otherwise, further iterative pro-
cess is needed to identify the flexible hinges.

The iterative identification procedure can be described as
follows since protein domains are the steady compact
subunits in protein structures. In the first stage, as for the
candidate hinges, the two candidates are merged if they are
space adjacently with a number of linked residues smaller
than five. In the second stage, we update the candidate loop
set with the merged candidates and use the same method
and parameters described above to calculate its properties
with the same physical constraints described above. Finally,
the flexible hinges can be determined. First, there must be
at least one active residue(as proposed in Key residues in
flexible regions) in the flexible hinge area. Similar to the
strategy for candidate loops identification, the last step is to
parse the disulfide bonds with one residue inside the
flexible hinge area and the other out of this segment; if
detected, the flexible hinge area is extended to the parsed
residue to form the ultimate flexible hinge area.

Model selection

Model selection by interface energy is the same as that in
Wang et al. [15] except that the 25% lowest energy models
are ranked based on interface energy. For model selection
by combined energy, 50% of the models are first selected
based on the score of energy item interchain contact.
Secondly, these selected models are sorted based on the
interface energy of the lowest 15%. Thirdly, the derived
models are ranked based on the score of the energy function
that is used in the low-resolution stage to select the top ten
models. Finally, the best models with both lower total
energy and interface energy in the latter seven are selected
to exchange those in the set top three.

Acknowledgements Great thanks to the developers of Rosetta3.1.
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Abstract Sub-terahertz (THz) vibrational modes of the
protein thioredoxin in a water environment were simulated
using molecular dynamics (MD) in order to find the
conditions needed for simulation convergence, improve the
correlation between experimental and simulated absorption
frequencies, and ultimately enhance the predictive capabilities
of computational modeling. Thioredoxin from E. coli was
used as a model molecule for protocol development and
to optimize the simulation parameters. The empirically
parameterized software packages Amber 8 and 10 were used
in this work. Using atomic trajectories from the constant
energy and volume MD simulations, thioredoxin’s sub-THz
vibrational spectra and absorption coefficients were calculated
in a quasi-harmonic approximation. An optimal production run
length ∼100 ps was found, in agreement with experimental
data on thioredoxin relaxation dynamics. At the same time, a
new procedure was developed for averaging correlation
matrices of atomic coordinates in MD simulations. In
particular, the open source package ptraj was edited to improve
a matrix-analyzing function. Averaging only six matrices gave
much more consistent results, with absorption peak intensities
exceeding those from the individual spectra and a rather good
correlation between simulated vibrational frequencies and
experimental data.

Keywords THz absorption . Vibrational modes .

Thioredoxin . Convergence .Molecular dynamics

Introduction

Terahertz (THz) vibrational spectroscopy is an emerging
technique for characterizing biomolecules and species.
Radiation in the THz range interacts with low-frequency
internal molecular motions involving weak hydrogen bonds
and nonbonded interactions between different functional
groups by exciting these motions [1, 2]. The resonant
frequencies of such motions usually occur below 300 cm−1

(or 9 THz). THz vibrational spectroscopy highlights these
motions as resonance peaks in transmission (absorption)
spectra at specific frequencies. The spectroscopic patterns
of different biological molecules or bacterial cells are
unique and can be used as their fingerprints. The ability
to directly detect the low-frequency vibrations of the
weakest bonds between groups of atoms is quite different
from visible or IR spectroscopic characterization, which
mainly probes the stronger bonds between neighboring
atoms. At the same time, this technique does not damage
living species [3].

The spectral range below 1 THz is the most attractive for
practical applications mainly because of the relatively low-
level disturbance from liquid water (2.5 orders of magnitude
less absorption compared to the far IR) and water vapor
absorption. Thus, sensors do not require evacuation or purging
with nitrogen. The spectra in the sub-THz range are rich with
resonance features with a spectral line width of ∼0.5 cm−1 [4,
5], which is determined by the energy relaxation time for the
low-frequency motions∼7×10−11 s [5]. This estimate, which
is based on a comparison between experimental and
modeling results, predicts that good spectral resolution is
important for observing vibrational modes.

Due to the relatively low absorption of biomaterials in
the sub-THz range, genetic material (DNA and RNA),
proteins, and other molecules can all contribute to the THz
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signature of bacterial cells/spores [6, 7]. At the same time,
the utilization of the sub-THz spectroscopic technique to
identify biological macromolecules and cells requires a
robust theoretical model to better understand the physical
motions associated with the sub-THz absorption features.
This understanding can be achieved by improving the
predictive capabilities of computational modeling.

In this study, the protein thioredoxin from Escherichia coli
is used as a model molecule to simulate sub-THz vibrational
absorption using the software packages Amber 8 [8] and 10
[9]. Proteins contribute up to ∼50% of the dry weight of E.
coli, and thioredoxin comprises a quarter of that 50%, so
thioredoxin is thought to be a significant contributor to E. coli
THz absorption spectra. The molecular dynamics of proteins
are widely studied, but we do not know of any works on the
simulation of the low-frequency vibrational modes and the
absorption spectra of thioredoxin resulting from these
motions. We are interested most of all in the problem of
simulation convergence. In our earlier study, we compared
simulated and experimental sub-THz vibrational spectral
features from thioredoxin [10]. The results of 100 ps constant
temperature and pressure simulations were used to obtain
simulated spectra of thioredoxin. The experimental procedure
for the THz characterization of biological materials in water
was described in [11]. Spectra were measured with a Fourier
transform spectrometer and a cooled Si bolometer operating at
1.7 K. Some absorption features predicted by our earlier MD
simulations [10] agreed reasonably well with experimental
data when the default simulation parameters were used.
However, the calculated spectra were highly sensitive to the
parameter values, and reproducibility was poor. At that time,
there was no systematic analysis of the problem.

In our current work, we use a crystal structure of
thioredoxin that has been refined by the stereochemically
restrained least-squares procedure at 1.68Å resolution [12].
The molecular structure (pdb ID: 2TRX) is optimized using
molecular dynamic (MD) simulations at room temperature
and atmospheric pressure. The covalent bond and angle
energy, the proper and improper torsions, and the nonbonded
interactions, including the electrostatic and van der Waals
interactions, are taken into account using the AMBER 03
force field [13]. The effect of the liquid content inside the
bacterial cell is emulated explicitly through the use of TIP3P
water molecules [14]. The pre-equilibrated box of water
provided in Amber is used to build an initial set of atomic
coordinates for the system of water molecules and protein.
MD simulations with periodic boundary conditions are
performed to equilibrate the solvent and solute. Using atomic
trajectories from room-temperature MD simulations, the
oscillator strengths are calculated for each normal mode in a
quasi-harmonic approximation. Finally, absorption coefficient
spectra are calculated [5] for three different orientations of the
molecule with respect to the electric field polarization and

averaged. In these calculations, an oscillator dissipation
factor (or damping coefficient) γ =0.5 cm−1 is used, as
estimated from the spectral widths of resolved features in our
experiments performed using a Bruker FTS-66 spectrometer
with a spectral resolution of ∼0.3 cm−1. Due to possible
contributions from several different modes occurring at
frequencies that are close together, this spectral line width
gives us an upper limit of γ, which is reciprocal to the
vibration relaxation time or the timescale of internal
molecular motions, τ. Thus, the lowest limit for the timescale
of vibrational motions corresponding to the observed spectral
features in the sub-THz range is estimated as τ=1/(γc)∼
70 ps, where c is the velocity of light. This estimated
damping coefficient of 0.5 cm−1 is of the same order as γ=
1 cm−1, as found in [15–17] at higher frequencies (∼1 THz)
in experiments based on photomixing technology for high-
resolution spectroscopy in biosystems.

The length of the dissipation time is one important
problem concerning THz vibrational modes in biological
molecules. A number of studies of the problem have been
performed using MD simulation and the Langevin equation,
along with an analysis of inelastic neutron scattering [18, 19]
and other experimental techniques [20]. Nevertheless, the
entire mechanism that determines dissipation is still not
completely understood. The dissipation time can be sensitive
to various factors, including temperature [21], oscillation
frequency [18], and specific interactions between the
molecule and its water shell [22]. The estimates from
inelastic neutron scattering lead to very large broadening of
low-frequency motions. Possible reasons for the differences
between experiments and simulations have been discussed
in [23], in particular the much higher vibrational density
of states in simulations compared to neutron scattering
experiments. It is known from experiments that “proteins
exist in an ensemble of structures, described by an energy
landscape” [24], and that neutron scattering spectra result
from averaging over different protein conformations or sub-
strates. These motions, however, are quite different from
quasi-harmonic vibrational modes in THz, and especially in
the sub-THz spectral range, for both time and displacement
scales [21]. Weak THz vibrations associate with displace-
ments at distances on the order of only ∼0.1–1.0 Angstrom.
These oscillations can survive for a relatively long time,
since many slow relaxation processes that are important for
conformational changes are not involved.

The gamma factor can depend on frequency [18], and we
expect a lower value in our sub-THz range compared to the
higher frequency THz region. However, in our simulations,
we used the frequency-independent gamma factor as a first
try, and think that this is a reasonable approach since our
frequency range is rather narrow, from 10 to 25 cm−1.

MD simulations are usually used as the principal
theoretical method for studying protein dynamics [25].
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However, the accuracy of the simulation and the ability to
reproduce the experimental results relies on many different
factors during the simulation process. For nucleic acids, it was
demonstrated that the choice of force field is important [26].
Force fields developed by Amber are widely used and
refined [27], and they show good ability to reproduce many
properties of nucleic acids [28] and proteins. Also, the choice
of water environment has an effect on the accuracy of the
simulated results [29]. Perryman et al. [30] developed an
“automated reformatting protocol” and tested many sets of
simulation parameters to obtain reproducible results. At the
same time, the authors of [30, 31] hypothesize that only
certain mini-proteins and protein fragments can currently be
represented accurately by MD simulations.

The problem of poor simulation convergence has been
discussed in the works of many authors. The authors of [32]
state that “When repeated from slightly different but
equally plausible initial conditions, MD simulations of
protein equilibrium dynamics predict different values for
the same dynamic property of interest” [33–35]. The same
authors [32] state that the variations occur because of
insufficient sampling of protein’s conformational space, an
effect known as the “sampling problem” [34–38]. Most
pico-to-nanosecond simulations of proteins and nucleic
acids in water are considered to be not well equilibrated
in some way, and are thought to contain “rare events” [39–
41]. There are also those who still believe that the
simulation length is crucial to the convergence of results
[42, 43]. Nevertheless, even several 40 ns MD simulations
of HPr and T4 lysozyme failed to achieve convergence in
sampling [38]. Not only did these simulations fail to
provide a complete picture of the protein’s conformational
space, they also suggest that this goal will remain
unattainable in the foreseeable future.

When investigating the convergence problem [37], it was
noted that multiple picosecond simulations with different
initial conditions (in their case the velocities assigned) can
sample more of a protein’s conformational distribution than a
single nanosecond trajectory. The authors cite that a typical
trajectory samples (i.e., it is trapped) in a single, localized
region of conformational space with few possible transitions
between conformational regions. Extending the simulation
time makes it more probable that a transition to another
region of conformational space will occur, yet a single
trajectory is believed to be unlikely to be representative of
the full range of conformations that are thermally accessible
to the system. However, when using multiple trajectories,
each trajectory can sample a different phase space compared
to that sampled by any other trajectory. The authors base
these conclusions on vacuum simulations, but believe that
they are applicable to explicitly solvated samples, with
conformational transitions occurring more slowly in solvated
samples.

Thus, although a sufficiently long simulation length is
required to guarantee the stability of the system, there is no
general consensus on the factors that contribute to the
convergence of the simulation. Our previous simulations
were dependent on initial conditions, and this situation has
also been observed by Elofsson et al. when simulating
thioredoxin [33].

In this study, MD simulations of sub-terahertz (THz)
vibrational modes of the protein thioredoxin was conducted
in order to find the conditions needed for the simulation to
converge, improve the correlation between experimental and
simulated spectra, and ultimately enhance the predictive
capabilities of computational modeling.

We checked the consistency and accuracy of MD
simulations of the sub-THz vibrational modes by comparing
the results of simulations with different initial conditions,
protocols and parameters to the experimental results. It was
demonstrated that using the constant energy simulation
protocol (NVE) during the production run yields more
accurate results than the constant temperature regime (NPT)
for several reasons. Constant energy simulations that do not
involve frequent exchange with the external bath for
temperature regulation induce fewer disturbances into the
trajectories of atoms, and they prevent the transitions of
proteins into different conformations. At the same time, the
NVE protocol requires that more attention is paid to the choice
of starting energy in the production run. Better simulation
convergence and improved consistency between simulated
vibrational frequencies and experimental data were obtained
by using a new procedure for averaging correlation matrices
of atomic coordinates in MD simulations. We also found that
the optimal time to use when dividing the production run into
equal subintervals to calculate individual correlation matrices
is ∼100 ps. This result is in general agreement with relaxation
dynamics timescales for the thioredoxin active center, coupled
protein–water fluctuations [44, 45], and our experimental
data on the spectral width of vibrational modes [10].

Methods

Our modeling work focuses on complexes of thioredoxin
and water. Thioredoxin is a relatively small protein with
108 amino acid residues in a known sequence, which
allows for relatively quick serial simulations. With an 8 Å
water shell, this system of 12,154 atoms can still be
effectively simulated using Amber. However, Amber is
empirically parameterized to correctly represent the structural
behavior of nucleic acids and proteins, which would be
needed to predict non-bond-breaking conformational changes
[46]. It was not specifically created to simulate low-
frequency vibrational modes and THz absorption. Hence, it
is necessary to perform a systematic study of the default
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simulation parameters and protocols provided in Amber,
with the goal of achieving better simulation accuracy and
convergence. We have not investigated many parameters,
only several that are most relevant to the physics of low-
frequency vibrations and which may be important for
simulation convergence. In our study, we used the following
very general guiding principles:

1) The simulation protocol has to ensure the consistency
of spectra between different simulation subintervals
and between different simulations within one localized
region without conformational change

2) Within an optimal domain of a particular parameter, the
resulting vibrational frequencies and absorption spectra
should not be sensitive to the parameter’s exact value

Building on our previous work, the empirically param-
eterized molecular mechanics force field FF03 [13] and the
water model TIP3P [14] are used. Previously, we utilized
several other water models to analyze liquid water properties
at sub-THz frequencies [47]. While the specific choices of a
force field and a water model may have an effect on the
resulting absorption spectra, they are unlikely to influence
the convergence of results.

The experimental procedure used to measure the sub-THz
spectra of thioredoxin on a polycarbonate (PC) membrane
substrate has already been described in our papers [10, 11].
The only difference is that the spectrum of dry material,
which was included at that time in the averaged experimental
results, is eliminated in this work, and only the spectrum of
the material in a water solution is used. This is more relevant
to our MD simulation. At the same time, solvated biomaterial
presents much higher vibrational peak intensities than dry
samples, resulting in more reproducible and reliable spectral
features in experiments.

Preparation steps

The basic MD simulation procedure in Amber consists of
preparation and production run stages. In the preparation
stage, a PDB file containing information about thioredoxin’s
atomic coordinates and connectivity is used to generate a
topology file. The missing hydrogen atoms are added and the
molecule is solvated with an 8Å shell of TIP3P water. At this
stage, the water molecules have not felt the influence of the
solute and there are gaps between the solvent and solute, and
between the solvent and box edges. A 1000-point energy
minimization step is conducted using steepest descent
followed by conjugate gradient algorithms [46], while the
protein is held fixed in place by a force constant of
5 kcal mol−1Å−2. Next, the solvent and solute are relaxed
together for 2500 steps, which allows for the whole system
to reach a local potential energy minimum.

There are three different statistical ensembles available in
Amber: constant volume and temperature (NVT), constant
temperature and pressure (NPT), and constant volume and
energy (NVE). The NVT ensemble is used to raise the
temperature to 293 K by scaling the velocities of atoms using a
Langevin algorithm [48]. In this heating process, bonds
involving hydrogen are fixed. It takes ∼16 ps in our case,
and the protein atoms are restrained using a 10 kcal mol−1Å−2

force constant to ensure that the temperature is raised without
causing any drastic disturbances to the solute structure.
Constant pressure periodic boundary conditions with isotropic
position scaling are then used to scale the system volume
during 100 ps to reach a density of ∼1 g/cm3. The following
system properties are checked to ascertain the quality of the
equilibrium: total energy, temperature, and density. During
these steps, a 10Å real space cutoff is used with a 2 fs
integration time step. The parameters for particle mesh Ewald
charge grid spacing, pressure relaxation, etc. are left at their
default values.

Thus, the preparation procedure consists of several steps,
including a solvation step, followed by energy minimization
of the total system (thioredoxin and water molecules), heating
to room temperature, and density adjustment. Once the system
has attained experimental values of temperature and density,
theMD random velocities from theMaxwellian distribution at
room temperature are assigned to all atoms in the system
based on the seed given by the pseudo-random number
generator (ig), followed by another equilibration step (NPT
ensemble) for further energy minimization. In the NPT step,
the center of mass translation (COM) is periodically removed
every 1 ps. This measure prevents the molecule from leaving
the periodic box in the following long production run where
the COM velocity check is turned off.

Production simulation

During the production run, the microcanonical ensemble or
constant energy and volume protocol is used, since it
produces more consistent results compared to the NPT
ensemble, as will be shown in the “Results” section. The
molecule is allowed to move freely during this step without
temperature and pressure regulation, while the trajectories
of atoms are recorded for further derivation of vibrational
modes of the absorption spectrum.

It is our observation that the parameters used in the
production run are critical to the resulting absorption
spectra. The values of interest are the integration time
between two consecutive MD steps, the direct sum
tolerance, the charge grid spacing, the cutoff radius, and
the width of the nonbonded “skin.” Nevertheless, a search
for the optimal values of these parameters can be completed
only after improving the convergence. The values of the
abovementioned parameters during the production run are
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as follows: 1 fs integration time step, direct sum tolerance
of 10−6 [49, 50], SHAKE tolerance of 10−6 [51], charge
grid spacing ∼2Å, cutoff radius range of 10Å, and width of
the nonbonded skin of 2Å. The molecular trajectories are
saved every 0.05 ps, and production simulation lengths of
10–600 ps were used. It was difficult to choose the values
of certain parameters, so they are left at their default values.
The saved trajectories from the NVE production simulations
are then converted to the covariance matrix of atomic
displacements using the quasiharmonic analysis. Utilizing the
relation between the covariance matrix and the inverse of the
force-constant matrix [52, 53], it is possible to find the latter
matrix. The eigenvectors and eigenvalues (eigenfrequencies)
of the normal modes are then determined by diagonalizing
the force-constant matrix.

Absorption coefficients

The absorption coefficient α as the function of the
frequency ν can be approximately calculated through the
relationship between α and the imaginary part of the
dielectric permittivity [5, 54]:

a nð Þ ¼ gn2
X

k

Sk

n2 � n2k
� �2 þ g2n2

;

where νk are the normal mode frequencies calculated by
diagonalizing the force-constant matrix, and Sk are the
oscillator strengths computed for all vibrational modes k.
The oscillator strength calculated along each normal mode
k is proportional to the squared dipole moment variation.
The value of oscillator dissipation for all vibrational modes
in the sub-THz range is taken from our experimental work
[10] as γ=0.5 cm−1, which corresponds to a relaxation
dynamics timescale of∼70 ps.

Results

Several findings are presented in this work. We found that
using the NVE ensemble in a production run gives the most
stable results, and that the starting total energy of the
system (ETOT) at the beginning of the production run
significantly affects the results. Additionally, the length of
the production run and the method of averaging results
from the production run considerably influence the absorption
spectra obtained.

Total energy of the system in the NVE production
simulation

As described in the “Methods” section, after random velocities
are assigned to all atoms within the Maxwellian velocity

distribution, the resulting system is further equilibrated using
the NPT ensemble. In Fig. 1, the total energy during this NPT
step is plotted against time after initial velocities have been
assigned using three different random numbers. As can be
seen, there is initially a large jump in the total energy of the
system, followed by a slower decline. At the same time, we
found that, depending on the assigned velocities, the
equilibration times are variable. In Fig. 1, it takes about 5–
35 ps before the system energy reaches a common value of
around −28500 kcal mol−1. The total energy of the system
still continues to decline, but the fluctuations make it difficult
to determine the equilibration minimum. A typical picture of
total energy fluctuations (∼0.3%) in the NPT ensemble is
given in Fig. 2. The true value of ETOT corresponding to the
equilibration minimum is hidden within these fluctuations.
However, at this moment, we need to choose a value for the
total energy that will be constant in the following NVE
production run, as will be discussed below.

To start the production simulation, the first decision to be
made is to choose between NPT and NVE ensembles.
Production runs in the NPT ensemble using Berendsen
temperature regulation seemed promising, since the correlation
with the experimental spectra was not bad for some values of
the simulation parameters. However, the repeated removal of
molecular translation, the adjustment of volume, and the
changes in system temperature caused by coupling to a
surrounding bath seemed to lead to noise in the total energy
of the system, as shown in Figs. 1 and 2. In particular, we
found that the exchange of energy between the system and
the external thermostat disturbs the system and leads to poor
reproducibility of simulation results. For this reason, a
constant total energy protocol (NVE) that does not require
these corrections is more preferable. Hence, simulations with
constant energy were conducted for all of the production runs
presented in this work. Since a constant energy protocol does
not permit significant energy changes, the last value of the
energy during equilibration locks the energy of the system to
almost a single value during the production run. We observed
that simulation results in the NVE regime are very sensitive
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Fig. 1 Total energy in the NPT equilibration step as a function of
time after Maxwellian velocities are assigned using three different
random numbers
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to the value of the total energy of the system chosen at the end
of the NPT equilibration step. Vibrational spectra calculated
from production runs that started at points A, B, and C (Fig. 2)
give rather different results. The consequence of starting the
production run at a high energy level (point A) is shown
in Fig. 3. As can be seen, after a sufficiently long simulation
(> than 300 ps), some modes have become extremely intense.
There is a large spike at 21 cm−1 that reaches a maximum
absorption value of nearly 20 (arbitrary units) at 560 ps. We
suggest that such a peak is a consequence of the energy level
being far from the equilibrium value. The effect disappears if
the production run is performed at lower energy levels
(points C and B) that are closer to the minimum (Fig. 4). The
fluctuations make it difficult to determine the value of ETOT
that corresponds to the system’s equilibration state. In our
study, we tested different values of ETOT between points A
and B. The best correspondence to our experimental data and
better convergence are obtained for ETOT values within the
interval of ∼10 kcal mol−1 around level C, which is higher
than the most minimal energy observed at point B. Our

findings are consistent with other studies [55, 56], where
authors have shown that the energy of the modeled protein is
not always the minimum that corresponds to its native state
when a standard force field such as AMBER FF03 or FF99
is used.

Time of production simulation

Since the trajectories file from the production run contains
superposed oscillations/vibrational modes, the shortest time
period of the production run can be evaluated from the
lowest frequency in our spectral range (10 cm−1). An even
better estimate would be to use 10–20 oscillating periods of
the lowest frequency as the minimum time of the
production run. One period of oscillations at 10 cm−1 is
less than or equal to 3 ps, which gives us the estimate for
the minimal production time as 30–60 ps or larger. Figure 5
confirms that simulation times of 5–15 ps are not long
enough. Absorption amplitudes are damped and frequencies
are occasional. The results of simulations with longer
production times are shown in Fig. 6. It is clear that after
100 ps there is no increase in peak intensity.

We relate this result to the relaxation timescale for the
protein’s dynamics in water solution. It was shown that the
robust quenching dynamics of thioredoxin’s active center leads
to a timescale of ∼100 ps [44]. There is also evidence that the
relaxation timescale for the dynamics of protein-water
motions is around 90 ps [45]. In addition, our own
experimental data demonstrate that the spectral width of
vibrational modes is ∼0.3–0.5 cm−1 [10], which yields a
relaxation time of ∼70–110 ps. These estimates give us the
upper limit for the production time, since the vibrational phase
is lost in longer simulations. Thus, a 90–100 ps production
run is a justifiable estimate. This scale is much smaller than is
needed to observe events like structural changes, which occur
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Fig. 3 Absorption spectra for 520–600 psNVEproduction runs conducted
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in the millisecond domain. Another result discerned from
Fig. 6 is that there is no consistency between individual
production runs. Our computational experiments show that we
are not able to get consistent or reproducible results even at
much longer simulation times of up to 1200 ps.

From these results, we can conclude that an averaging
procedure must be developed with subinterval durations of
about 100 ps to achieve more reliable results.

Developing a new averaging procedure for vibrational
absorption spectra simulation

As a first attempt at solving the problem, two relatively simple
averaging procedures were tested: averaging individual
absorption spectra and averaging MD trajectories from

different trajectory sections of the same simulation or sections
from simulations with different initial velocities. In both of
these cases, averaging gives low vibrational peak intensities.

Figure 7 demonstrates individual 100 ps simulated spectra
from six sections of the same 600 ps trajectory, the result of
averaging the absorption coefficient spectra from these six
sections, and the experimental spectrum. The lack of
convergence is obvious, and since individual absorption
spectra are not correlated, averaging leads to a damped
spectrum. Thus, averaging the absorption coefficient does
not improve the situation; neither does averaging individual
absorption spectra calculated from fragments of trajectories
with different initial velocities.

Figure 8 plots the results from averaging five and eight
equally spaced sections of a trajectory from a 400 ps
constant energy (NVE) simulation. As can be seen, the
amplitudes of the resulting absorption peaks are greatly
reduced compared to the case without averaging, indicating
that individual spectra are poorly correlated or are not
correlated at all. Thus, averaging sections of the trajectory
does not seem to improve the simulated results either, and
most importantly convergence is not observed.

The third procedure we applied was to average correla-
tion (mass-weighted covariance) matrices, which can be
computed in Amber for further quasi-harmonic analysis. In
a typical simulation, the correlation matrix of atomic
coordinates is calculated from the atomic trajectories
recorded after the entire production run. In our new analytic
procedure, we divide a single production run into individual
sections with equal time intervals. For each of these
sections, a correlation matrix is then obtained. The average
correlation matrix can be found by summing all of the
matrices and dividing by the number of matrices. Finally,
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the force constant matrix is obtained in the classical limit
from the atomic displacement correlation matrix for an
array of coupled harmonic oscillators. The creation of the
force constant matrix and its diagonalization (to find
frequencies of oscillations) are functions provided in
Amber’s ptraj package. However, the ptraj module only
allows the correlation matrix to be created from the native
atom trajectory file for a subsequent computation of the
force constant matrix.We edited the open source package ptraj
(Amber Tools 1.2, http://www.chpc.utah.edu/∼cheatham/
ptraj-9.9i.tar.gz) and recompiled it to accept an external
source for the averaged correlation matrix with nine
significant digits after the decimal point. Figure 9 plots the
experimental absorption spectrum together with modeling

results from two different procedures: averaging the six
individual absorption spectra shown in Fig. 7, and averaging
the correlation matrices for six 100 ps simulation intervals
within a 600 ps simulation. Averaging the absorption spectra
results in low peak intensities. Averaging correlation matrices
produces larger peak intensities and better agreement between
the entire spectrum and the experiment.

Thus, we found that the third method is the best way of
averaging results to reduce noise in the system. We also
noted that NVE production runs that are started with similar
values of ETOT within a range of ∼10 kcal mol−1 produce
reasonably similar absorption spectra when this procedure
for averaging correlation matrices is used.

A large number of protein conformations might lead not
only to spectroscopic peak broadening but also to different
peak frequencies. Our computational experiments have
shown that the optimal value of a simulation parameter
should give the highest intensities of vibrational modes
over the entire spectrum if the production run is carried out
using a constant energy ensemble and the total energy of
the system (ETOT) is close to the (local) equilibration
minimum. Note that a constant energy simulation that does
not involve frequent exchange with the external bath for
temperature regulation induces less disturbance into the
trajectories of atoms, and also prevents protein molecules
from transitioning into different conformations. In order to
optimize the simulation parameters, we must be able to
compare the results from different simulations and those
obtained with different atom velocities from the Maxwellian
distribution. We found that this can be done if the difference in
ETOT is not higher than ∼10 kcal mol−1.

Conclusions

We studied the accuracy and convergence of MD simulations
of the sub-THz vibrational modes by comparing simulations
with different initial conditions, protocols, and parameters to
the experimental results. Our main findings are as follows:

& Using the NVE ensemble in a production run gives
more stable results than the NPT regime.

& The choice of the starting total energy of the system
(ETOT) at the beginning of the production run
significantly affects the results, and this energy must
be close to the equilibration minimum.

& The choice of the production run length considerably
influences the obtained absorption spectra. The optimal
production run length (∼100 ps ) can be derived from
the vibrational relaxation time.

& A new averaging procedure for mass-weighted covariance
matrices of atomic trajectories in MD simulation has
been developed. This procedure significantly improved
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modeling convergence, thus allowing the further
optimization of simulation parameters to achieve a
better correlation between the experimental and
simulated spectra. We plan to conduct parameter
optimization in a continuation of this work.
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Abstract Ab initio calculations have been performed using
the complete basis set model (CBS-QB3) to study the reaction
mechanism of butane radical (C4H9•) with oxygen (O2). On
the calculated potential energy surface, the addition of O2 to
C4H9• forms three intermediates barrierlessly, which can
undergo subsequent isomerization or decomposition reaction
leading to various products: HOO•+C4H8, C2H5•+
CH2CHOOH, OH•+C3H7CHO, OH•+cycle-C4H8O, CH3•+
CH3CHCHOOH, CH2OOH•+C3H6. Five pathways are
supposed in this study. After taking into account the reaction
barrier and enthalpy, the most possible reaction pathway is
C4H9•+O2→ IM1→TS5→ IM3→TS6→ IM4→TS7→
OH•+cycle-C4H8O.

Keywords C4H9
. O2

. CBS-QB3 . Reaction mechanism .

Theoretical study

Introduction

Hydrocarbon radicals are common intermediates in many
chemical processes, and reactions of them with oxygen are
important elementary steps in the atmospheric processes and
combustion of hydrocarbons [1–5]. Deep understanding on
the combustion reaction mechanism of hydrocarbon is an

urgent scientific goal [1–17], and investigations on the
reactions of reactive species such as hydrocarbon radicals
can provide significant insights into combustion, hydrocarbon
synthesis, interstellar space, and atmospheric chemistry. The
reactivity of radicals which is very different from closed-shell
molecules is extremely important in the reactions, e.g.,
between oxygen and hydrocarbon radicals. The generation
of radicals and their participation in subsequent branching
reaction steps affect the outcome of combustion processes.
However, because of the difficulty in producing these
transient species, often limited information is available under
well-defined experimental conditions. Theoretical studies on
the reaction of hydrocarbon radicals are also quite scarce
except for some calculations on a few simple systems, among
which the reactions of allyl radical (C3H5•) [18–24] and
ethane radical (C2H5•) [25–36] have attracted more attentions
than others. Estupiñán et al. studied the reactions of C2H5, n-
C3H7, and i-C3H7 radicals with O2 using the technique of
laser photolysis/long-path frequency-modulation spectroscopy
and ab initio method [37]. Wilke et al. studied the mechanism
of the elimination of HO2 from ethylperoxy (C2H5OO) using
CCSD(T) method, and the calculated results agree well with
the experiment [38]. Basevich et al. investigated the mecha-
nisms of the oxidation and combustion of different alkanes
[39–41]. Yet, many aspects of alkane combustion are still
surrounded by controversy and confusion.

In this work, we examine some possible mechanisms of
butane oxidation, i.e., the reaction of the butane radical
(C4H9•) with oxygen molecule using the ab initio method.

Calculation methods

Calculations were carried out to obtain the lowest doublet
potential energy surfaces for the reaction of C4H9• with O2

using the complete basis set (CBS-QB3) [42] method
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implemented in the Gaussian 03 package [43]. This method
provides optimized geometries and frequencies at the
B3LYP/6-311 G(2 d,d,p) level. The frequencies were scaled
by 0.99 prior to calculating thermodynamic functions. All
transition states were verified by both the presence of single
imaginary frequency and the connection between the
designated reactants and products through intrinsic reaction
coordinate (IRC) analysis [44].

Results and discussion

Five possible pathways have been investigated. The
equilibrium geometries of the reactants, intermediates,
transition states, and products are presented in Fig. 1.
Figure 2 illustrates the schematic diagrams of the potential
energy surface for the reactions. The energies of the various
species relative to that of the reactants C4H9•+O2 are listed
in Table 1.

Pathway A

R→TS1→P1
This reaction pathway involves a single step of the direct

hydrogen abstraction from the butane radical by oxygen
molecule, C4H9•+O2→HOO•+C4H8. In this reaction, no
other intermediate forms. β-hydrogen abstraction by oxy-
gen through the transition state TS1 leads to the formation
of butylene, the reaction barrier is calculated to be
39.7 kJ mol-1. Wagner et al. studied the reactions of
C2H5•+O2 experimentally and theoretically, and proposed
that for the reaction of R•+O2→HOO•+R-H, the activation
energy of direct abstraction of H atom is 20–40 kJ mol-1

[30], which is close to the value we obtained here. IRC
calculations indicate that during the reaction process, the
C3-H11 bond is elongated from 1.106 Å in C4H9• to 1.244 Å
in TS1, then it ruptures to produce HOO• radical and
butylene. The process is exothermic by −67.47 kJ mol-1.

Pathway B

R TS2 IM2IM1
TS3 P2

TS4 P3

In this pathway, the O atom of O2 attacks the C4 atom
of C4H9• to form the intermediate C4H9OO• (denoted as
IM1), this process is barrierless and exothermic by
−148.46 kJ mol-1 with respect to the reactant C4H9•+O2

at the CBS-QB3 level. Then IM1 undergoes a hydrogen
(H13) migration from C4 to the neighboring O15 to form
IM2 through a four-membered ring transition state TS2
with a barrier of 185.4 kJ mol-1. During this process, the
breaking bond C4-H13 is elongated from 1.093 Å in IM1 to

1.332 Å in TS2 and the new formed bond O15-H13
changes to 0.969 Å with a strained angle O14-O15-H13
(100.64°). As depicted in Fig. 2, IM2 is 45.44 kJ mol-1

more reactive than IM1, and can undergo two different
bond dissociations: (1) C2-C3 ruptures through transi-
tion state TS3 with a high-barrier 119.38 kJ mol-1 to
produce C2H5• and C2H3OOH (P2). The C2-C3 bond is
elongated from 1.548 Å in IM2 to 2.333 Å in TS3, while
the C3-C4 is shortened from 1.490 Å to 1.354 Å,
indicating that the C3-C4 bond in TS3 is delocalized; (2)
O14-O15 ruptures through TS4 with a barrier height
9.0 kJ mol-1 to form OH• and C3H7CHO (P3). In this
process, the length of O14-O15 bond changes from
1.455 Å in IM2 to 1.553 Å in TS4 and the C4-O14 bond
is shortened from 1.369 Å to 1.287 Å. Obviously, the
channel to produce P3 with the lower barrier and larger
exothermicity is more favorable. The rate-determing step
of the pathway is IM1→TS2→IM2.

Pathway C

R TS6 IM4IM1 TS5 IM3
TS7 P4

TS8 P1

As shown in pathway B, IM1 can be formed from the
reactants barrierlessly. IM1 may proceed an isomerization
to IM3 by the migration of O15 atom through TS5. The
barrier height is only 4.7 kJ mol-1, that is to say this process
is happens very easily, the exothermicity of this process is
about null (−0.6 kJ mol-1). IM3 can subsequently undergo a
hydrogen migration of H11 from C3 to O15 to form IM4
through a five-membered ring transition state TS6 with a
barrier of 143.6 kJ mol-1, which is close to the activation
energy for the similar reaction step of the combustion of
ethane (143.5±10.0 kJ mol-1) [45]. C3-H11 is 1.094 Å in
IM3 and 1.368 Å in IM4; O14-O15 is 1.318 Å and 1.420 Å
respectively in IM3 and IM4. The process from IM3 to IM4
is endothermic and the reaction enthalpy is 59.5 kJ mol-1.
Two competion reaction channels exist for IM4, the more
favorable channel is the decomposition reaction by the
bond cleavage of O14-O15 leading to OH•+cycle-C4H8O,
in which the bond length of O14-O15 is elongated from
1.458 Å in IM4 to 1.757 Å in TS7. O14 gradually transfers
to C3 and C3-O14 is shortened from 1.953 Å in TS7 to
1.434 Å in the product (P4). The activation energy for this
process is 45.1 kJ mol-1. Another channel involves the
cleavage of the C4-O14 bond through TS8, which results in
the same products (P1) as in pathway A. The corresponding
energy barrier is 48.3 kJ mol-1, higher than that
(39.7 kJ mol-1) of the pathway A. Considering the reaction
endothermicity and barrier, the channel leading to P4
through TS7 is more favorable. The rate-determing step of
the channel is IM3→TS6→IM4.
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Pathway D

R1→IM5→TS9→IM6→TS10→P5
In this pathway, the unpaired electron of C4H9• is

located on the C3 atom, so when O2 attacks C4H9•, the
initial step is the addition of O2 to C3 producing IM5,
which is 19.0 kJ mol-1 lower than IM1, then H9 transfers
to the neighboring O15 to form IM6 through a five-
membered-ring transition state TS9 with a barrier of
135.1 kJ mol-1, the length of C2-H9 changes from
1.093 Å in IM5 to 1.360 Å in TS9. H9-O15 in TS9 is
1.222 Å with a strained angle H9-O15-O14 of 93.9°, and
in IM6, it is 0.967 Å and the unpaired electron is on the
C2 atom. Afterward, C3-C4 of IM6 elongates from
1.528 Å to 2.298 Å resulting in CH3+C3H5OOH (P5)
through the transition state TS10 with a barrier of
129.6 kJ mol-1. In TS10, C2-C3 displays a resonance
feature with a length of 1.361 Å which is close to the bond
length of C=C double bond. From IM5 to IM6
the reaction is overall endothermic, and the reaction
enthalpy is 58.7 kJ mol-1, and from IM6 to P5, it is
108.0 kJ mol-1. The rate-determing step of the channel is
IM5→TS9→IM6.

Pathway E

R→IM7→TS11→IM8→TS12→P6
The barrierless addition of O2 to the terminal carbon of

C4H9• can also produce the intermediate IM7, an isomer of
IM1. The process has an exothermicity of −148.69 kJ mol-1,
which is basically equal to that of the process producing IM1
(−148.46 kJ mol-1). Then H9 in IM7 migrates to O15 to give
the intermediate IM8 by overcoming a barrier of
92.2 kJ mol-1 through the six-membered-ring transition state
TS11. In this process, C2-H9 is elongated from 1.094 Å
in IM7 to 1.376 Å in TS11, and H9-O15 is shortened
from 1.177 Å in TS11 to 0.971 Å in IM8. The reaction
process from IM7 to IM8 is endothermic (56.5 kJ mol-1).
IM8 can subsequently undergo a bond dissociation of
C3-C4 via TS12 to form P6. In this process, C3-C4
changes from 1.533 Å in IM8 to 2.276 Å in TS12. The
process from IM8 to P6 is also endothermic
(92.9 kJ mol-1). The rate-determing step of the channel
is IM8→TS12→CH2OOH•+C3H6 (P6).

In the five reaction pathways, six products (P1-P6) are
produced and the corresponding reaction enthalpy are
−67.47, 1.85, -250.81, -159.22, -3.44, and 0.78 kJ mol-1
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respectively. In terms of the reaction exothermicity, the
more favorable pathways are those resulting in the products
P1, P3, and P4, which are all highly exothermic. However,
the reactions leading to P1 and P3 have to pass through the
transition states (TS1 and TS2 respectively) that are higher
in energy than the reactants, that is to say, extra energy is
needed to overcome the energy barrier to make these
reactions happen, while for the reaction to give the product
P4, all species involved in the pathway are lower in energy
than the reactants, so no extra energy is demanded to make
the reaction proceed. The reaction happens spontaneously.
Therefore, the main pathway of the reaction is R→IM1→
TS5→IM3→TS6→IM4→TS7→P4. The changes in free

energy and enthalpy of the reaction are −149.62 and
−159.22 kJ mol-1 respectively.

To test the reliability of the calculation results obtained
at the level of CBS-QB3, we have also calculated the
energies at the higher theoretical level of CCSD(T)/cc-
pVTZ for the main reaction pathway. A comparison of the
results at the two levels is shown in Table 2 and Fig. 3.
Obviously, there is a good linear correlation (R=0.994)
between them and the differences between them are not that
significant (standard deviation SD=7.16 kJ mol-1), so the
conclusions drawn at the two levels should be similar.
Considering the computational expense and feasibility, we
think the CBS-QB3 method is acceptable and the results
obtained from it are reliable. In fact, this method has been
used in many similar studies, e.g., in reference [34].

Conclusions

The ab initio CBS-QB3 method has been used to study the
reaction mechanism of C4H9• radical with oxygen mole-
cule. The activation energies and reaction enthalpies of five
different reaction pathways are obtained and analyzed.
Calculated results show that the main reaction pathway is
C4H9•+O2 (R)→ IM1→TS5→ IM3→TS6→ IM4→
TS7→OH•+cycle-C4H8O (P4).

-300

-250

-200

-150

-100

-50

0

50

100

R

TS1

P1

IM1

TS2

IM2

TS3

P2

TS4

TS5

IM3

TS6

IM4

TS8

P1

R1

IM5

TS9

IM6

TS10

P5

IM7

TS11

IM8

TS12

P6

P3

P4

TS7

R
el

at
iv

e 
E

ne
rg

y 
(k

J/
m

ol
)

Fig. 2 A diagram of potential energy surface for various reaction
pathways of C4H9•+O2 at the CBS-QB3 level

Table 1 Relative energies (in kJ mol-1) of various species at the CBS-
QB3 level

Species Energy Species Energy

R (C4H9•+O2) 0.00 IM2 −98.83
R1 (C4H9•
isomer+O2)

−11.98 IM3 −144.29

TS1 55.17 IM4 −87.43
TS2 26.74 IM5 −162.63
TS3 25.98 IM6 −106.61
TS4 −99.97 IM7 −143.27
TS5 −140.68 IM8 −88.26
TS6 −10.38 P1 (HOO•+C4H8) −67.47
TS7 −39.74 P2 (C2H5•+C2H3OOH) 1.85

TS8 −23.50 P3 (OH•+C3H7CHO) −250.81
TS9 −33.19 P4 (OH•+cycle-C4H8O) −159.22
TS10 27.15 P5 (CH3•+C3H5OOH) −3.44
TS11 −57.51 P6 (CH2OOH•+C3H6) 0.78

TS12 20.90 P6 (CH2OOH•+C3H6) 0.78

IM1 −143.67
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Fig. 3 Correlation between the relative energies of the species
involved in the main reaction pathway at the CCSD(T)/cc-PVTZ and
CBS-QB3 levels

Species CCSD(T)/
cc-PVTZ

CBS-
QB3

R 0 0

IM1 −151.01 −131.69
TS5 −148.04 −128.70
IM3 −152.87 −132.31
TS6 4.77 1.61

IM4 −83.08 −75.45
TS7 −17.83 −27.76
P4 −150.68 −147.24

Table 2 Relative energies
(kJ mol-1) of the species
involved in the main reaction
pathway at the CCSD(T)/
cc-PVTZ and CBS-QB3 levels
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Abstract As the mechanism underlying the sense of smell
is unclear, different models have been used to rationalize
structure–odor relationships. To gain insight into odorant
molecules from bread baking, binding energies and
vibration spectra in the gas phase and in the protein
environment [7-transmembrane helices (7TMHs) of
rhodopsin] were calculated using density functional
theory [B3LYP/6-311++G(d,p)] and ONIOM [B3LYP/6-
311++G(d,p):PM3] methods. It was found that acetalde-
hyde (“acid” category) binds strongly in the large cavity
inside the receptor, whereas 2-ethyl-3-methylpyrazine

(“roasted”) binds weakly. Lys296, Tyr268, Thr118 and
Ala117 were identified as key residues in the binding
site. More emphasis was placed on how vibrational
frequencies are shifted and intensities modified in the
receptor protein environment. Principal component anal-
ysis (PCA) suggested that the frequency shifts of C–C
stretching, CH3 umbrella, C=O stretching and CH3

stretching modes have a significant effect on odor quality.
In fact, the frequency shifts of the C–C stretching and C=
O stretching modes, as well as CH3 umbrella and CH3

symmetric stretching modes, exhibit different behaviors in
the PCA loadings plot. A large frequency shift in the CH3

symmetric stretching mode is associated with the sweet-
roasted odor category and separates this from the acid
odor category. A large frequency shift of the C–C
stretching mode describes the roasted and oily-popcorn
odor categories, and separates these from the buttery and
acid odor categories.

Keywords Odorant category . Quantum chemical
calculation .Molecular vibration . Binding energy . Principal
component analysis

Introduction

Studies on the recognition and classification of odors have
expanded markedly, driven by efforts to develop a new
multidisciplinary discipline: molecular gastronomy [1].
Perception is an auto-bio-activation process acting through
multi-stimulation G-protein coupled receptors (GPCRs).
The GPCR mechanism is divided into four classes: A, B, C
and F/S, with rhodopsin, rhodopsin-like and olfactory
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receptors (OR) all being classified within class A [2].
Perception of the characteristic flavors of foods is mediated
by small molecules binding noncovalently to the OR [3].
The process of smell perception is initiated when an
odorant is captured in the upper nasal cavity where the
nasal mucous membrane is located [4]. The aqueous
olfactory mucus adsorbs hydrophobic odorants with the
help of soluble proteins—the so-called odorant binding
proteins (OBPs) [5]. The odorant binding site is assumed to
be situated at the upper part of the molecule toward the N-
terminal domain of the seven transmembrane helices
(7TMHs) [6]. Upon binding of an odorant, the receptor is
activated and this then causes a conformational change. In
the inactive form, receptors are coupled with G-proteins
composed of α, β and γ subunits, and guanine diphosphate
(GDP) binds to the α subunit. The conformational change
increases the affinity of the receptor for the α subunit and
GDP is released. As a result, guanine triphosphate (GTP)
binds to the α subunit, which subsequently dissociates from
the βγ subunits, activating downstream effectors for signal
transduction [7]. A few experiments have indicated that an
odorant compound is likely to give rise to multiple active
conformations of the receptor, in either a sequential or a
parallel manner [8, 9].

A better understanding of odor properties will help
applications in biosensor design, perfumery and molec-
ular gastronomy. At present, the detailed mechanisms of
odorant–receptor interactions and subsequent activation
are still unclear. It is important to understand the
mechanisms underlying odor perception at the molecular
level. Two basic features of odor recognition—shape
and vibration—have so far been proposed to account for
the olfaction mechanism and the process of signaling
from odors based on molecular properties. Dyson
proposed “vibration theory”, which links molecular
vibrations and odor [10]. Vibration theory assumes that
ORs recognize the unique vibrations of odorant molecules,
which are subsequently translated into odors in the brain.
Recently, vibration theory was revived by Turin, who
carried out frequency calculations at the HF/3-21G* level
of theory to distinguish several odor categories, namely,
bitter almonds, musks, ambers, woods, sandalwoods and
violets [11]. Whilst protein activation starts from ligand
binding as the mechanism of basic biomolecular recogni-
tion, the origin of odorant triggering may be the correlated
vibrations between the odorant and the amino residues of
the receptor. The technical limitations of observing
molecular vibration mean that no ligand–protein spectros-
copy is available [12]. Brookes and co-workers [13]
reported that only the specific conformation with the right
vibrational frequency of odorant would satisfy OR
recognition. Although important insights were derived
from Turin’s study, there remains much to be done

theoretically to fully understand odor chemistry. For
example, higher-level calculations should be performed
on models in the presence of receptors to identify more
accurately the characteristic vibrations of odorants in their
binding sites. Since molecular vibrations will change
depending on the surrounding environment, such as a
solvent or inside a protein, it is important to find out how
vibrations are enhanced or attenuated in such situations.
This type of information can be derived from hybrid
quantum mechanical/molecular mechanical (QM/MM)
calculations [14].

Theoretical calculations have been shown to provide
useful insight into the physical basis of ligand binding
systems. For example, the strengths of hydrogen bonds in
transmembrane proteins were evaluated successfully at the
MPWB1K/6-31+G(d,p) level [15]. Active conformations
of Maillard products and odorants such as diacetylformoin
were identified by calculations at the B3LYP/6-31++G
(3df,2pd) level [16]. ONIOM (B3LYP/6-31G(d,p):PM3)
calculations showed that the conformation and energy of
TIBO (tetrahydro-imidazo[4,5,1-jk][1,4]-benzodiazepin-2-
one) inside human immunodeficiency virus type-1 reverse
transcriptase (HIV-1 RT) are different from those in vacuo
[17, 18]. Such results indicate that the effect of the protein
environment should be taken into account for accurate
descriptions of biomolecular systems.

In this work, volatile compounds from bread baking
were selected as the target odorant class because of their
crucial importance in the food processing and bakery
industries. We employed DFT and the ONIOM method
[19] in an attempt to understand the properties of odorant
molecules from bread baking products [20]. The vibrational
frequencies of odorants were determined in the gas phase
and in the protein complex. We identified a key vibration
pattern characteristic of each odor category. Our observa-
tions provide useful structural and energetic information for
the design of molecular vibrational experiments.

Computational methods

Calculations on aroma compounds in gas phase

Aroma compounds (I–VII) produced during bread baking
were detected by an electronic nose [20]. A series of
molecules in this class (Fig. 1) were chosen for our
theoretical analyses. Conformational analysis was carried
out using the AM1 method to find out the lowest energy
conformations of each compound. For the lowest energy
conformations obtained, full geometry optimization at the
B3LYP/6-311++G(d,p) level was performed, followed by
vibrational frequency and IR intensity analyses. All
calculations were done using the Gaussian03 program [21].
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Setup of ligand-receptor complexes

A major difficulty in modeling olfactory receptors is
that no crystal structure has been solved to date.
Crystallographic structures containing complete 7TMHs
have been obtained only for bovine rhodopsin (pdb
codes 1F88, 1HZX and 1L9H). Although most GPCR
family A receptors share a similar fold of the 7TMH
domain [3], the percent similarity between human olfac-
tory receptor (hOR) from OR1D2 gene and the bovine
rhodopsin is very low (~17%), and therefore we decided
not to perform homology modeling for hOR but to directly
use the geometry from 1L9H, which has the highest
resolution of all available geometries.

Orientations and conformations of odorants in 7TMHs
were obtained by a docking method using Gold 3.0 [22].
Protein preparation involved addition of hydrogen atoms
using the Biopolymer module as implemented in the
Sybyl6.9 program. In preparing ligand coordinates for
docking, fully optimized gas-phase geometries described
earlier were utilized. The orthosteric site located towards
the N-terminus of 7TMHs was assumed to be the target for
docking. Docking was performed using default settings.
For each compound, the docked conditions yielding the
three highest GoldScore values were selected for further
analysis.

Vibration calculations

Gas phase calculations

Reasonable IR vibration values for organic molecule can be
obtained at the B3LYP/6-31+G(d,p) [23], B3LYP/6-31++G
(d,p) [24] and B3LYP/6-311++G(d,p) [25] levels of theory.
The advantage of B3LYP/6-311++G(d,p) is that it accu-
rately predicts not only IR properties but also NMR
properties, as documented by Vailikhit [26]. Therefore, for
isolated aroma compounds in gas phase, fully optimized

structures as described above were subjected to vibration
calculations at the B3LYP/6-311++G(d,p) level of theory.

Ligand/protein complex

All initial complex structures were at first relaxed to
remove bad contacts. The whole complex model was then
minimized in vacuo by molecular mechanics with the Duan
force field [27] using the AMBER program [28]. Subse-
quently, the size of the model was reduced by selecting all
residues within 7Å of odorants. To maintain the same
environment for all odorants, all complex structures were
aligned before reducing the size of model; thus, all complex
models have the same residues. Note, the protein geome-
tries are slightly different depending on the binding ligand,
since the preparatory energy minimizations (see above) for
the entire enzyme were carried out individually with the
corresponding bound ligand. This smaller model contained
703 atoms from 7TMHs and was optimized by the PM3
method [29] under the condition of fixed protein backbone
atoms (except peptide hydrogen and oxygen atoms).

A two-layered ONIOM2 method was applied to the
protein cluster model to obtain the vibrational frequencies
of the odorants in the protein. The complex models were
then optimized at the ONIOM(B3LYP/6-311++G(d,p):
PM3) level with backbone atoms (Cα, N, carbonyl carbon)
fixed. Only the ligand was treated at the higher level of
theory while surrounding residues were treated by low level
calculations using the PM3 method. All protein residues
were fixed in the frequency calculation using the ONIOM2
approach (B3LYP/6-311++G(d,p):PM3). The relative error
as produced from constrained calculations was generally
small and did not affect the results, which makes this a
useful approach. The frequencies obtained were checked
and it was verified that all frequencies were positive to
ensure the presence of the actual configuration, not a
transition configuration from the optimization. It should be
mentioned here that frequency calculations on the entire
system should be done ideally without any geometry
constraints. However, performing the calculations with a
flexible protein will give a large number of vibrational
modes that may well be delocalized over the entire system,
and this prevents a clear understanding of the effect of the
protein on the vibration of a ligand. Therefore, the complex
geometries were minimized at these theoretical levels with
protein atoms fixed.

The calculated and experimental spectra and vibrational
modes of isolated ligands were compared to evaluate the
accuracy of the B3LYP/6-311++G(d,p) calculations. In
addition, comparison of the calculated IR spectra in the
gas phase with those in the binding site allowed us to
investigate the effect of the receptor on molecular
vibrations.

Acetaldehyde           Acetylpyrazine                   Diacetyl                  Ethylmethylpyrazine
(I)                               (II)                            (III)                                 (IV)

[Acid]                   [Sweet-roasted]                 [Buttery]                         [Roasted]

2-Acetylpyridine               3-Acetylpyridine        4-Acetylpyridine
(V)                                      (VI)                                  (VII)

[Oily,popcorn]                    [Oily,popcorn]                 [Oily,popcorn]

Fig. 1 Bread baking aroma compounds studied (I–VII)

J Mol Model (2012) 18:2227–2240 2229



Other active volatiles

To understand the characteristic trends of a variety of
molecules, the vibrational frequencies of other odorants
were also examined. The odorant compounds examined are
listed in Table 1. Two or three compounds from each
category were selected as representative cases. Frequency
calculations were performed for these compounds with the
same protocol as described above to obtain frequencies in
isolate and bound states.

Results and discussion

Binding of odorants in the receptor site

The features of compound binding with 7TMHs will now
be discussed. The volumes of pocket cavities in the protein
and the molecular surface area of the odorants were
analyzed (Fig. 2). The volumes of pocket cavities in the
upper part of 7TMHs were calculated using Swiss- PDB
Viewer (SPDBV4.0) [30]. In the present study, the smallest

Table 1 Odorant molecules from different odor categories. Compounds used for frequency calculations are underlined

Compounds Odor-quality References

[Acid]

Acetaldehyde Acid, Pungent [20, 34]

Propanal Pungent [34]

Butanal Green, pungent [34]

2-Methylpropanal Pungent, malty, green [34]

Acetic acid Sour, pungent, Rancid [35, 36]

Hexanoic acid Pungent, musty [35]

[Sweet roasted]

Acetylpyrazine Sweet roasted, Roasty [20, 37]

Hazelnut, praline, cake [38]

2-Acetyl-2-thiazole Roasty [39]

2-Acetyl-1-pyrroline Roasty, Roasty-popcorn-like [35, 37]

[Roasted]

2-Ethyl-3-methylpyrazine Roasted [20]

Thiazole Roast, cracker [36]

2-Furanmethanethiol Roast, meat [36]

O
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compound is acetaldehyde and the largest is 2-ethyl-3-
methylpyrazine, and the molecular surface volumes ranged
from 85.61 to 216.58Å3 as shown in Fig. 2b. By
comparison, the binding pocket cavities in 7TMHs can
have volumes as large as 602Å3. The comparison clearly
shows that the molecular surface volume of odorants is

much smaller than that of the binding pocket (cavity A in
Fig. 2a). This confirms that the odorant molecules are not
fit tightly inside the binding pocket, unlike enzyme–
substrate binding, which uses “lock and key” and “induced
fit” mechanisms. Our results also support the experimental
findings of Triller and co-workers [31].

Table 1 (continued)

Roasted, coffee-like [37]

Roasted [39]

Smoke, roasted [39]

2-Ethyl-3,5-dimethylpyrazine Potato-like, roasty [37]

Roasted [39]

[Buttery]

Diacetyl Buttery [20, 34-37, 39]

2,3-Pentadione Buttery [34, 36, 39]

(E)-2-Nonenal Buttery, oily [39]

2-Methylbutanal Buttery, oily [39]

3-Methylbutanal Buttery, oily [39]

[Oily, Popcorn]

Acetylpyridine Oily, Popcorn [20]

2-Acetyl-1-pyrroline Roasty, Roasty-popcorn-like [35, 37]

2-Pentylpyridine Fatty, tallowy [37]

(E,E)-2,4-Nonadienal Fatty, waxy [37]

(Z)-4-Heptenal

Fatty, floral [39]

Fatty, oily, creamy [39]

6-Dodecen-γ-lactone Fatty [39]
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Figure 3 compares the orientations of odorants obtained
from our docking simulations. Acetaldehyde, acetylpyra-
zine and 2-ethyl-3-methylpyrazine bind rigidly inside the
pocket, while diacetyl and acetylpyridine bind loosely with
some degree of flexibility. This indicates that compounds
with oily odor quality, such as diacetyl (buttery) and
acetylpyridine (oily, popcorn), could possibly bind in a
number of conformations, while odor compounds in other
categories may have restricted conformations. Ala117,
Thr118, Tyr268 and Lys296 have been found to play key
roles in interactions inside the binding pocket. These
residues form hydrogen bonding, electrostatic, dipole–
dipole and/or hydrogen–π interactions with odorant com-
pounds. The carbonyl groups of acetaldehyde and acetyl-
pyrazine form a hydrogen bond with Lys296 with an O⋯H
distance of 1.8Å ,while the carbonyl group of diacetyl and
acetylpyridine do not. A flip of C=O group in acetylpyr-

azine results in a conformation (m2) devoid of a hydrogen
bond interaction with Lys296, and this has significantly
weaker binding energy (−4.99 kcal mol−1).

The binding energy (BE) of odorants in the protein
model was evaluated at the ONIOM[B3LYP/6-311++G(d,
p):PM3] level from the energy of the optimized structures
of the protein–odorant complex and the free protein, with
the protein backbone fixed (see Computational methods
section), and free odorant states, according to Eq. 1

BE
ONIOM ¼ E

ONIOM

Complex � EPM3
Pocket � EB3LYP

Ligand ð1Þ

Where EONIOM
Complexis the energy of complex structure, as

calculated by the ONIOM method. EPM3
Pocket and EB3LYP

Ligandare

the energies of the binding pocket and odor-active ligand,
respectively. Their binding energies without entropy and
solvation effect varied from −4.20 to −17.50 kcal mol−1

Fig. 2 a Binding pocket cavity
(green) in the 7-transmembrane
helices (7TMHs; Å), and
b molecular surface volume
of odorant molecules (Å)

Fig. 3a–e Possible binding con-
formations of odorant molecules
and their alignment inside the
binding pocket of 7TMHs,
after ONIOM[B3LYP/6-311+
+G(d,p):PM3] optimization with
all protein atoms fixed. Distinct
docking conformations are
indicated by black, blue and
green colors. a Acetaldehyde,
b acetylpyrazine, c diacetyl,
d 2-ethyl-3-methylpyrazine
(including all conformations),
and e acetylpyridine
(including all isomers)
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which are comparable to the values observed for several
drug-enzyme complex systems [32, 33]. The conformation
with the strongest binding energy was selected as a
representative state for each odor category. As seen in
Fig. 4, the binding strength was ranked in the following
order: acetaldehyde~acetylpyrazine>diacetyl>acetylpyri-
dine>2-ethyl-3-methylpyrazine. These are well accounted
for hydrogen bond formation with Lys296; acetaldehyde and
acetylpyrazine form strong hydrogen bonds, while 2-ethyl-3-
methylyrazine does not. A clearer understanding of the
binding process could be gained by calculation of the
binding free energy, which is beyond the scope of this study.

Vibration spectra and characteristic spectrum patterns
of odorants in the isolated state

The calculated IR vibration spectra (convolved with a
Gaussian function of a width of 100 cm−1) are compared in
Fig. 5 for two odorants, with the experimental IR spectra
taken from the National Institute of Standards and Technol-
ogy (NIST) [40]. Although the peaks obtained theoretically
are shifted slightly compared with experimental values, their
spectra are similar. For example, in Fig. 5a and b, the
experimental spectrum pattern of acetylpyrazine shows a
moderate peak at ~3,100 cm−1, a strong peak at ~1,700 cm−1,
and a group of moderate peaks at ~700–1,500 cm−1. The
calculated spectrum shows the same pattern of a moderate
peak at 3,168 cm−1, a strong peak at 1,762 cm−1, and a group
of moderate peaks at 864–1,462 cm−1. This demonstrates
that the vibrational spectra calculated at the B3LYP/6-
311++G(d,p) level are quite reliable.

We calculated the gas phase vibrational spectra of
acetaldehyde, 2-ethyl-3-methylpyrazine, acetylpyrazine,
diacetyl, and acetylpyridine (including all isomers of 2-,
3- and 4-acetylpyridine) as representatives of their different
classes; acid (pungent), roasted, sweet-roasted, buttery, and
oily-popcorn categories, respectively. The overlayed spectra

of odor qualities are shown in Fig. 6. A characteristic
pattern for each odor quality emerged, as follows:

(1) Acid (pungent) odorants typically have a sharp and
strong peak for a C=O stretching mode at ~1,700 cm−1,
a sharp peak of O–H stretching at 2,500–3,000 cm−1,
and a few smaller peaks in the 500–1,500 cm−1 region.

(2) Roasted odorants exhibit diverse peaks with weak and
medium intensity from C–H bending modes in the
500–1,500 cm−1 region.

(3) Sweet-roasted odor-quality is associated with a spec-
trum pattern containing a group of C–H bending
modes with medium to high intensity at 500–
1,500 cm−1, and a strong peak for a C=O stretching
mode at ~1,750 cm−1.

(4) Buttery odorants typically have a sharp and strong
peak for a C=O stretching mode at ~1,700 cm−1, small
peaks at 500–1,500 cm−1, and a weak and small peak
of C–H stretching, or two at 3,000–3,200 cm−1.

(5) Oily, popcorn odor quality is associated with the
spectrum pattern of a group of dense peaks with medium
to high intensity at 500–1,500 cm−1, a prominently
strong peak for a C–H bending mode at 1,270 cm−1, a
strong peak of C=O stretching at ~1,700 cm−1.

These results indicate that odorant compounds in
different odor categories are distinguishable based on their
vibrational spectra. Although our finding supports the
conclusion drawn by Turin [11], the effect of an olfactory
receptor on vibrations should be investigated. Therefore,
vibrational frequencies inside previously described 7TMHs
protein models will be discussed in the next section.

Vibration spectra of odorants in the complex state

The spectra derived from odorants inside 7TMHs proteins
obtained by the ONIOM(B3LYP/6-311++G(d,p):PM3)

Fig. 4 Binding energies
(kcal mol−1) from the ONIOM
[B3LYP/6-311++G(d,p):PM3]
calculations
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method are shown in Fig. 7 along with patterns in the gas
phase in black. The differences in the vibrational frequen-
cies of odorants inside 7TMHs and in the isolated state
were relatively small. However, changes in the peak
intensities were sometimes large. New vibrations with low
frequencies (100–300 cm−1) emerged in the complex state
for all odorants, but they are associated with translation and
rotation modes of odorants trapped in the protein.

The key frequencies, magnitude and directions of shifts
and changes in their intensities for each odor category are
summarized in Table 2. In the odorant/protein complex
state, the νC=O stretching mode at 1,700–1,800 cm−1 is
always shifted to lower energy (red shift), while the
intensities of many of the vibrational modes increase,
especially in the range of 1,000–1,700 cm−1. Characteristic
changes in intensities are also found for each odor category.
The intensity of the σC–H (H–Cring–Cring–H) bending
mode is increased by 0.21 km mol−1 in the roasted odor
category while it decreased by 0.24 km mol−1 in the oily-
popcorn odor category. The spectrum differences observed
for compounds in the roasted odor category, which are
devoid of νC=O, were small compared to those of
compounds in other odor categories. Higher intensity and
shifted frequency of the vibration mode in the complex
results from interactions of the ligands with residues of the

membrane protein such as Lys296, Tyr268, Glu182,
Thr119, Thr118 and Ala117. For example, acetic acid in
the complex state shows significant changes in frequency
and intensity of the O–H stretching mode at ~3,450 cm−1

(red shift by 320 cm−1 and intensity changes by
11.061 km mol−1) because it stretches toward the carbox-
ylate oxygen of Glu182, with which the ligand forms a
hydrogen bond with an O⋯H distance of 1.56Å. The same
phenomenon is observed for 2-acetyl-1-pyrroline, where
frequency shifts and higher intensities are found at ~1,700
and 2,900 cm−1, as the carbonyl oxygen of 2-acetyl-1-
pyrroline stretches toward the hydroxyl group of Thr119,
which forms a hydrogen bond with an O⋯H distance of
about 1.83Å. This leads to the frequency shift of the C=O
stretching mode at ~1,700 cm−1, while the shift of the C–H
stretching mode at ~2,900 cm−1 was induced by the
hydrogen bond with the C=O group.

In the previous section we have seen that odorant
molecules in different odor category could be distinguished
by their spectrum patterns in the isolated state. Since the
odor is actually sensed when the ligand is bound to the
receptor, spectrum patterns in the complex state may serve
as better fingerprints of odor categories. However, we did
not observe major differences between the spectrum
patterns in the complex state and those in the isolated state.

Fig. 5 Infrared (IR) spectra obtained from experiment and calculation at B3LYP/6-311++G(d,p) level for acetylpyrazine (a, b) and dicetyl (c, d)
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Therefore, we conclude that the spectrum patterns in the
isolated state can be used to distinguish between different
odor categories. Further studies of the frequency shifts and
intensity changes triggered by odorant/receptor interactions
are needed to clarify the role played by the receptor in odor
recognition.

Principal component analysis

The IR frequency calculations clearly demonstrate that
vibration frequencies, generated from vibration modes of
odorants, change when these compounds bind to the protein
membrane. Low-frequency vibration modes such as the

Fig. 6a–e Overlay of the calculated IR spectrum at B3LYP/6-311++G
(d,p) from odorants in isolation state in the same odor-quality. a Acid,
pungent (acetaldehyde, 2-methylpropanal and acetic acid in blue, red
and green, respectively); b roasted (2-ethyl-3-methylpyrazine, thiazole
and 2-furanmethanethiol in blue, red and green, respectively); c sweet-

roasted (acetylpyrazine, 2-acetylthiazole and 2-acetyl-1-pyrroline in
blue, red and green, respectively); d buttery (diacetyl, 2,3-pentadione
and 3-methylbutanal in blue, red and green, respectively); and e oily,
popcorn (acetylpyridine (all isomers), 2-acetyl-1-pyrroline and 2-
pentylpyridine in blue, red and green, respectively)
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(a) Acid, Pungent (b) Roasted

(c) Sweet (d) Buttery

(e) Oily, Popcorn

Fig. 7 Overlay of the calculated IR spectrum at ONIOM[B3LYP/6-
311++G(d,p):PM3] from odorants in the complex state . See Fig. 6 for
details. Black dashed line Calculated spectrum in the isolation state.

Note that 2-pentylpyridine is omitted in the presentation for oily,
popcorn odor-quality because it binds in a manner different from those
of other compounds

Table 2 Frequencies (cm−1) and values in parenthesis represent frequency shifts (cm−1) and changes in intensity (km mol−1) in the protein
environment obtained in each odor category

Odor category Frequencies (frequency shift, intensity change)

Acid (pungent) 1,757–1,800νC=O (−42, 0)
Roasted 754–1,137σC-H (0, +0.21), 3,050–3,242νC-H (−43, 0)
Sweet-roasted 1,300–1,730 (0, +0.88), 1,709–1,738νC=O (−38, 0), 2,903–3,054νC-H (−161, 0)
Buttery 1,400–1,764 (0, +0.46), 1,754–1,764νC=O (−27, 0), 3,020–3,039 (−55, 0), 3,139–3,288 (0, −0.11)
Oily, popcorn 245–262 (+53, 0), 1,270–1,289 σC-H (0, −0.24)
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CH3 rocking, ring C–H wagging and ring breathing modes
are shifted consistently to higher frequencies (higher
energy). In contrast, high-frequency vibration modes such
as the CH3 stretching and C=O stretching modes are
shifted consistently to lower frequencies (lower energy).
Vibration frequencies in the middle range ~750–1,600 cm–1

underwent either blue shift or red shift. To better understand
the complex patterns of the vibration shifts, further analysis
was carried out based on the statistical method of principal
component analysis (PCA).

PCA allows extraction of key representations from a
large data set containing several variables. On the vibration
studied here, our PCA is concerned with the frequency
shifts of vibrational modes as the input variables. In the
calculations obtained, a vibration spectrum is composed of
a multitude of vibration modes; however, only nine
vibration-shift descriptors are selected as the common
vibration modes in our compound series. The PCA model
derived from the frequency shifts of the CH3 rocking, ring
C–H wagging, ring breathing, C–C stretching, C=N
stretching, ring C–H rocking, CH3 umbrella, C=O stretch-
ing and CH3 symmetric stretching modes account for
approximately 55% of the total variance in the descriptors.
The relationship between the frequency shifts and odor
categories was analyzed by loadings and scores plots of
PCA.

The PCA loading plot indicates the correlations between
descriptors, which are the vibration modes, and is shown in
Fig. 8. Descriptors are interpreted as being highly correlated
if they are located close to each other in the plot; therefore,
nine frequency-shift variables can be reduced into four
groups. The first group contains the C–C stretching mode.
The second group contains the ring C–H wagging, CH3

umbrella, C=N stretching and CH3 rocking modes. The
third group contains the ring breathing, ring C–H rocking
and C=O stretching modes. The fourth group contains the

CH3 symmetric stretching mode. Descriptors in groups one
and three are inversely intercorrelated, as are interactions
between groups two and four. In addition, points at the
extreme x- and y-axes indicate the descriptors have strong
effects.

Separation among different odor categories can be
observed from the PCA scores plot as shown in Fig. 9.
Compounds with the acid, roasted and sweet-roasted odor
qualities are clearly separated. Although compounds with
the buttery and oily-popcorn odor quality are distributed
close to the origin of the x- and y-axes, they are well
classified. In fact, the first component describes the acid
and sweet-roasted odor quality. The descriptors for some
of the modes, such as the ring C-H wagging, CH3

Fig. 9 PCA scores plot from components one and two. Odor-
categories are colored as following: black acid odor; red roasted;
green sweet roasted; purple buttery; blue oily, popcorn

Fig. 8 Principal component
analysis (PCA) loadings
plot from components
one and two
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umbrella, C=N stretching and CH3 rocking modes, show
strong positive loading, and therefore these values will
increase in magnitude in going from the sweet-roasted to
the acid odor quality. In contrast, the frequency shift of the
CH3 symmetric stretching mode was found to have strong
negative loading on component one, indicating that this
value increases in ligands going from the acid to the
sweet-roasted odor quality. This negative loading shows
opposite effect to odor quality, compared with the above
mentioned vibrational modes, which have positive load-
ing. The second component helps describe the acid,
buttery, oily-popcorn and roasted odor quality. Frequency-
shift descriptors such as ring breathing, ring C-H
rocking and C=O exhibit marked positive loading on
component two; therefore, these values will increase in
magnitude in going from the roasted to the buttery odor
quality. The opposite trend was observed for shifts of
the C–C stretching mode. Thus, for this frequency
mode, negative loading can be seen on both components
one and two (Fig. 8). These results indicate that odor
perception has to do with frequency shifts of odorants in
the receptor. Thus, our results support the hypothesis that
the receptor may sense the vibration shifts of the odorant
compounds for odor identification. Our results also
demonstrate that PCA allows us to determine the relation-
ship between the frequency shift and odor quality.

Conclusions

To better understand the smell sensation and structure-odor
relationship of molecules, a series of theoretical calcula-
tions were performed. Vibrational properties of key volatile
compounds from bread baking such as acetaldehyde,
acetylpyrazine, diacetyl, 2-ethyl-3-methylpyrazine and ace-
tylpyridine, which induce acid (pungent), roasted, buttery,
sweet-roasted, and oily-popcorn odors, respectively, were
examined by using the B3LYP/6-311++G(d,p) method for
the isolated state and the ONIOM(B3LYP/6-311++G(d,p):
PM3) method for the complex state, employing a 703-atom
model of bovine rhodopsin as the receptor. We found that
these odorant molecules bind to the membrane protein less
tightly than drug/enzyme systems that bind in a “lock and
key” manner.

Odorants in each odor quality exhibit characteristic
vibration spectrum patterns in the isolated state as well as
in the complex state. Even though the vibrational
frequencies of odorants in the gas phase and in the
complex are quite similar, differences, especially in
intensity, are apparent. Interactions, such as hydrogen
bonding, between odorant molecules and the surrounding
residues not only shift the vibration frequencies but also
sometimes yield higher intensities for the corresponding

vibration modes. If the vibration properties of odorant
molecules are related to the odor as suggested by previous
studies, vibrational spectrum patterns in the gas phase
would provide “fingerprints” of odor categories for a
series of compounds. To gain more detailed insight into
the vibration of ligands in complex with protein mem-
branes, we also employed PCA to explore the relationship
between the frequency shifts and the odor categories. We
found significant frequency shifts of the C–C stretching,
CH3 umbrella, C=O stretching and CH3 symmetric
stretching modes, which allow the oder category to be
characterized. The loadings plot demonstrates that the
frequency shifts of the C–C stretching mode exhibit
positive loading, whereas the shifts of the C=O stretching
mode exhibit negative loading. Thus, these vibrational
modes show opposite behavior in terms of odor category
identification. The same interpretation was obtained for
the frequency shift of the CH3 umbrella and CH3

symmetric stretching modes. The four groups obtained
by PCA clearly classify the five odor categories. The acid
and sweet-roasted odor categories correlate strongly with
the frequency shift of the CH3 symmetric stretching and
CH3 umbrella modes. The acid, buttery, oily-popcorn and
roasted odor categories are well described by the frequen-
cy shifts of the C–C stretching and CH3 symmetric
stretching modes. These results therefore support the
hypothesis that 7TMH receptors detect the characteristic
vibration shifts of molecules in order to precisely identify
the odor. Because of the lack of a crystal structure for the
human OR, we used a crystal structure of bovine
rhodopsin for our analysis. However, we are aware that
rhodopsins and ORs have several differences in structure
as well as in physiological function. Hence, further studies
using more reliable models are needed to firmly correlate
vibrational frequency shifts and smelling sensation.
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Abstract Structure and energy calculations of pristine and
COOH-modified model single wall carbon nanotubes
(SWCNTs) of different length were performed at B3LYP/
6-31G* level of theory. From 1 to 9 COOH groups were
added at the end of the nanotube. The differences in
structure and energetics of partially and fully functionalized
SWCNTs at one end of the nanotube are observed. Up to
nine COOH groups could be added at one end of (9,0)
zigzag SWCNT in case of full functionalization. However,
for (5,5) armchair SWCNT, the full functionalization was
impossible due to steric crowding and rim deformation. The

dependence of substituent attachment energy on the number
of substituents at the carbon nanotube rim was observed.

Keywords Carboxylation energy . COOH
functionalization . DFT. End-substitution . Zigzag and
armchair SWCNT

Introduction

Three different types of carbon nanotubes are experimentally
observed: armchair, zigzag and chiral [1]. These carbon
structures are finished with semispheres containing
pentagons and hexagons, being formally parts of fullerenes.
Due to their structure, the CNTs are hydrophobic, strongly
interact with light and possess interesting electrical and
physical properties [1–3].

Modification of hydrophobic carbon nanotubes by
allowing stronger intermolecular interactions, leading to
solubility is expected upon addition of selected small
molecules covalently bonded to the (a) end, (b) surface, or
(c) both the end and surface (mixed) of SWCNTs [2, 4–13].
The rim structure of SWCNT in case of zigzag or armchair
open ended CNT shows a different pattern. Zigzag carbon
nanotubes show metallic or semiconductor properties and
their ends shows “saw-tooth” like shape. Functionalized
carbon nanotubes are promising candidates in material
sciences and nanomedicine [1–3]. For example, OH,
COOH or NH2 functionalized CNT are easily transformed
and could bear longer chains connecting antibodies or
drugs. End-substituted SWCNT are by-products of mild
oxidation and carboxylic, carbonyl and hydroxyl groups are
frequently formed. Most previous works [4–6] concentrated
on single functionalized SWCNTs and the impact of
substituent on physical properties of modified versus
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pristine structure (for example, density of states, HOMO-
LUMO gap). The pristine CNTs are insoluble in water and
organic solvents and this is a serious hindrance in their
industrial applications, for example, as efficient nano-
composites [1, 14, 15].

Earlier works demonstrated a possibility of transforming
inert and hydrophobic CNTs, into soluble forms [14–17].
This was accomplished by subsequent chemical modification
of water soluble CNTs, containing COOH groups [14–17].
Unfortunately, little is known about the systematic changes
of energy of zigzag and armchair SWCNTs upon consecutive
replacement of rim hydrogen atoms by COOH groups.

Density functional theory (DFT) and, in particular, the
exchange-correlation B3LYP hybrid density functional is
widely used in molecular modeling studies to predict
structure, spectroscopic parameters and energy changes of
small, middle and large size molecules [7, 8, 18–20]. Due
to the large size of CNTs, the DFT calculations with
relatively small basis sets (3-21G or 6-31G*), and also
AM1 and PM3 semiempirical methods, have been used for
theoretical description of molecular structure and other
parameters of finite models of CNTs [8].

In this study, as an extension of our previous works on
hydroxyl substituted SWCNTs [19, 21, 22], we would
like to get a more detailed information at the atomistic

level on the open-end CNT modification with COOH, up
to full substitution with nine (zigzag) or ten (armchair)
carboxylic groups.

Computational methods

All calculations were performed using Gaussian 09 pro-
gram [23]. Reliable exchange-correlational B3LYP hybrid
density functional and basis sets of relatively small size
(3-21G and 6-31G*), enabling completing fairly large scale
calculations were selected. Full structure optimization of
unsubstituted open-ended (with dangling bonds on carbon
saturated with hydrogen atoms), and COOH-modified
SWCNTs were performed. Several models of SWCNT
were selected, including (9,0) zigzag and (5,5) armchair
structures with one and three layers (strings) of hexagon
units. IR and Raman harmonic frequencies were calculated
in case of one layer with one to 9/10 COOH substituents.
All positive frequencies ensured ground state structure of
the optimized system.

For comparison purposes only, the calculations with
small model molecules including methane, benzene,
anthracene and phenanthrene before, and after replacing
one hydrogen atom with the carboxyl group were performed

Fig. 1 Energy change upon rotation of COOH substituent relative to ring plane in (a) benzoic acid and (b) anthracene-9-carboxylic acid and
phenathrene-4-carboxylic acid

Scheme 1 Small model molecules (benzoic, anthracene-9-carboxylic and phenathrene-4-carboxylic acids
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at the same level of theory. In addition, to verify the basis set
quality impact, these calculations were performed with a large
basis set (6-311++G(3df,2pd).

Energy of one COOH group formation at nanotube
terminated initially with H atoms was calculated by
considering a hypothetical reaction:

SWCNT�HþCH3COOH ! SWCNT� COOHþCH4: ð1Þ
Energies of adding subsequent groups (ΔE in kcal mol-1)

were assumed as follows:

$En ¼ E SWCNT COOHð Þn
� �þ E CH4ð Þ� �

� E SWCNT COOHð Þn�1

� �þ E CH3COOHð Þ� �
;

ð2Þ
where n=1,2,…9 (10).

Initially, the calculations were conducted at B3LYP/3-
21G level of theory. Qualitatively, the changes in energies

obtained with smaller basis set (3-21G) were similar to
those, obtained at B3LYP/6-31G*. Thus, the final results,
obtained with the larger basis set will be only discussed.

Results and discussion

The carboxylic group can be considered as an asymmetric
substituent with two different ends (O atom vs. OH group)
and their position in respect to the rim of the CNT be
positioned in a way which minimizes the interactions with
the neighboring H-atoms and/or forms H-bonds with other
COOH substituents. This was tested on model systems
(Scheme 1) by rotating the COOH substituent relative to
the aromatic ring plane (changing the dihedral angle
Cring–Cring–C=O).

The energy landscape of COOH rotation in case of
monosubstituted benzene, phenanthrene and anthracene are
shown in Fig. 1. In case of benzene, the energy minimum,
corresponding to favorable carboxylic orientation, coplanar
with the ring, is observed and the perpendicular position,
e.g., at both sides of the ring, are about 8 kcal mol-1 higher.
In case of anthracene, the energy minimum corresponds to
about 45 degree deviation of COOH plane from rings plane
and there are also two maxima of the same height (at about
3 kcal mol-1) for the perpendicular orientation. The rotation
of COOH in phenanthrene at position 4 (see Scheme 1)
leads to an asymmetric shape of energy curve. The basis set
effect on the position of energy maxima upon COOH
rotation in C6H5COOH is also shown in Fig. 1a. Thus, upon
improving the basis set quality from 6-31 G* to 6-311++G**
and 6-311++G(3df,2pd) the barrier height slightly decreases
(from 7.85 to 6.73 and 6.52 kcal mol-1). It is apparent that

Fig. 3 Energy change upon rotation of COOH substituent at the rim of model (a) zigzag and (b) armchair SWCNTs

Fig. 2 Optimized structures of model (a) zigzag and (b) armchair
SWCNTs with a single COOH substituent at the rim (dimensions in Å)
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the barrier height decreases by about 1.3 kcal mol-1 upon
significantly improving the basis set quality.

In Fig. 2a and b are shown optimized structures of
zigzag and armchair CNT consisting of three ring layers
with a single COOH substituent at the rim.

In Fig. 3 are shown energy landscapes of single COOH
group rotation attached to zigzag and armchair SWCNTs. In
this case, the preferred geometry is observed for both -OH
and =O ends of carboxylic group outside the tube (on the
circumference). Two energy maxima are observed for
COOH group oriented along the tube radius and the
slightly lower one corresponds to OH being outside the
tube. In case of zigzag CNT, the energy minimum
corresponds to C–C–C=O angle of about −5 degrees,
(substituent on the circumference) and the highest maximum
corresponds to about −90 degrees (C=O outside the tube).
The other maximum (with C=O inside, or oriented toward the
tube center) is slightly lower. Similarly to Fig. 1a, the
improvement of basis set quality from 3-21G to 6-31G*
leads to energy barrier lowering by about 4 kcal mol-1. In the
case of carboxylic group rotation at the armchair rim, the
situation is similar and the corresponding barrier heights are
9 and 7 kcal mol-1 and the energy minimum is observed at
about −10 degrees.

Up to nine carboxylic substituents were placed consec-
utively at the zigzag rim (see Fig. 4a), forming stable
structures. In this case, a kind of threefold symmetry was
observed. Nevertheless, some funnel shape deformation and
increase of the tube-end diameter was observed.

The armchair model consisting of three hexagon layers
with up to nine COOH groups at one rim was also stable. In
addition, upon complete functionalization of one hexagon

layer (the shortest armchair nanotube model) a stable
system was also observed (Fig. 4b). However, all attempts
to obtain fully functionalized one end of a longer tube,
containing three layers of hexagons, failed. This was
probably due to steric crowding at the relatively rigid tube
skeleton end.

a

b

Fig. 5 Dependence of B3LYP predicted carboxylation energy
according to Eq. 2 for model zigzag and (b) armchair SWCNTs
functionalization at two basis set sizes. For better visualization the
data points are connected

CH4 C6H6

-COOH

ΔE −3.8
Δ(E+ZPV) −4.9
-OHa [19]

ΔE −29.4 −39.9
Δ(E+ZPV) −26.5 −38.4

Table 1 Comparison of carbox-
ylation and hydroxylation energy
(kcal mol-1) calculated at B3LYP/
6-311++G(3df,2pd) level for two
model compounds according to
Eq. 2

a) in agreement with formula (2)
an opposite sign to that in ref.
[19] is given

Fig. 4 Optimized structures of model (a) zigzag and (b) armchair
SWCNTs fully functionalized with COOH substituents at the rim.
Threefold symmetry is indicated for zigzag nanotube

2244 J Mol Model (2012) 18:2241–2246



In the next step, starting frommodel systems ofmethane and
benzene, we examined the energetics of substitution process
calculated according to Eq. 2 (see Table 1). Addition of ZPV
correction changes the substitution energy slightly while
hydroxylation is more favorable in the case of benzene.

The relative carboxylation energy, calculated with Eq. 2
vs. the number of COOH substituents for zigzag and
armchair are displaced in Fig. 5a and b.

It is evident from Fig. 5a that the carboxylation energy
for the first hydrogen atom at the rim of zigzag nanotube
formed from three layers is about −13 kcal mol-1. This
differs from the calculated previously [19] hydroxylation
energy of about −35 kcal mol-1. Addition of the second
COOH group differs by about 10 kcal mol-1. Significantly
smaller energy increments are needed for adding three to
nine carboxylic groups.

In Fig. 5b is shown a similar carboxylation energy
dependence on replacement of consecutive hydrogen atoms
at the rim of armchair CNT model. The first carboxylation
energy is higher than for zigzag model (about –8.5 vs.
–13 kcal mol-1) whereas for the second group this energy is
about −1 vs. –3 kcal mol-1, for armchair and zigzag models,
respectively. However, some oscillation of energy is
observed, with minima located at odd numbers of COOH.
This resembles the results for hydroxylation energy pattern
observed previously for armchair CNT [21, 22]. The reason
of this behavior was explained earlier as a result of different
H-bond ring pattern formation at the rim. The results
presented in Fig. 5 indicate higher reactivity of zigzag
versus armchair SWCNT rim toward carboxylation. This is
in agreement with earlier observations by Kim et al. [24].

Conclusions

The present density theory studies using B3LYP hybrid
functional indicate a possibility of COOH-functionalization
of one end of zigzag CNT with one to nine substituents.
However, the end of armchair nanotube cannot be fully
functionalized with COOH groups (one hydrogen atom
remains unsubstituted).

On the basis of the performed B3LYP/6-31G* calculations
it appears that the replacement of one hydrogen atom at the
rim of the zigzag CNT model is a more exothermic process
than for armchair model (−13 vs −8.5 kcal mol-1). This
indicates a higher reactivity of zigzag CNT toward carbox-
ylation. A gradual and nearly linear increase of energy is
observed for subsequent carboxylation, starting from two to
nine groups on a zigzag nanotube end.
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Abstract We present an understanding of the quasi-regular
or regular hexagonal enlargement of 1,3,5-triamino-2,4,6
(TATB) from its root molecule to its bulk crystal, by only
its root molecule. That is, the mechanism of regular
hexagonal TATB molecules stacking to a quasi-regular or
regular hexagonal TATB crystal was discussed using a
combined method of a density functional theory BLYP and
Dreiding forcefield, and a series of static scanning
calculations. As a result, we found that there are two styles
of forming the most energetically favored TATB dimers: a
hydrogen bonding along the molecular plane and an offset
π-stacking vertical to the plane, just leading to the
outspread and the thickening of the regular hexagon during
the crystal growth, respectively. At the same time, it was
found that the rotation of one TATB layer in any parallel
stacked double-layer should overcome a very high energy
barrier. It suggests that the TATB molecules or layers are
arranged on the crystal face always along the special
orientation of a regular hexagon and other orientations are
strongly thermodynamically forbidden, resulting in a
hexagonal crystal bulk.

Keywords 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) .

Crystal shape . Hydrogen bonding

Introduction

Crystal morphology including crystal shape and size is
important to many industrial processes due to its remark-
able effects on the qualities and the functionalities of
intermediates and final products. Only for explosives, it has
already been found that their crystal shapes and sizes can
influence their sensitivities versus external stimuli. For
example, for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo-
cine (HMX) crystals with different shapes and sizes, its
spherically-shaped crystal is less sensitive to mechanical
stimuli than its needle shaped one or its sheet shaped one in
the case of a same size; the smaller crystal is less sensitive
to mechanical stimuli but more sensitive to heat than the
bigger one in the case of a similar shape [1, 2]. According
to this, the explosive crystals are prepared with different
shapes and sizes to satisfy the various practical require-
ments. So to speak, it is also important to control the crystal
shapes and sizes of synthesized explosives as to synthesize
some new explosive compounds with comprehensively
good properties. As a matter of fact, the bottleneck of
development of the traditional organic explosive com-
pounds containing C, H, O and N atoms appeared tens of
years ago, due to the intrinsic energy-sensitivity contradic-
tion in them: high energy usually goes with high sensitivity
denoting low safety [3, 4]. Therefore, it is in a certain sense
easier to realize or of more practical interest to enhance the
crystal qualities of the existing explosives such as to
increase the purity, to control the shape and size, to
decrease the imperfection, and so forth.

In the current era of material design, people can to a
certain extent make prior computer-and-program-aided
predictions before they decide to begin a crystal shape
engineering [5]. Even though there are still many difficul-
ties in understanding and predicting crystal morphology,
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lots of endeavors have been done to develop and perfect
them, such as describing a crystal energy landscape [6],
improving the attachment energy model (AE) [7, 8] in view
of the effects of solvent and some dynamic factors [9–11].
By choosing designed solvents or inhibitors, people can get
some crystals with expected crystal habits [12]. This is the
reason for our optimism, but we cannot ignore the current
difficulty in predicting accurately the crystal structures and
habits from their root molecules.

1,3,5-triamine-2,4,6-trinitrobenzene (TATB) is a repre-
sentative insensitive explosive [13] and a special nonlinear
optical material [14]. Currently, we found that the shape of
the TATB crystal refined from its dimethyl sulfoxide
(DMSO) solution [15] in Fig. 1 is very similar to that of
its root molecule, a regular hexagon. The regular hexagonal
shape of TATB molecule in Fig. 2 can be regarded as an
augment of the regular hexagonal benzene ring by adding
three amino groups and three nitro groups alternately onto
the benzene ring. That is to say, the macro shape of the
TATB crystal is very similar to the micro one of its
molecule.

This enlargement from a root molecule to its bulk crystal
without any obvious shape change is so rare and interesting
that it attracts our attention and motivates us to understand
the phenomenon. Obviously, it should be a typical case to
explore the relationship between molecular and crystal
shapes. We just intend to understand this enlargement by
only a root TATB molecule without respect to its lattice
structures and detailed crystallization conditions. TATB in
fact has very low solubilities in almost all traditional

solvents excluding the newly-found ionic liquids with good
solubilities for TATB [16]. It implies the small and
negligible solute-solvent interactions and the strong
solute-solute interactions during the crystallization from
the traditional solvents such as DMSO, which is helpful for
us to simplify an assumption of thermodynamic and kinetic
conditions for understanding. That is to say, the influence
of solvent is not considered in the assumption.

Methodologies

From the (quasi-) regular hexagonal shapes of the TATB
crystals shown in Fig. 1, we can find that there are two
sides involved in the crystal growth of TATB: the outspread
of a regular hexagon and its thickening with a necessarily
invariable orientation. That is, the above-mentioned en-
largement from a root molecule to a crystal bulk includes
the outspread and the thickening. Obviously, we will not

Fig. 1 Optical images of the crystallized TATB from DMSO. (a) and (b) show the only one hexagonal shell of crystallized TATB; (c-h) show the
superimpositions without twist of many hexagonal layers with different sizes of crystallized TATB

Fig. 2 Regular hexagonal shape
of TATB molecule
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see a thickened hexagon if these hexagons spread not in a
consistent orientation.

This is actually a topic of crystal packing in which the
dimer interactions are undoubtedly the basic ones. Some
research on the molecular arrangement in crystal have been
carried out based on the dimer interactions. For example,
Dunitz and Gavezzotti offered a method for a quantitative
description of crystal packing by molecular pairs and
applied it to the hexamorphic crystal system of 5-methyl-
2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile [17]. Al-
so, the idea of dimer interactions was adopted here for
understanding the enlargement. As illustrated in Fig. 3,
there are eight main possible orientations of TATB crystal
growth, i.e., in fact the orientations of molecular arrange-
ment in crystal: six of the planar hydrogen bonded
interactions leading to the outspread, and two of the π-
stacking interactions leading to the thickening. We therefore
arranged TATB dimers according to these orientations.

As to TATB dimers, two typical cases in terms of its
crystal packing in Fig. 4, Dimers a and c, have been
discussed using quantum chemical methods [18–20]. An
all-atom molecular forcefield for TATB was established by
Gee et al. [18] to simulate its isobaric thermal expansion
and isothermal compression under hydrostatic pressures,
resulting in good agreement with experiment. In this
forcefield, the intermolecular interaction potential is deter-
mined by the single-point energies of TATB dimers
calculated using the MP2/6-31 G(d, p) method. It confirms

that it is feasible to make a forcefield reliable to a bigger
system, based on ab initio calculation results of some much
smaller systems involved in the bigger one. Also, a similar
combined method was employed for our calculations. That
is, the interaction energy (ΔE) of a TATB dimer can be
obtained after three steps: (1) relax the TATB molecule and
calculate the electrostatic potential (ESP) charges of all
atoms using BLYP/DNP method [21, 22]. The results are
shown in Fig. 5; (2) keep the relaxed TATB molecule rigid,
assign each atom ESP charge, and arrange the TATB dimers
in a static scanning way in view of some of the most
possible styles; and (3) calculate the single-point energy of
each dimer and a single TATB molecule using Dreiding
forcefield [23]. ΔE is the energy difference after forming a
dimer. It is obviously a combined method in that the
molecular geometries and charges are from density func-
tional theory (DFT) calculations, the interaction function is
of Dreiding forcefield and the double TATB molecules are
arranged in a static scanning manner.

To verify the reliability of the combined method to the
TATB dimers, we compared ΔE calculated using it and the
MP2 method, respectively. Gee et al.’s method [18] was
referred to arrange the TATB dimers to compute ΔE: (1)
make double TATB molecules in a plane and in a head-to-
tail contact manner just as along the a crystallographic axis
of TATB, and make double TATB molecules eclipsed

Fig. 3 Six red arrows and (or a double-headed arrow) point to the crystal growth orientations determined by the TATB molecular structure,
the intermolecular H-bonding in the molecular plane and the π-stacking perpendicular to the plane, respectively

Fig. 4 Two kinds of dimers in terms of the crystal packing of TATB
Fig. 5 Bond lengths (unit in Å) and ESP charges (unit in e) of TATB
molecules derived from BLYP/DNP calculations
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stacked just like in the unit cell of TATB, like Dimers a and
c in Fig. 4, respectively; and (2) fix one TATB molecule
and displace another one in the dimer along the a (for
Dimer a) or the c (for Dimer c) crystallographic axis a
distance Δr and calculate the corresponding ΔE. As shown
in Fig. 6, the ΔE derived from our combined method is
qualitatively comparable to that of MP2/6-31 G(d, p)
calculations [18]: they have the same changing trend and
the same site corresponding to the most attraction. We think

that our combined method is qualitatively adequate to
understand the enlargement. By the way, we have also
combined other forcefield functions, including COMPASS
[24], CVFF [25] and UFF [26], with the above DFT, the
BLYP/DNP method. However, we found that they could
not give comparable values to MP2 results.

Furthermore, to be closer to the practical “birth and
spread” mechanism model of crystal growth, we con-
structed some stacked double-layers and applied the
combined method to discuss the thermodynamic resulted
from the orientation variation of one layer overlaid on
another layer in each double-layer. This is important to
understand the thickening, as stressed later.

Results and discussion

Outspread of the regular hexagon

As illustrated in Fig. 3, the outspread of a regularly
hexagonal TATB molecule to a hexagonal crystal bulk is
mainly attributed to the planar intermolecular hydrogen
bonding. Therefore the dimer interaction calculations were
carried out for two styles of arrangement of double TATB
molecules in one plane in terms of the preferable formation
of hydrogen bonds. As a result, we can confirm that the
arrangement in Fig. 7a (style a) is more reasonable than that
in Fig. 7b (style b), by comparing ΔE and the possibility of
the molecular arrangement for the planar outspread. As
shown in Fig. 7, the biggest dimer attraction of style a is
4.9 kcal mol-1, slightly more than that of style b,
4.7 kcal mol-1. And style a has a little shorter intermolec-
ular distance than style b, 0.2 Å, which is helpful for the
impact molecular packing in crystal.

Fig. 6 Interaction energies (ΔE) of two kinds of TATB dimers
derived from the MP2 method (cited from ref [18]) and the combined
method. Δr is the displacing distance of one TATB molecule in the
dimer along an relative orientation like the a or c crystallographic axis

Fig. 7 Dimer interactions in the
case of the preferable formation
of hydrogen bonds. R is the
distance between the centroids
of double TATB molecules
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Also, we arranged six TATB molecules around a central
TATB molecule in terms of the styles of preferable
formation of hydrogen bonds as shown in Fig. 8a and b.
As illustrated in Fig. 8, the planar outspread of TATB
according to style a is much more energetically favored
than that according to style b: for the former, all the TATB
molecules are linked through hydrogen bonds not only
between the central molecule and the molecules around it
but also among these neighboring surrounding molecules;
for the latter, the hydrogen bonds form only through the
central TATB molecule and the surrounding molecules at
the cost of the repulsion among the neighboring surround-
ing molecules. It is therefore confirmed that the planar
hexagonal outspread according to style a is reasonable.

Now, we can discuss the outspread according to the
dominant style of the formation of hydrogen bonds as
mentioned above, with an assumption that this process is
thermodynamically and kinetically controlled by the more
intermolecular hydrogen bonds and the more free molecules
around a nucleus or a growing cluster, respectively.
Namely, more intermolecular hydrogen bonds can decrease

more energy and increase stability, and more free molecules
can increase the velocity of molecule packing. This
assumption should be reasonable due to the negligible
solute-solvent interactions and the strong solute-solute
interactions in TATB crystallization from DMSO. For
example, in Fig. 9c and e, ⊗ points to the next growth
site because the free molecules lessen their nearby even
though there may form the same quantity of hydrogen
bonds. Figure 9 shows a stepwise outspread around a center
TATB molecule, which is determined by the above
mentioned thermodynamic and kinetic rule. These steps
gradually form the bigger and bigger concentric hexagons
to a final hexagonal shell with a “birth and spread” 2-
Dimension growth mechanism. Obviously, this compact
and perfect outspread to a regular hexagonal shell takes
place only by style a.

Thickening of the regular hexagon

As indicated in Fig. 3, the thickening of a hexagonal layer
of TATB to a hexagonal crystal bulk is mainly attributed to

Fig. 9 Plots indicating the
“birth and spread” mechanism
of TATB to form a regular
hexagon. Orange warheads
point to the preferential growth
orientations and ⊗ points to the
next ones. The right superscript
and subscript of letter H are the
numbers of the intermolecular
H-bonds and the molecules in a
cluster, respectively. The pro-
cess tends to form more inter-
molecular H-bonds relative to
the finite number of molecules
(6 1). Both the first molecule (a)
and the last grown (h) have a
regular hexagonal shape

Fig. 8 Arranging TATB mole-
cules for the planar outspread
according to the two styles of
the preferable formation of hy-
drogen bonds. The dash shows
the hydrogen bonds
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the interlayer π-stacking interactions. Therefore, the cases
of π-stacking interactions in TATB dimers were taken into
account.

We firstly focus on the parallel π-stacking. As illustrated
in Fig. 10a and b, the nitro-amino superposition π-stacking
is much more energetically favored than the nitro-nitro one.
The difference of the total energy between them is mainly
resulted from the electrostatic interactions. Obviously, the
nitro-nitro stacking causes more repulsion than the nitro-
amino one. This can be examined in Fig. 10c by rotating
the top TATB molecule along its molecular plane through
its centroid: the electrostatic repulsion decreases when the

rotation angle θ increases from 0 to 60o, just corresponding
to the nitro-nitro and nitro-amino stacking, respectively.
Considering that the strongest π-stacking interaction
appears usually as an eclipsed one27, we translated the top
TATB molecule along an orientation of one of its C-Nitro
(or C-Amino) bonds as indicated in Fig. 10d. As expected,
the strongest π-stacking interaction takes place at
D=−4.0 Å, showing an eclipsed π-stacking indeed, that
is, double nitro-benzene stacking. Apparently, this eclipsed
π-stacking interaction is the foundation of thickening a
regular hexagonal root TATB molecule to a hexagonal bulk
crystal. In the most energetically favored TATB dimer, the

Fig. 10 Dimer interactions in
the case of the parallel π-
stacking. (a) and (b) are of the
face-to-face π-stacking, in
which only the intermolecular
distances can be changed. Two
TATB molecules are completely
superposed in (a) (nitro-nitro
stacking), and are superposed
with 600 rotation of the above
molecule along its molecular
plane in (b) (nitro-amino stack-
ing); (c) is of the face-to-face π-
stacking too in which the inter-
molecular distance and one
TATB molecule keeps fixed and
another TATB molecule rotates
around its centroid along the
molecular plane; (d) is of
eclipsed π-stacking, in which
the intermolecular distance and
the molecular orientations are
fixed, and only the sliding dis-
tance D of the above molecule
change. The negative D shows a
left translation, and the positive
D shows a right one
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orientation of the regular hexagonal shape of a TATB
molecule is not changed even though it rotates around its
centroid 120o due to its symmetry of D3h, equal to the
thickening of a regular hexagon. That is, by translation,
double hexagons can be completely superposed with each
other.

Also, another case of the π-stacking, T-shaped stacking,
was considered. As showed in Fig. 11a and b, both a nitro-
π interaction (4.4 kcal mol-1) and an amino-π attraction
(3.1 kcal mol-1) are less attractive than an eclipsed parallel
π-stacking one (11.9 kcal mol-1) in Fig. 10d. Considering
the periodicity of molecular packing in crystal, we think
that the two cases in Fig. 11a and b should appear
simultaneously. Then, the average value of the attraction
energy in the two cases, 3.8 kcal mol-1, is much less than
that of the parallel π-stacking, suggesting the molecular

packing in crystal according to this style is impossible.
Other two T-shaped stacking in Fig. 11c and d are also
impossible due to the great disadvantage of thermodynam-
ics. From above discussion of the π-stacking interactions,
we can confirm that the strongest dimer attraction is of an
eclipsed parallel π-stacking shown in Fig. 10d, which
determines in principle the hexagonally thickening.

Otherwise, to be closer to the practice of crystal growth,
we extended the hexagonal TATB molecule in π-stacking
interactions to a hexagonal layer composed of many TATB
molecules and examined whether the stacked layers have a
consistent orientation. As illustrated in Fig. 12, if the
stacked layers have different orientations, there will be no
thickened hexagon, i.e., a hexagonal crystal bulk. As
indicated in Fig. 13, we established a model to calculate
the rotation barrier to examine the possibility of the stacked

Fig. 11 Dimer interactions
in the case of T-shaped
π-stacking. R is the distance
between the centroids of double
TATB molecules
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layers with different orientations: (1) construction of the
layers. The hexagonal bottom layer is composed of 271
TATB molecules arranged like Fig. 9, that is, there are 10
TATB molecules on each edge of the layer; The top layer is
similar to the bottom one, with no more TATB molecules
than the bottom one. The distance between two neighboring
TATB molecules in the layer is 9.0 Å (centroid-centroid
distance) according to Fig. 7a; (2) arrangement of double
layers. Make the double layers face-to-face stacked, and the
centroids of double layers and two double-headed arrows in
Fig. 13 overlaid, respectively. For interlayer distance, we
selected two values: one is 3.5 Å in terms of the π-stacking
in the crystal and its usual interplanar distance [27, 28]; and
another is 3.008 Å considering the crystal density of

benzene derivatives of CHON high energy materials
usually less than 2 g/cm3 4, namely, 3.008 Å is an extreme
value corresponding to the density of 2 g/cm3; and (3)
displacement and rotation. Fix the bottom layer and
displace the top layer up in the figure plane 4 Å according
to Fig. 10d, to simulate the top layer growing on the bottom
layer. The rotation angle θ is zero this time as an initial
case. Then rotate the top layer around its centroid
clockwise. Calculate the total energy of every scanning
step and obtain the rotation barrier, i.e., relative energy
(RE) to the case of θ=0.

The calculated RE of four cases of each edge of the top
layer containing 1, 3, 5 and 10 TATB molecules are shown
in Figs. 14a–d, respectively. We can find from the figure
similar results without exception: (1) there is a period of
120o in the θ-RE curve, suggesting three possible orienta-
tions for the top layer precipitated on the bottom layer
along; and (2) the smallest RE=0 occurs at θ=0 (or 120o)
and the largest occurs at θ=60o, implying the orientation
deviation of the top layer relative to the bottom layer is
strongly thermodynamically forbidden, namely, the orien-
tations of the two hexagons of double layers should be
consistent with each other (θ=0 or 120o). It should be
attributed to the symmetry of the top layer, and in nature the
symmetry of the TATB molecule.

Through above discussion, we can understand the
regular or quasi-regular hexagonal bulk crystal shape from
a regular hexagonal root molecule: (1) according to the
assumed growth rule in Fig. 9, a regular hexagonal TATB
cluster forms; (2) a TATB molecule stacks on the cluster
plane as a birth, and step (1) repeats; (3) steps (1) and (2)
repeat to form a thickened hexagon, which is actually a
layer in final crystal packing as presented in Fig. 15c
(similar to the visible crystal bulk in Fig. 1a and b) and 15 d
(similar to the visible crystal bulk in Fig. 1c to h). And
some non-uniformity in practical growth causes a quasi-
regular hexagon. However, all the edge angles are always
kept 120o attributed to that the stacking is permissible only
along a regular hexagonal orientation and other orientations
are thermodynamically forbidden. In a word, in the
mechanism of TATB crystallization, the birth and enlarge-
ment of the regular hexagon are thermodynamically and
kinetically controlled, and the orientation of the hexagon is
strongly thermodynamically controlled.

Conclusions

Taking a typical example, TATB, we have understood the
relationship between molecular and crystal shapes by only
the root TATB molecule, without its experimental crystal
data or extensively applied models based on unit cell
structures for predicting the crystal shape such as BFDH,

Fig. 12 A plot showing no hexagonal thickening if these hexagons
are overlaid with different orientations

Fig. 13 Model for calculating the rotation barrier of the top layer
relative to the bottom layer
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equilibrium or attachment energy. These withouts imply the
simplicity and legibility of our understanding, which is

different from other conventional ones considering many
influence factors. This may be attributed to the high rigidity

Fig. 14 Calculated barriers
of the rotation scanning (RE).
From a to d, the edges of the top
hexagons (in red) are composed
of 1, 3, 5 and 10 TATB
molecules, respectively

Fig. 15 Plots indicating the TATB growth process: (a) is the case before nucleation, (b) shows the nucleation and growth, (c) and (d) are a single
hexagon layer and a multi hexagon layers stacked packing, corresponding to the practice illustrated in Fig. 1a and b, and c to h, respectively
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and high symmetry of the TATB molecule, the strong and
simple-patterned solute-solute interactions, and the weak
and negligible solute-solvent interactions, that is, straight-
forward internal factors (effect of solute itself) but few
external factors (effect of solvent). As a matter of fact, to
understand well or predict a crystal shape is very
challenging up to the present, due to the difficulties in
accurately describing crystallization mechanism under
different conditions. And the doubt of crystal predictions
cannot be eliminated yet. Accurate predictions are based on
good understandings. The understanding of TATB crystal
shape is expected to be useful to other predictions.
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Abstract A molecular modeling study was carried out to
investigate the most likely enzymatic disassembly mecha-
nism of dendrimers that were designed as potential
antichagasic and antileishmanial prodrugs. The models
contained myo-inositol (core), L-malic acid (spacer), and
active agents such as 3-hydroxyflavone, quercetin, and
hydroxymethylnitrofurazone (NFOH). A theoretical ap-
proach that considered one, two, or three branches has
already been performed and reported by our research group;
the work described herein focused on four (models A and
B), five, or six branches, and considered their physico-
chemical properties, such as spatial hindrance, electrostatic
potential mapping, and the lowest unoccupied molecular
orbital energy (ELUMO). The findings suggest that the
carbonyl group next to the myo-inositol is the most
promising ester breaking point.

Keywords Molecular modeling . Chagas disease .

Leishmaniasis . Dendrimer disassembly . Dendrimeric
prodrugs

Introduction

The causative agent of the neglected tropical disease known
as Chagas disease is the parasite Trypanosoma cruzi, which
is transmitted to mammals by a bite from an insect vector
[1]. This insect belongs to the family Reduviidae and
subfamily Triatominae. The protozoan and the disease were
described and discovered 101 years ago by the Brazilian
scientist Carlos Chagas [2]. The infection occurs across the
Americas, but especially in the region between the southern
United States and southern Argentina and Chile. Almost 15
million people are currently infected and 90 million people
are at risk of acquiring the disease [3]. Two drugs are
available to treat Chagas disease, benznidazole and nifurti-
mox. However, the efficacies of both of these drugs are
unclear in the chronic phase of the disease, they show high
incidences of side effects, and they both also require long
treatment times [4].

Almost 20 species of the protozoan genus Leishmania
sp. can cause leishmaniasis, which is another neglected
tropical disease, and is transmitted by the bite of a
phlebotomine sandfly [5]. Clinical manifestations include
cutaneous, mucocutaneous, and visceral leishmaniasis
(“kala-azar;” fatal if not treated). Twelve million people
are currently infected with this disease, and 60,000 die
every year [6]. The disease is considered endemic to 88
countries, including countries in southern Europe, North
Africa, the Middle East, Central and South America, and
the Indian subcontinent. It is not, however, endemic to
Southeast Asia and Australia [5, 7]. Unfortunately, the
drugs that are available to treat it are toxic, expensive, and
some of them require parenteral administration. These
disadvantages can lead patients to abandon leishmaniasis
treatment, resulting in the emergence of drug-resistant
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strains [5, 8–10]. Consequently, new chemotherapeutic
agents against Chagas disease and leishmaniasis are
urgently required.

Hydroxymethylnitrofurazone (NFOH), a nitrofurazone
derivative synthesized in our laboratory, has proven to be a
promising antichagasic compound; it presented enhanced in
vitro activity [11] in trypomastigotes, especially amasti-
gotes, in vivo activity in a murine model [12], and is four
times less toxic than its prototype, benznidazole [13]. This
derivative has stimulated several studies in our research
group and in our co-workers’ group. Flavonoids such as
quercetin and 3-hydroxyflavone have also shown good in
vitro activity against Chagas disease and leishmaniasis.
However, in vivo, they were not active against leishman-
iasis, or they presented a lower activity than miltefosine,
which is the standard drug used in biological assays [14].
Therefore, it is necessary to design efficient transporters of
these compounds in order to promote their use in
therapeutic applications [15].

Prodrug design is a molecular modification process that
is useful for improving drug characteristics; mainly their
pharmaceutical, pharmacokinetic, and pharmacodynamic
properties [16]. In this context, Chung and co-workers
published a quite interesting review article in 2008 on
twenty years of research in the field of the design of
prodrugs for treating neglected and extremely neglected
diseases [17].

A dendrimer is a unique class of synthetic molecules that
provide significant control over the size, branching density,
and surface functionality of molecules. These features
imply that dendrimers are promising candidates for drug
carriers [18]. Additionally, it has been observed that there is
a better control over the release of a drug when it is
covalently linked to a dendrimeric system, instead of
forming a complex through encapsulation or electrostatic
interactions [19, 20]. Dendrimer prodrug development may
involve the following strategies: (1) the drug is linked
directly to the dendrimer surface, establishing a covalent
interaction for example [18, 21, 22]; (2) a linker molecule
that is responsible for the interaction between branches is
included; [18, 23] (3) each branch contains a drug
molecule, leading to an exponential increase in the active
agent with each subsequent generation [the patent on this
approach was claimed by Giarolla and Ferreira in 2007
[24]); (4) drug molecules are bound to the dendritic
structure through electrostatic, hydrophobic, and
hydrogen-bonding interactions [21, 22]. There have already
been studies that have explored the potential of dendrimers
as prodrugs [25, 26].

The aim of this study was to apply molecular modeling
methods as promising tools in a disassembly investigation
of first-generation dendrimer prodrugs. The model prodrugs
studied had four (models A and B), five, or six branches.

They were composed of myo-inositol (the dendrimer core),

L-malic acid (the spacer), and three potentially antichagasic
and antileishmnaial bioactive agents: 3-hydroxyflavone,
quercetin, and NFOH (see Fig. 1). Ester cleavage is
probably performed enzymatically by nonspecific esterases.
For this reason, the two carbonyl groups from L-malic acid
were exploited. Similar preliminary studies have already
been performed by our group for models containing one,
two, or three branches [27].

Computational details

The computational procedure employed in this work
was almost the same as that reported previously [27],
but the dendrimers studied here had four (models A and
B), five, or six branches. The three-dimensional (3D)
structures of each dendrimer containing four, five, or six
branches as well as the bioactive agents NFOH, 3-
hydroxyflavone, and quercetin were constructed in their
neutral forms using the HyperChem 7.51 software [28].
The crystallized structures retrieved from the Brookhaven
Protein Data Bank (PDB) [29] and employed as standard
geometries to build the 3-hydroxyflavone and quercetin
models were 2g0l (NMR solution method) [30] and 1e8W
(resolution 2.50 Å) [31], respectively. The NFOH 3D
structure was constructed based on the crystallized
structure of nitrofurazone (PDB entry code 1yki; resolu-
tion 1.70 Å) [32].

The energy of each model was minimized through
the use of the MM+(molecular mechanics) force field
(HyperChem 7.51 [28] and the MOLSIM 3.2 software
package [33]), without any constrains. The MM+force field
corresponds to the extended MM2 force field [34]. Partial
atomic charges were calculated using the AM1 semiempir-
ical method [35], also implemented in the HyperChem 7.51
program. The energy-minimization methods—steepest
descent and conjugate gradient—were performed based on
a set number of cycles or iterations for each procedure. The
procedures were run sequentially, considering an energy
convergence criterion. The energy-minimized models were
used as initial structures to perform molecular dynamics
(MD) simulations [2 ns; size step 0.001 ps at 300 K].
Trajectory files were recorded every 20 steps, resulting in
100,000 conformations for each model. A dielectric
constant value of 3.5, which simulates the environment of
the biological membranes, was used in the analysis of each
model [36]. The hydration shell model proposed by
Hopfinger [37] was employed to estimate the solvation
energy contribution of the lowest energy conformation
identified from the MD simulation, since the MOLSIM 3.2
software does not consider explicit water molecules during
the MD simulations. Additionally, the hydrogen-bonding
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energy contribution was computed for only the minimum
energy conformers from MD simulations. The absence of
explicit water molecules from the simulation analysis can
lead to the generation and sampling of artifact states rather
than the actual binding mode. On the other hand, the
inclusion of explicit waters raises issues such as the
assignment of water molecules and the degree of sampling
needed to generate equilibrium/steady ensembles. These
unknowns can also lead to artifact states. The use of an
implicit solvation model as a hydration shell scheme
appeared to be both a good compromise and a way to
evaluate solvation effects [37].

The lowest energy conformation of each model was
selected from MD simulation, its energy was minimized,
and the electrostatic potential charges (ChelpG) were
calculated using the ab initio method HF/3-21G* (Gaussian
G03) [38]. The electrostatic potential (EP) of each model
was mapped on a Connolly surface using a color ramp
ranging from −8.5 to 8.5 e−2. Negative values of EP (i.e.,
higher electronic densities) are depicted in red, while
positive values (i.e., lower electronic densities) are shown
in blue. The lowest unoccupied molecular orbital energy
(ELUMO) of each model was also computed and visualized
using a range of −0.935 to 0.935 e−2. Hydrogen bonds were
displayed using the ViewerLite 4.2 program [39]. In this
software, the bonds are shown between bond donors and
acceptors throughout the entire molecule, and they are
shown whether or not there are explicit hydrogen atoms.
This can indicate intramolecular interactions that maintain
the stability of the structure (branches), and can highlight
intermolecular interactions with the aqueous medium
solvent.

Results and discussion

As already mentioned, the two carbonyl groups from L-
malic acid that were previously investigated [27] were also
exploited in this study. These groups are assumed to be
involved in dendrimer disassembly. The first carbonyl
group is closer to the myo-inositol core, whereas the
second is near the bioactive agent (3-hydroxyflavone,
quercetin, or NFOH). The spatial hindrance, electronic
density [map of electrostatic potential (MEP)], and LUMO
distribution map were carefully evaluated. Those physi-
cochemical properties may provide information indicating
which of the moieties—the core or the bioactive agent—in
the dendrimer system will be released first upon enzymatic
action. A group presenting low spatial hindrance would be
more likely to undergo enzymatic attack. The low
electronic density and LUMO distribution on the carbonyl
groups suggest that they are the most likely region to
suffer an enzymatic nucleophilic attack.

The molecular electrostatic potential at a given point p(x,
y,z) in the vicinity of a molecule is the force acting on a
positive test charge (a proton) located at p through the
electrical charge cloud generated through the molecule’s
electrons and nuclei. Although the molecular charge
distribution remains unperturbed by the presence of the
external test charge (no polarization occurs), the electro-
static potential of the molecule is still a good guide to the
molecule’s reactivity towards positively or negatively
charged reactants. This is typically visualized by mapping
the electrostatic potential onto a surface that reflects the
molecule’s boundaries. This surface can be generated by
overlapping the van der Waals radii of the molecule,

Fig. 1 Schematic representation of the dendrimer prodrugs studied in
this work, which contained myo-inositol (core), L-malic acid (spacer),
and the active agents (3-hydroxyflavone, quercetin, and NFOH). The

skeletons of the systems containing four (models A and B), five, or six
branches are also presented
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through the use of algorithms that calculate the solvent-
accessible surface of the molecule, or by employing a
constant value for the electron density. The MEP can also
be used to identify sites in the molecular system that act as
proton donors or acceptors, or as nucleophiles or electro-
philes, in terms of the drug–receptor molecular recognition
process.

Table 1 presents the values of the total potential energy
(Etotal) obtained for the lowest energy models selected from
MD simulations, the hydrogen-bonding energy contribu-
tions (EHb), the number of hydrogen bonds (Hb) in the
selected models, and the ELUMO values found for the
models containing four (models A and B), five, or six
branches plus the bioactive agent (3-hydroxyflavone,
quercetin, or NFOH).

The Etotal value corresponds to the sum of all energy
contributions within each chosen model, such as those
relating to stretching, bending, torsion, type 1–4 interac-
tions (Lennard–Jones), van der Waals interactions, electro-
static interactions, hydrogen bonding, and solvation [36]. In
general, the more negative the value of Etotal, the more
energetically favorable the system. However, more flexible
molecular systems (i.e., those with more degrees of
freedom) tend to present higher Etotal values.

All dendrimer models containing NFOH as the bioactive
agent were more energetically favorable (Table 1) than those
with quercetin, except in the case of the model with four
branches (model A). The six-branch dendrimers gave the
most stable models for both quercetin and NFOH (Etotal=
−400.03 and −482.24 kcal mol−1, respectively). These
models also presented the most negative values for the EHb

contribution (−571.63 and −512.31 kcal mol−1, respectively).
The number of intramolecular hydrogen bonds was 13 for

both. The model with NFOH and four branches (model B)
had a lower Etotal value (−341.44 kcal mol−1) and a higher
EHb contribution (−361.79 kcal mol−1) than the
corresponding quercetin-based model. Additionally, it pre-
sented 11 intramolecular hydrogen bonds (see Table 1).

Otherwise, the set of models with 3-hydroxyflavone as
the bioactive agent presented the highest Etotal values
(positive values), so this set was disregarded for further
consideration.

The LUMO is a good indicator of electron-accepting
ability. Therefore, ELUMO indicates the ability of a molecule
to accept electrons or act as an electrophile. The lower the
ELUMO value, the greater the ability of the system to act as
an electron acceptor [40]. It is interesting to evaluate this
property, for instance, when a nucleophilic enzymatic attack
is needed to promote dendrimer disassembly. If we consider
Table 1, all of the dendrimer models containing NFOH as
the bioactive agent presented lower ELUMO values than the
respective models with 3-hydroxyflavone and quercetin.

The dendrimer models with four branches (model A)
containing quercetin and NFOH as bioactive agents are
presented in Fig. 2. The quercetin-based model showed the
establishment of five intramolecular hydrogen bonds (bond
lengths: 1.74, 2.16, 2.65, 2.85, and 2.86 Å). Moreover, in
the CPK (Corey–Pauling–Koltun) or space-filling model,
only minor spatial hindrance was noted at the carbonyl
group near the core (myo-inositol). This feature renders this
moiety more favorable to enzymatic attack. The same
carbonyl group presented a region of low electronic density
(green color), which can be visualized in the MEP.
Therefore, the low density of electrons in this area could
favor a nucleophilic enzymatic attack, which is needed for
dendrimer disassembly. The LUMO distribution was

Table 1 Etotal, EHb, and ELUMO

values, as well as the number
of Hb found for the models
containing dendrimers with four
(models A and B), five, or six
branches as well as the bioactive
agent (3-hydroxyflavone,
quercetin, or NFOH)

Dendrimer Etotal (kcal/mol) EHb (kcal/mol) Number of Hb ELUMO (kcal/mol)

Four branches (model A)

3-Hydroxyflavone 82.10 −145.38 4 0.64

Quercetin −257.65 −380.48 5 0.30

NFOH −215.59 −245.53 11 −0.87
Four branches (model B)

3-Hydroxyflavone 87.63 −118.14 2 0.97

Quercetin −242.29 −365.17 8 0.74

NFOH −341.44 −361.79 11 −0.90
Five branches

3-Hydroxyflavone 116.10 −147.25 7 0.82

Quercetin −390.95 −510.48 7 0.27

NFOH −420.27 −450.54 13 −0.80
Six branches

3-Hydroxyflavone 151.62 −138.31 5 0.49

Quercetin −400.03 −571.63 13 0.36

NFOH −482.24 −512.31 13 −0.83
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investigated in the carbonyl group near quercetin. Although
there is a favorable LUMO distribution in this region, it
presents greater spatial hindrance than the carbon from the
carbonyl group near the core. Thus, if we focus mainly on
the effects of spatial hindrance and electronic distribution, it
is clear that the myo-inositol will probably be released from
the dendrimer system before the bioactive agent.

The NFOH model presented eleven intramolecular
hydrogen bonds (1.82, 1.97, 2.20, 2.40, 2.44, 2.81, 2.89,

2.95, 2.99, 3.09, 3.19 Å) that appear to contribute to the
conformational arrangement adopted by this system (see
Fig. 2). The CPK or space-filling model indicated that the
carbonyl group closest to the myo-inositol was the most
likely to undergo enzymatic attack due to its low spatial
hindrance. This finding corroborated the MEP analysis. The
same carbonyl group presented a neutral/positive electronic
density region (green/blue color), which would be an
attractive area for nucleophilic enzymatic action and thus

Fig. 2 The lowest energy conformations of the dendrimer with four
branches (model A) containing (1) quercetin or (2) NFOH, as obtained
from MD simulation. The intramolecular Hb (green lines) and the
CPK or space-filling models are also presented (ViewerLite 4.2). The
carbonyl group that shows the lowest spatial hindrance in the tube
model and the CPK model is represented in green and also

highlighted. MEPs are represented using a color ramp from −8.5
(intense red) to 8.5 (intense blue) e−2, and the LUMO distribution uses
a color ramp from −0.935 (intense red) to 0.935 (intense blue) e−2

(GaussView 3.0). The carbon atoms are shown in gray, oxygen in red,
nitrogen in blue, and hydrogen atoms are depicted in white
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dendrimer disassembly. The LUMO distribution did not
map to this carbonyl group.

Figure 3 presents the dendrimer models with four
branches (model B) containing quercetin or NFOH. It is
quite probable that for the model containing quercetin,

dendrimer disassembly will occur in the carbonyl group
near the core. The findings from the CPK and tube models
and MEP indicate this. Regarding the CPK model, the
carbonyl group near myo-inositol showed the lowest spatial
hindrance, which is an important feature of any enzymatic

Fig. 3 The lowest energy conformations of the dendrimer with four
branches (model B) containing (1) quercetin or (2) NFOH, as obtained
from MD simulation. The intramolecular Hb (green lines) and the
CPK or space-filling models are also presented (ViewerLite 4.2). The
carbonyl group that shows the lowest spatial hindrance in the tube
model and the CPK model is represented in green and also

highlighted. MEPs are represented using a color ramp from −8.5
(intense red) to 8.5 (intense blue) e−2, and the LUMO distribution uses
a color ramp from −0.935 (intense red) to 0.935 (intense blue) e−2

(GaussView 3.0). The carbon atoms are shown in gray, oxygen in red,
nitrogen in blue, and hydrogen atoms are depicted in white
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attack needed for dendrimer disassembly. Moreover, in the
tube model, the formation of eight intramolecular hydrogen

bonds (2.09, 2.19, 2.20, 2.47, 2.64, 2.87, 2.95, 3.00 Å) that
are relevant to the model’s stability and conformational

Fig. 4 The lowest energy conformations of the dendrimer with five
branches containing (1) quercetin or (2) NFOH, as obtained from MD
simulation. The intramolecular Hb (green lines) and the CPK models
are also presented (ViewerLite 4.2). The carbonyl group that shows
the lowest spatial hindrance in the tube model and the CPK or space-
filling model is represented in green and also highlighted. MEPs are

represented using a color ramp from −8.5 (intense red) to 8.5 (intense
blue) e−2, and the LUMO distribution uses a color ramp from −0.935
(intense red) to 0.935 (intense blue) e−2 (GaussView 3.0). The carbon
atoms are shown in gray, oxygen in red, nitrogen in blue, and
hydrogen atoms are depicted in white
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arrangement was observed. The green color for the MEP on
the this carbonyl carbon indicates a neutral area, which
means that it is a region that could suffer an enzymatic
nucleophilic attack. Although the LUMO was visualized in
the other carbonyl group, all the other findings discussed

here suggest that the ester break point will probably occur
in a carbonyl near the core.

The corresponding dendrimer model designed with
NFOH showed that the carbonyl group near the bioactive
agent is the most likely of these groups to suffer an

Fig. 5 The lowest energy conformations of the dendrimer with six
branches containing (1) quercetin or (2) NFOH, as obtained from MD
simulation. The intramolecular Hb (green lines) and the CPK models
are also presented (ViewerLite 4.2). The carbonyl group that shows
the lowest spatial hindrance in the tube model and the CPK or space-
filling model is represented in green and also highlighted. MEPs are

represented using a color ramp from −8.5 (intense red) to 8.5 (intense
blue) e−2, and the LUMO distribution uses a color ramp from −0.935
(intense red) to 0.935 (intense blue) e−2 (GaussView 3.0). The carbon
atoms are shown in gray, oxygen in red, nitrogen in blue, and
hydrogen atoms are depicted in white
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enzymatic attack, considering the findings from the CPK
and tube models as well as the MEP distribution. The lower
spatial hindrance in the region of this carbonyl carbon can
be visualized in the CPK model. Eleven intramolecular
hydrogen bonds can be observed in the tube model (1.82,
2.10, 2.11, 2.14, 2.60, 2.66, 3.00, 3.05, 3.02, 3.08, 3.17 Å).
Moreover, a green/blue (neutral/positive) color in this area
of the MPE distribution indicates that enzymatic hydrolysis
will probably occur in this region. However, controversial-
ly, the LUMO distribution did not occur in any of the L-
malic acid carbonyl groups.

The five-branch dendrimer models containing quercetin
or NFOH are presented in Fig. 4. In the model containing
quercetin, the carbonyl near the bioactive agent appears to
be a more likely group to suffer enzymatic action. The tube
and CPK models as well as the MPE distribution explain
this assumption. Seven intramolecular hydrogen bonds can
be visualized in the tube model (1.98, 2.27, 2.41, 2.63,
2.98, 2.99, 3.09 Å). As discussed before, these intramolec-
ular interactions contribute to the conformational arrange-
ment of the system. Moreover, the carbon near quercetin
presented the lowest steric hindrance, as seen in the CPK

Table 2 Most elucidative physicochemical properties in relation to the region most likely to undergo an enzymatic nucleophilic attack, as
evaluated for the dendrimers containing quercetin or NFOH with four (models A and B), five, or six branches
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model. The same carbonyl group represented a neutral
region (green color) in the MEP distribution, indicating that
nucleophilic attack can occur in this portion of the system.
The LUMO distribution was seen in another carbonyl
group.

The dendrimer model containing NFOH indicated that
the carbonyl carbon near myo-inositol is the most likely to
suffer an enzymatic attack. The spatial disposition of this
carbonyl group can be analyzed mainly using the tube and
CPK models (see Fig. 4). Thirteen intramolecular hydrogen
bonds were noted (1.99, 2.31, 2.67, 2.75, 2.77, 2.87, 2.90,
2.97, 3.03, 3.08, 3.15, 3.19, 3.20 Å). In addition, the same

group represented a neutral region (green color) in the MEP
distribution, indicating that it could suffer the nucleophilic
attack needed for dendrimer disassembly. The LUMO
distribution did not contribute to these findings, as it did
not occur in the carbonyl group of interest.

In the dendrimer model with six branches containing
quercetin, the carbonyl group near myo-inositol seemed to
be the most likely to suffer an enzymatic approach and,
consequently, a nucleophilic attack. Accordingly, in this
particular model, dendrimer disassembly will probably start
in the core, with the bioactive agents released afterwards.
The CPK models as well as the MPE distributions can be

Table 2 (continued)
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visualized in Fig. 5, and they confirm these assumptions.
The models show that the lowest spatial hindrance is
presented by the carbonyl carbon near myo-inositol; this is a
fundamental feature of any enzymatic approach. There are
also thirteen intramolecular hydrogen-bond interactions
(2.12, 2.20, 2.31, 2.56, 2.65, 2.68, 2.72, 2.93, 3.05, 3.09,
3.12, 3.14, 3.16 Å). Moreover, in the MPE, the
corresponding carbonyl group showed a green area,
meaning that it is a neutral region, making it likely to
suffer from enzymatic action. The LUMO distribution
found for the dendrimer model with quercetin was in
another carbonyl group, near the active agent. The
corresponding model with NFOH presented thirteen intra-
molecular hydrogen bonds (1.89, 2.01, 2.79, 2.79, 2.83,
2.85, 2.86, 2.88, 2.87, 3.05, 3.06, 3.12, 3.15 Å). In the tube
and CPK models, the lowest spatial hindrance was seen in
the carbonyl group next to the active agent. Moreover, these
carbonyl groups were a green/blue color (neutral/positive
electron density) in the MEP distribution, indicating that
they are the most likely to suffer a nucleophilic attack (see
Fig. 5). The LUMO distribution of the NFOH-based

dendrimer model was not seen in any of the groups
investigated in this study.

The most important findings of this study for the
investigated dendrimer systems containing quercetin or
NFOH are summarized in Table 2. This table considers
the most elucidative physicochemical properties in relation
to defining the region most likely to suffer an enzymatic
nucleophilic attack (carbonyl carbons near the core or near
the bioactive agent). The spatial hindrance can be visual-
ized through the solvent-accessible surface area (carbonyl
carbons near the core are shown in green; carbonyl carbons
near the bioactive agent are shown in yellow), whereas the
electrostatic potential can be seen through the MEPs
(regions colored in green/blue indicate neutral/positive
electronic density distributions).

Conclusions

The molecular modeling study presented herein can be
considered an important assessment, as it demonstrates the

Table 2 (continued)

* Solvent-accessible surface area: carbonyl carbons near the core are in green; carbonyl carbons near the bioactive agent are in yellow (ViewerLite
4.2); MEPs: regions colored in green/blue indicate neutral/positive electronic density distribution (GaussView 3.0)
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pre-disassembly behavior of dendrimers designed as poten-
tial antichagasic and antileishmanial prodrugs.

The molecular models were primarily analyzed in terms
of physicochemical properties such as the spatial hindrance,
the electrostatic potential map, and the lowest unoccupied
molecular orbital energy. Based on the theoretical findings,
the region most likely to suffer an enzymatic nucleophilic
attack was determined. The carbonyl group next to the myo-
inositol seems to be the most promising candidate for the
point at which the ester breaks during dendrimer disassem-
bly in the systems that contain quercetin as the bioactive
agent, except for the five-branch dendrimer system. The
dendrimers containing NFOH, on the other hand, show
different release behavior for each size category.

The synthesis of these molecular models and release
studies of them are currently being carried out, in order to
hopefully validate the theoretical results obtained so far.
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Abstract The exchange coupling of a group of three
dinuclear sandwich-type polyoxomolybdates [MM’(As-
Mo7O27)2]

12- with MM’=CrCr, FeFe, FeCr are theoretically
predicted from combined DFT and broken-symmetry (BS)
approach. Eight different XC functionals are utilized to
calculate the exchange-coupling constant J from both the
full crystalline structures and model structures of smaller
size. The comparison between theoretical values and
accurate experimental results supports the applicability of
DFT-BS method in this new type of sandwich-type
dinuclear polyoxomolybdates. However, a careful choice
of functionals is necessary to achieve the desired accuracy.
The encouraging results obtained from calculations on
model structures highlight the great potential of application
of structure modeling in theoretical study of POM.
Structural modeling may not only reduce the computational
cost of large POM species but also be able to take into
account the external field effect arising from solvent
molecules in solution or counterions in crystal.

Keywords BS . DFT. Exchange coupling . POM . Structure
modeling

Introduction

Polyoxometalate (POM), also known as polyoxoanion,
consists of plentiful polynuclear metal-oxygen clusters
possessing high versality of structural and topological
characters [1]. Due to its unique physical and chemical
properties, POM exhibits great potential of application in
many different areas of science and technology, e.g.,
medicine [2], catalysis [3], chemical analysis [4], etc.
Therefore POM has caught extensive interests of scientists
and researchers [1–6]. In the field of material science, the
importance of POM as a suitable candidate of building
block for the molecule-based materials with desirable
multiple functions has been emphasized by the increasing
number of recent research works [2, 5, 6].

Among the different types of POMs, nonclassical POMs of
sandwich-like structures constitute a great subclass, which has
received much attention in recent years [7–9]. Unlike
sandwich-type polyoxotungstates, sandwich-type polyoxomo-
lybdates are scarce because of the great difficulty in synthesis.
Recently, our group reported the preparation and experimen-
tal characterization of a series of dinuclear sandwich-type
heteropolymolybdates [10, 11]: [MM’(AsMo7O27)2]

12- with
MM’=CrCr, FeFe, FeCr. These POMs are abbreviated as Cr2,
Fe2 and FeCr respectively here after. As shown in Fig. 1, the
structural characters of these new sandwich-type POMs can
be summarized [MM’As2O14]

16-, as the inclusion species, is
sandwiched between two molybdenum oxide fragments
[Mo7O20]

6+. Due to the existence of transition metal (TM)
ions Cr(III) and Fe(III), the [MM’As2O14]

16- unit may be
paramagnetic. On the other side, the peripheral [Mo7O20]

2+

fragments, which contain only Mo(VI) and oxo ligands, are
assumed to be diamagnetic.

Besides the novel structural features of these new
sandwich-type POMs [10], remarkable magnetic property,
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i.e., antiferromagnetic (AFM) exchange coupling, is dem-
onstrated from accurate fitting of experimental data of
variable-temperature magnetic susceptibility [11]. Therefore
theoretical study of their properties, esp. the magnetism, is
obviously necessary to achieve a better utilization of these
new types of POMs. This necessity is the direct inspiration
of this current computational work.

Compared with the extensive experimental researches
on POM systems, the number of theoretical studies of
POM is still limited mainly because of the intrinsic
difficulties [12] of computation arising from their large
sizes, the presence of multiple TM ions with unpaired
electrons and high negative charges which can only be
stabilized in the solution or crystal environments. How-
ever, as driven by the invaluable capability of computation
in understanding the electronic and magnetic properties of
POM, the interest in theoretical studies of POM is rapidly
increasing with the help of modern computational meth-
odology [12, 13], esp. density functional theory (DFT)
[14, 15]. Therefore, DFT study on these new dinuclear
sandwich-type POMs is reported here. Broken-symmetry
(BS) method [16–20], originally developed for the
theoretical study of magnetic exchange coupling [16], is
used in conjunction with DFT method. One thing worth
noting is that the magnetism of several POM systems has
been well studied from combined DFT and BS (DFT-BS)
approach [21–27].

In spite of its great success [17, 20], the accuracy of
DFT-BS approach is still not a closed field, especially in
TM systems where the diversity of DFT calculations with
different functionals is frequently reported [28, 29].
Therefore, a careful choice of functionals is definitely not
trivial as shown by the recent report on striking differences
between DFT-BS results of pure and hybrid functionals

[30]. According to our best knowledge, a systematic and
comprehensive comparison among different functionals is
still absent for POM systems. Thus eight different func-
tionals, consisting of B3LYP [31, 32], O3LYP [32, 33],
MPW1PW91 [34, 35], PBE0 [36], BP86 [31, 37], OPBE
[33, 38], MPWPW91 [34, 35] and PBE [38], are examined
in this work.

Theoretical methods and computational details

Due to its moderate computational effort and (partial)
inclusion of electron correlation [12, 13, 39], DFT has
become the most popular theoretical method for POM. In
the field of molecular magnetism [40, 41], the most-
commonly used phenomenological spin Hamiltonian (SH)
is the Heisenberg-Dirac-Van Vleck (HDVV) one [42, 43]
which implies an isotropic interaction between the magnetic
centers [19, 20]. The formula of HDVV SH for dinuclear
systems is written as:

HHDVV ¼ �JSA � SB ð1Þ
SA and SB are the total spin operators for magnetic

centers A and B and J is the so-called exchange coupling
constant. Positive sign of J indicates ferromagnetic (FM)
coupling between magnetic centers, i.e., the ground state is
spin parallel. Negative sign of J indicates AFM coupling, i.
e., the ground state is spin antiparallel. The magnitude of J
corresponds to the strength of exchange coupling.

EðSÞ ¼ � 1

2
J � SðS þ 1Þ EðSÞ � EðS � 1Þ ¼ �J � S ð2Þ

According to HDVV SH, J could be calculated from the
energy differences between spin eigenstates in principle
[19] since the energies of various spin eigenstates of the

inclusion species
magnetic unit
MM'As2O14

molybdenum oxide framework
diamagnetic vacant fragment

Mo7O20

molybdenum oxide framework
diamagnetic vacant fragment

Mo7O20

M M' M M'

Fig. 1 Ball-and-stick representation of dinuclear sandwich-type polyoxomolybdates [MM’(AsMo7O27)2]
12- and corresponding magnetic units

2272 J Mol Model (2012) 18:2271–2278



system are determined only by J and the total spin S (Eq. 2)
[40]. However, the direct application of Eq. 2 to real system
is impractical because the calculations of intermediate or
low spin state are usually problematic at DFT level [14].

BS technique, developed by Noodleman et al. [16], has
been proven to be the most commonly used method [20] to
solve this difficulty. It has been successfully applied in TM
systems [44–49], organic diradicals [50–52] and hybrid
systems consisting of both TM ions and organic radicals
[53–55]. BS state is monodeterminantally constructed to
have opposite spins essentially localized on different
magnetic centers and thus it breaks the spatial symmetry
from the view of spin distribution. In energetic aspect, BS
state is a weighted average of spin eigenstates from a
second-order perturbation approximation of configuration
interaction up to double-excitation [16]. With the help of
spin-projection technique, J could be calculated as:

J ¼ 2ðEBS � EHSÞ
S2max

ð3Þ

EHS and EBS are the energies of highest spin (HS) and
BS state respectively, Smax is the value of maximum spin of
the system. Recent studies have pointed out the possibility
of approximating the energy of lowest spin (LS) state
directly from that of BS state [18, 46, 48], thus J could also
be calculated from non-projection equation as:

J ¼ ðEBS � EHSÞ
2SASB þ SB

ð4Þ

Due to the high susceptibility of calculated J to geometry
variation [18], experimental structures without optimization
are mainly used for various functionals. Calculations are
also performed on model structures consisting of non-
optimized inclusion species [MM’As2O14]

16- and 12 pro-
tons at optimized positions.

All the calculations are performed with Gaussian 03
program [56, 57] and the necessary initial guesses for the
construction of BS state are generated with the help of
NBO 5.0 code [58, 59]. For the calculations on full
structures, all-electron basis TZVP [60] is used for Fe, Cr
elements and pseudopotential basis LANL2DZ [61] is used
for all the other elements. For the calculations on model
structures, Fe and Cr elements are also described with
TZVP, As and H elements are described with 6-31 G**, O
element is described with 6-31+G*. The choice of these
combinations of basis is based on recent benchmark
calculations [47] concluding that high quality all-electron
basis is necessary for magnetic centers to obtain high
accuracy in the calculation of J. To ensure the reliability of
calculation, the wavefunctions of BS states are converged
with quadratic convergence (QC) [57] and tested with
STABLE=OPT option [57] of Gaussian code.

Results and discussions

Reliability of obtained HS and BS state

The reliability of obtained HS and BS states is examined in
the aspects of spin expectation value and spin density. The
results of different functionals are quite close to each other
and thus only the values of B3LYP and BP86, taken as the
representatives of hybrid and GGA functionals respectively,
are listed in Tables 1 and 2.

The expectation values of spin square operator of HS
states, calculated with B3LYP on full structures, are 12.034,
30.018 and 20.029 for Cr2, Fe2 and FeCr respectively. The
corresponding values of model structures are 12.030,
30.014 and 20.023 respectively. Similar results are also
obtained from calculations with GGA functionals (Table 1).
These values are nearly the same as the ideal values, which
are 12, 30 and 20. Therefore, from the viewpoint of spin
eigenvalue, all the functionals provide reliable descriptions
on the HS states of different POM irrespective of the usage
of full or model structures.

As shown in Table 1, the expectation values of spin
square operator of BS states are∼3, ∼ 5 and∼5 for Cr2, Fe2
and FeCr respectively. All these values are between the
ideal values of HS and LS states of Cr2 (12 and 0), Fe2 (30
and 0) and FeCr (20 and 2). Therefore the obtained BS
states are certainly weighted averages of all the possible
spin eigenstates as required [16].

As shown in Table 2, both Mulliken population analysis
(MPA) and natural population analysis (NPA) [59] demon-
strate that the spin density of HS state is essentially
localized on the magnetic centers of various POM. From
B3LYP results, spin density on Cr(III) of Cr2-full is 2.945

Table 1 Expectation values of spin square operator calculated with
different functionals

Cr2-fulla Fe2-full FeCr-full

HS BS HS BS HS BS

B3LYP 12.03 3.03 30.02 5.00 20.03 5.02

BP86 12.12 3.12 30.08 5.08 20.17 5.00

Eigenb 12 0 30 0 20 2

Cr2-modela Fe2-model FeCr-model

HS BS HS BS HS BS

B3LYP 12.03 3.02 30.01 5.00 20.02 5.02

BP86 12.03 3.01 30.01 5.08 20.02 5.00

Eigen 12 0 30 0 20 2

a Full indicates the full crystalline structures of certain POM. Model
indicates the model structures of certain POM b the exact eigenvalues
of spin square operator of HS and LS states of different POM deduced
from the [Core]3 d3 and [Core]3 d5 electron configurations of free Cr
(III) and Fe(III) ions. The values of LS states are shown at the
columns of BS of this entry
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or 2.759 from MPA or NPA method. The corresponding
values of Cr2-model is 3.054 and 2.792 respectively. BP86
functional provide essentially the same results with the only
deviation that its magnitude is moderately smaller than that
of B3LYP. Therefore the localized spin distribution is not
influenced by different structures, functionals or population
methods used in calculations and this character confirms
the use of HDVV SH in describing the title POMs [20].

As shown in Table 2, the requirement of localization of
opposite spins on different magnetic centers is clearly
obeyed by BS states obtained from NBO-generated initial
guesses. In the cases of homobinuclear POM Cr2 and Fe2,
the same magnitude of spin density is localized on the TM
ions. With B3LYP functional, the spin densities of Cr(III) in
Cr2-full and Fe(III) in Fe2-full are 2.935 and 4.279 from
MPA or 2.742 and 4.169 from NPA. The corresponding
values of Cr2-model and Fe2-model are 3.045 and 4.289
from MPA or 2.728 and 4.150 from NPA. Although with
smaller magnitude of spin density, the same character is also
demonstrated by BP86 functional as indicated in Table 2.
Therefore obtained BS states meet the requirement in the
aspect of spin density, no matter which different structures,
functionals or population methods are used in calculations.

Description on the exchange coupling from calculations
on full structures

Although different functionals provide the same results in
the aspects of spin expectation value and spin density, their
results in energetic aspect are of a high degree of diversity
as shown in Table 3. All the GGA and O3LYP functionals
fail in qualitative description on the exchange coupling of
Cr2-full and FeCr-full, as indicated by the large positive
values of EBS-EHS (Table 3). That is to say, the calculations
with these functionals on full structures lead to extremely
strong FM exchange coupling in Cr2 and FeCr, which is
absolutely contrary to the accurate experimental results.

Although succeeding in qualitative description, the
performance of hybrid functionals on full structures is still
far away from being promising in the quantitative aspect. It
is worth noting that the influence of the adoption of Eq. 3
or 4 on the calculated J values is not substantial.

MPW1PW91 and PBE0 functionals provide nearly the
same numerical results which both underestimate the
strengths of the exchange coupling of the title POM. For
Cr2-full, J values calculated with these two functionals are
−2∼−3 cm-1 whereas the experimental value is −12.52 cm-1.
The exchange coupling of Fe2-full, predicted from
MPW1PW91 and PBE0 functionals, is even negligible as
shown by the calculated J values whose magnitudes are less
than 1 cm-1. However, the corresponding experimental value
is −4.18 cm-1. In the case of FeCr-full, the calculated J values
are mainly between −5 and −6 cm-1, still significantly less
than the experimental value of −8.18 cm-1.

An opposite tendency toward the overestimation of J of
Fe2-full is given by all the GGA and O3LYP functionals as
shown in Table 3. Almost all the magnitudes of the
calculated J values, varying from −7 to −60 cm-1, are one-
order larger than that of experimental J value.

For the calculations on full structures, the best numerical
accuracy is given by the combination of B3LYP and Eq. 3
with the J values of −6.82, -3.58 and −8.25 cm-1 for Cr2-
full, Fe2-full and FeCr-full respectively. However, com-
pared with the experimental J values of −12.52, -4.18 and
−8.18 cm-1 respectively, B3LYP is still incapable of
reproducing the relative strengths of the exchange coupling
among the title POMs.

Description on the exchange coupling from calculations
on model structures

As shown in Table 4, theoretical description on the
exchange coupling of the title POM is significantly
improved by the calculations on model structures both

Table 2 Atomic spin densities
on the magnetic centers calcu-
lated with different functionals

a spin densities from MPA are
on first entry and spin densities
from NPA are on second entry b

spin density on M is at the left
side of “ / ” and spin density on
M’ is at the right side of “/ ”

Cr2-full Fe2-full FeCr-full

HS BS HS BS HS BS

B3LYPa 2.945/2.945b 2.935/-2.935 4.275/4.275 4.279/-4.279 4.261/2.298 4.254/-2.933

2.759/2.759 2.742/-2.742 4.171/4.171 4.169/-4.169 4.130/2.749 4.119/-2.743

BP86 2.523/2.523 2.512/-2.512 4.294/4.294 3.870/-3.870 3.801/2.411 3.698/-2.371

2.319/2.319 2.294/-2.294 4.153/4.153 3.708/-3.708 3.625/2.223 3.513/-2.173

Cr2-model Fe2-model FeCr-model

HS BS HS BS HS BS

B3LYP 3.054/3.054 3.045/-3.045 4.294/4.294 4.289/-4.289 4.276/3.072 4.273/-3.056

2.792/2.792 2.778/-2.778 4.171/4.171 4.169/-4.169 4.105/2.806 4.098/-2.801

BP86 3.102/3.102 3.074/-3.074 4.294/4.294 4.083/-4.083 4.117/3.130 4.108/-3.083

2.714/2.714 2.689/-2.689 4.153/4.153 3.867/-3.867 3.859/2.742 3.850/-2.716
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qualitatively and quantitatively. All the GGA functionals
become successful in predicting AFM exchange coupling
with the only exception of OPBE which fails in FeCr-
model as shown by its positive value of EBS-EHS (Table 4).
With the usage of model structures, O3LYP is capable of
predicting AFM exchange coupling not only for Fe2 but
also for Cr2. However, the use of model structures lead to
qualitative failure of MPW1PW91 and PBE0 in the
description on FeCr.

The improvement in quantitative aspect, arising from the
use of model structures, is even more encouraging as shown
in Table 4. The calculated J values of Cr2-model, with
PBE0 and MPW1PW91, are −9∼−12 cm-1, which are quite
close to the experimental value of −12.52 cm-1. Similarly,
the calculated J values of Fe2-model are −3∼−5 cm-1 and
thus they are also close to the experimental value of
−4.18 cm-1. Therefore the underestimate of the strengths of

AFM coupling, arising from the calculations on full
structures, is mainly remedied by the use of model
structures for MPW1PW91 and PBE0. The most accurate
values of J from O3LYP are −13.13 and −7.07 cm-1 for Cr2-
model and Fe2-model respectively. These values are
apparently close to the experiment values of −12.52 and
−4.18 cm-1.

The accuracy of B3LYP results is also remarkably
increased by the use of model structures. The most accurate
J values of Cr2 are −6.82 cm-1 from the calculations on full
structures and −13.98 cm-1 those on model structures, with
the latter one more close to the experimental value of
−12.52 cm-1. In the case of Fe2, although the most accurate
J is provided by the calculations on full structure, the value
from the calculations on model structures is −5.60 cm-1

with quite small deviation from the experimental value of
−4.18 cm-1.

Table 3 Energy difference between HS and BS states and J calculated with different functionals on the full structures (in cm-1)

B3LYP O3LYP MPW1 PBE0 BP86 OPBE MPW PBE

Cr2-full EBS-EHS
a −30.68 127.80 −14.42 −14.11 541.34 622.71 540.26 524.97

J (Eq. 3)b −6.82 28.40 −3.20 −3.32 120.30 138.38 120.06 116.66

J (Eq. 4)c −5.12 21.30 −2.40 −2.35 90.22 103.78 90.04 87.49

J (exp)d −12.52
Fe2-full EBS-EHS −44.77 −112.90 −9.524 −11.126 −731.48 −180.58 −753.14 −406.32

J (Eq. 3) −3.58 −9.03 −0.76 −0.89 −58.52 −14.45 −60.25 −32.50
J (Eq. 4) −2.98 −7.53 −0.63 −0.74 −48.76 −12.04 −50.21 −27.09
J (exp) −4.18

FeCr-full EBS-EHS −66.01 90.06 −44.30 −45.51 120.78 852.88 582.90 512.98

J (Eq. 3) −8.25 11.26 −5.54 −5.69 15.10 106.61 72.86 64.12

J (Eq. 4) −7.33 10.01 −4.92 −5.06 13.42 94.76 64.77 57.00

J (exp) −8.18

a energy difference calculated as EBS-EHS
b J calculated from spin-projection Eq. 3 c J calculated from non-projection Eq. 4 d J from accurate

fitting of experimental variable-temperature magnetic susceptibility in ref [11]

Table 4 Energy difference between HS and BS states and J calculated with different functionals on the model structures (in cm-1)

B3LYP O3LYP MPW1 PBE0 BP86 OPBE MPW PBE

Cr2-model EBS-EHS −62.89 −78.76 −53.10 −54.51 −195.10 −143.89 −189.79 −206.56
J (Eq. 3) −13.98 −17.50 −11.80 −12.11 −43.36 −31.98 −42.18 −45.90
J (Eq. 4) −10.48 −13.13 −8.85 −9.08 −32.68 −23.98 −31.63 −34.43
J (exp) −12.52

Fe2-model EBS-EHS −84.07 −105.99 −51.81 −59.61 −578.73 −263.02 −506.38 −502.96
J (Eq. 3) −6.72 −8.48 −4.14 −4.77 −46.30 −21.04 −40.51 −40.24
J (Eq. 4) −5.60 −7.07 −3.45 −3.97 −38.58 −17.53 −33.76 −33.53
J (exp) −4.18

FeCr-model EBS-EHS −1.27 10.51 14.26 26.24 −59.84 10.01 −51.66 −52.82
J (Eq. 3) −0.16 1.31 1.78 3.28 −7.48 1.25 −6.46 −6.60
J (Eq. 4) −0.14 1.17 1.58 2.92 −6.65 1.11 −5.74 −5.87
J (exp) −8.18

J Mol Model (2012) 18:2271–2278 2275



For GGA functionals, although the overestimate of AFM
magnetic coupling still exists in the calculations on model
structures of Cr2 and Fe2, the magnitudes are usually
smaller than those of full structures. For FeCr, with the help
of model structures, GGA calculations are also able to
provide results of high accuracy as shown by the obtained J
values of −6∼−8 cm-1.

Discussions on the use of model structures

The improvement of numerical accuracy of DFT-BS
calculations, arising from the use of model structures, is
highly valuable in three aspects. First, the justification for
using model structures, indicated here, implies the possi-
bility of application of high-level multiconfigurational
methods, e.g., CASSCF, CASPT2, DDCI, in the title
POM and their analogues. In principle, the intermediate
spin states of magnetic coupling systems can only be
correctly described by multiconfigurational methods [19].
However, the exhaustive cost of these methods forbids the
applications of them with the only exception of model
structures, of which the sizes are largely reduced in
comparison with full structures. Considering POM systems

where accurate experimental data is unavailable, in the step
of selection of suitable functionals from various candidates,
the reliable references can only be obtained from calcu-
lations with multiconfigurational methods which are only
practical in model structures. Therefore, the value of this
point is especially important for POM system without
reliable experimental results.

Second, the assumption of the title POM being con-
structed from magnetic inclusion species and diamagnetic
peripheral fragments is supported by the accurate results of
model structures, which are just combinations of inclusion
species and protons. Therefore, the function exerted by
peripheral fragments is implied to be mainly structural.
That is to say, the characteristic magnetism of the title POM
is essentially determined by the inclusion species. However,
the structural features of these inclusion species, which are
directly related to magnetic properties, are probably only
available with the help of those peripheral fragments.

Third, the title POM studied here are all highly negative-
charged anions, which can only be stable in solution or
crystal environment. That is to say, the external field effect,
arising from solvent molecule in solution or counterion in
crystal, is quite important for POM systems [12, 13]. In this

(a) Full-HS-B3LYP (b) Full-BS-B3LYP

(e) Model-HS-B3LYP (f) Model-BS-B3LYP

~

~

(c) Full-HS-BP86 (d) Full-BS-BP86

(g) Model-HS-BP86 (h) Model-BS-BP86

~

Fe

Cr

As

O

α spin

β spin

negligible density

Fig. 2 Schematic representation of spin density distribution of
heterobinuclear sandwich-type POM FeCr calculated from NPA with
B3LYP and BP86 functionals (a) HS state of full structure with
B3LYP (b) BS state of full structure with B3LYP (c) HS state of full

structure with BP86 (d) BS state of full structure with BP86 (e) HS
state of model structure with B3LYP (f) BS state of model structure
with B3LYP (c) HS state of model structure with BP86 (d) BS state of
model structure with BP86
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work, solvent molecule or counterion is not included in the
calculations. Therefore the increase in numerical accuracy
of the calculations on model structures may arise from a
better treatment of external field effect since the number of
negative charge reduces from 12 to 4 with the use of model
structures.

Based on these considerations, rational selection of
model structures may be a suitable approach for POM
systems due to the coexistence of lower computational cost
and better treatment of external field effect, which may lead
to higher numerical accuracy.

One thing worth noting is the qualitative difference
between calculated J values of full and model structures for
heterobinuclear sandwich-type FeCr as shown in Table 3 and
4. The reason for this difference is apparently important for
future application of structure modeling for POM systems.
Therefore spin density distribution of FeCr is schematically
present in Fig. 2 in seeking a deep understanding.

From calculations with B3LYP, spin densities on
terminal oxo ligands, coordinated to Cr(III) ion, are mainly
determined by spin polarization mechanism [62, 63] in HS
state, as shown by the opposite sign to central Cr(III) in
Fig. 2a. However the dominating mechanism changes to
spin delocalization [62, 63] in model structure, as shown by
spin densities of the same sign to central Cr(III) in Fig. 2e.
For BS state, B3LYP results also indicate the same change
of mechanism in spin density, as shown in Fig. 2b and f.

Besides the change of spin densities on terminal oxo
ligands coordinated to Cr(III), BP86 results also indicate a
new change of spin densities on arsentic atoms as shown in
the comparison between Fig. 2c and g or comparison
between Fig. 2d and h. In HS state, spin densities on
arsenous atoms change from −0.003 in full structure to
0.048 in model structure. The corresponding change of BS
state is from −0.010 to 0.023. It is worth noting that spin
densities on arsenous atoms from B3LYP calculation on full
structure and from BP86 calculation on model structure are
all α spin. Both of these two combinations of theoretical
method and structure are capable of reproducing exactly
experimental J values of FeCr.

Conclusions

For all the functionals examined here, BS states obtained
from NBO-generated guesses meet the requirements in the
aspects of spin expectation value and spin density. However
the high diversity of calculated J values with different
functionals emphasizes the necessity of a careful choice of
functional, especially in DFT-BS study on the magnetism of
POM system.

A great improvement in numerical accuracy of calculated J
is achieved with the use of model structures. Only with a

combination of model structures for homobinuclear POM and
full structure for heterobinuclear POM, B3LYP, MPW1PW91
and PBE0 are capable of reproducing the relative strengths of
AFM coupling among the title POM here. This fact highlights
the great potential of structure modeling in theoretical study
on POM systems, especially for those where accurate
experimental results are not available.

Rational selection of model structures may not only reduce
the computational cost but also be capable of providing better
treatment of external field effect which is necessary for the
existence of highly negative-charged POM anions.

The influence of the use of spin-projection or non-
projection equation to calculating J is small for the title
POM where there are several unpaired electrons in each
magnetic center. The functionals based on OPTX [33]
exchange functional are not suggested, especially in
seeking for high accuracy of calculated J values.

The qualitative difference between results calculated on
full and model structures for heterobinuclear POM may arise
from the change of mechanism of spin distribution. Spin
densities on arsentic atoms seem to be very important for the
magnetism of heterobinuclear POM of this new type.

Due to the large sizes and the necessity of inclusion of
electron correlation of POMs [12], DFT has become the
first choice of theoretical method. However, current popular
XC functionals are usually approximations of the unknown
universal functional in original Hohenberg-Kohn formalism
[14, 15] and thus DFT results may bear various problems, e.
g., the fractional spin and fractional charge errors [64–67].
The usage of BS method may partially remedy this defect
as shown in the results reported here as well as in previous
studies [21–27]. However, the ultimate solution to this issue
leans on the development of new functionals of high
accuracy. Therefore the test of various functionals, espe-
cially those newly developed ones, is always valuable for
theoretical studies of POM and it will be continued in our
future works.
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